

Introduction to Subtyping

- We can view types as denoting sets of values
- <u>Subtyping</u> is a relation between types induced by the subset relation between value sets
- Informal intuition:
 - If τ is a subtype of σ then any expression with type τ also has type σ (e.g., $\mathbb{Z}\subseteq\mathbb{R},\ 1{\in}\mathbb{Z}\Rightarrow1{\in}\mathbb{R}$)
 - If τ is a subtype of σ then any expression of type τ can be used in a context that expects a σ
 - We write τ < σ to say that τ is a subtype of σ
 - Subtyping is reflexive and transitive

Plan For This Lecture

- Bonus Lecture #2 on Tue Mar 28
 - Usual Suspects get food and drinks?
- Formalize Subtyping Requirements
 - Subsumption
- Create Safe Subtyping Rules
 - Pairs, functions, references, etc.
 - Most easy thing we try will be wrong
- Subtyping Coercions

Subtyping Examples

- FORTRAN introduced int < real
 - 5 + 1.5 is well-typed in many languages
- PASCAL had [1..10] < [0..15] < int
- Subtyping is a fundamental property of object-oriented languages
 - If S is a subclass of C then an instance of S can be used where an instance of C is expected
 - "subclassing ⇒ subtyping" philosophy

Subsumption

- Formalize the requirements on subtyping
- Rule of subsumption
 - If τ < σ then an expression of type τ has type σ

 $\frac{\Gamma \vdash e : \tau \quad \tau < \sigma}{\Gamma \vdash e : \sigma}$

- But now type safety may be in danger:
 - If we say that $int < (int \rightarrow int)$
 - Then we can prove that "5 5" is well typed!
- There is a way to construct the subtyping relation to preserve type safety

Defining Subtyping

- The formal definition of subtyping is by derivation <u>rules</u> for the <u>judgment</u> $\tau < \sigma$
- · We start with subtyping on the base types
 - e.g. int < real or nat < int
 - These rules are language dependent and are typically based directly on types-as-sets arguments
- We then make subtyping a preorder (reflexive and transitive)

$$\frac{\tau_1 < \tau_2 \quad \tau_2 < \tau_3}{\tau_1 < \tau_3}$$

• Then we build-up subtyping for "larger" types

Subtyping for Pairs

• Try

$$\frac{\tau < \sigma \quad \tau' < \sigma'}{\tau \times \tau' < \sigma \times \sigma'}$$

- Show (informally) that whenever a $\mathbf{s} \times \mathbf{s}'$ can be used, a $\mathbf{t} \times \mathbf{t}$ can also be used:
- Consider the context H = H'[fst •] expecting a s × s'
 - Then H' expects a s
 - Because t < s then H' accepts a t
 - \bullet Take e : $t\times t^{\prime}.$ Then fst e : t so it works in H^{\prime}
 - Thus e works in H
- The case of "snd ●" is similar

Subtyping for Records

- · Several subtyping relations for records
- 1. Depth subtyping

$$\frac{\tau_i < \tau_i'}{\{l_1: \tau_1, \dots, l_n: \tau_n\} < \left\{l_1: \tau_1', \dots, l_n: \tau_n'\right\}}$$

- e.g., {f1 = int, f2 = int} < {f1 = real, f2 = int}
- 2. Width subtyping

$$n \ge m$$

$$\{l_1 : \tau_1, \dots, l_n : \tau_n\} < \{l_1 : \tau_1, \dots, l_m : \tau_m\}$$

- E.g., {f1 = int, f2 = int} < {f2 = int}
- · Models subclassing in OO languages
- 3. Or, a combination of the two

Subtyping for Functions

$$\frac{\tau < \sigma \quad \tau' < \sigma'}{\tau \to \tau' < \sigma \to \sigma'}$$

Example Use:

 $\colon \mathbb{R} \to \mathbb{Z} \\ \colon \mathbb{R} \to \mathbb{R}$ rounded_sqrt actual_sqrt

Since $\mathbb{Z} < \mathbb{R}$, rounded_sqrt < actual_sqrt

So if I have code like this:

float result = rounded_sqrt(5); // 2

... I can replace it like this:

float result = actual_sqrt(5); // 2.23

... and everything will be fine.

Subtyping for Functions

$$\frac{\tau < \sigma \quad \tau' < \sigma'}{\tau \to \tau' < \sigma \to \sigma'} \quad \text{`What do you think of this rule?}$$

think of this rule?

Subtyping for Functions

$$\frac{\tau < \sigma \quad \tau' < \sigma'}{\tau \to \tau' < \sigma \to \sigma'}$$

- This rule is unsound
 - Let Γ = f : int \rightarrow bool (and assume int < real)
 - We show using the above rule that $\Gamma \vdash f \;\; 5.0$: bool
 - But this is wrong since 5.0 is not a valid argument of f

 $\verb|int| < \verb|real| & \verb|bool| < \verb|bool|$ $\Gamma \vdash f : \mathtt{int} \to \mathtt{bool} \quad \overline{\mathtt{int} \to \mathtt{bool} < \mathtt{real} \to \mathtt{bool}}$ $\Gamma \vdash f : \mathtt{real} \to \mathtt{bool}$ $\Gamma \vdash 5.0 : real$ $\Gamma \vdash f$ 5.0 : bool

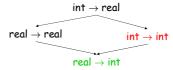
Correct Function Subtyping

$$\frac{\sigma < \tau \quad \tau' < \sigma'}{\tau \to \tau' < \sigma \to \sigma'}$$

- We say that → is <u>covariant</u> in the result type and <u>contravariant</u> in the argument type
- · Informal correctness argument:
 - Pick $f: \tau \rightarrow \tau'$
 - f expects an argument of type τ
 - It also accepts an argument of type $\sigma < \tau$
 - f returns a value of type τ^{\prime}
 - Which can also be viewed as a σ' (since $\tau' < \sigma'$)
 - Hence f can be used as $\sigma \to \sigma'$

More on Contravariance

• Consider the subtype relationships:



- In what sense $(f \in real \rightarrow int) \Rightarrow (f \in int \rightarrow int)$?
- "real \rightarrow int" has a larger domain!
- (recall the set theory (arg, result) pair encoding for functions)
- This suggests that "subtype-as-subset" interpretation is not straightforward
 - We'll return to this issue (after these commercial messages ...)

Subtyping References

• Try covariance

$$\frac{\tau < \sigma}{\tau \, \operatorname{ref} < \sigma \, \operatorname{ref}}$$

Wrona!

- Example: assume $\tau < \sigma$
- The following holds (if we assume the above rule):

$$x : \sigma, y : \tau \text{ ref, } f : \tau \rightarrow \text{int } \vdash y := x; f (! y)$$

- Unsound: f is called on a σ but is defined only on τ
- Java has covariant arrays!
- If we want covariance of references we can recover type safety with a runtime check for each y := x
 - The actual type of x matches the actual type of y
 - But this is generally considered a bad design

Subtyping References (Part 2)

• Contravariance? $\tau < \sigma$

$$\frac{\tau < \sigma}{\sigma \, \text{ref} < \tau \, \text{ref}}$$

Also Wrong!

- Example: assume $\tau < \sigma$
- The following holds (if we assume the above rule):

$$x : \sigma, y : \sigma \text{ ref, } f : \tau \rightarrow \text{int} \vdash y := x; f (! y)$$

- Unsound: f is called on a σ but is defined only on τ
- References are invariant
 - No subtyping for references (unless we are prepared to add run-time checks)
 - hence, arrays should be invariant
 - hence, mutable records should be invariant

Subtyping Recursive Types

- Recall τ list = μ t.(unit + $\tau \times$ t)
 - We would like τ list $< \sigma$ list whenever $\tau < \sigma$
- Covariance?

$$\frac{\tau < \sigma}{\mu t. \tau < \mu t. \sigma}$$

Wrong!

• This is wrong if t occurs contravariantly in
$$\tau$$

- Take τ = $\mu t.t \rightarrow int$ and σ = $\mu t.t \rightarrow real$
- Above rule says that $\tau < \sigma$
- We have $\tau \simeq \tau \rightarrow int$ and $\sigma \simeq \sigma \rightarrow real$
- $\tau < \sigma$ would mean covariant function type!
- How can we get safe subtyping for lists?

Subtyping Recursive Types

• The correct rule

$$\begin{array}{c} t < s \\ \vdots \\ \tau < \sigma \end{array}$$

 $\overline{\mu t. \tau < \mu s. \sigma}$

- We add as an assumption that the type variables stand for types with the desired subtype relationship
 - Before we assumed they stood for the *same* type!
- Verify that now subtyping works properly for lists
- There is no subtyping between $\mu t.t \rightarrow \text{int}$ and $\mu t.t \rightarrow \text{real}$ (recall: $\tau < \sigma$

 $\mu t.\tau < \mu t.\sigma$

Wrong!

Conversion Interpretation

- The subset interpretation of types leads to an abstract modeling of the operational behavior
 - e.g., we say int < real even though an int could not be directly used as a real in the concrete x86 implementation (cf. IEEE 754 bit patterns)
 - The int needs to be <u>converted</u> to a real
- We can get closer to the "machine" with a conversion interpretation of subtyping
 - We say that $\tau < \sigma$ when there is a <u>conversion function</u> that converts values of type τ to values of type σ
 - Conversions also help explain issues such as contravariance
 - Must be careful with conversions (cf. Afghanistan)

Conversions

- Examples:
 - nat < int with conversion λx.x
 - int < real with conversion 2's comp \rightarrow IEEE
- The subset interpretation is a special case when all conversions are *identity functions*
- Write " $\tau < \sigma \Rightarrow C(\tau, \sigma)$ " to say that $C(\tau, \sigma)$ is the conversion function from subtype τ to σ
 - If $C(\tau, \sigma)$ is expressed in F_1 then $C(\tau, \sigma) : \tau \to \sigma$

Issues with Conversions

• Consider the expression "printreal 1" typed as follows:

```
1: \mathtt{int} \quad \mathtt{int} < \mathtt{real}
\mathtt{printreal} : \mathtt{real} \to \mathtt{unit}
                                                               1: \mathtt{real}
                     printreal 1 : unit
```

we convert 1 to real: printreal (C(int,real) 1)

• But we can also have another type derivation:

```
\texttt{printreal}: \texttt{real} \to \texttt{unit} \quad \texttt{real} \to \texttt{unit} < \texttt{int} \to \texttt{unit}
                      printreal: int \rightarrow unit
                                                                                  1: int
                                           printreal 1 : unit
with conversion "(C(real -> unit, int -> unit) printreal) 1"
```

Which one is right? What do they mean?

Introducing Conversions

- We can compile a language with subtyping into one without subtyping by introducing conversions
- · The process follows closely that of type checking

 $\Gamma \vdash e : \tau \Rightarrow \underline{e}$

- Expression e has type τ and its conversion is \underline{e}
- Rules for the conversion process:

```
\Gamma \vdash e_1 : \tau_2 \to \tau \Rightarrow \underline{e_1} \quad \Gamma \vdash e_2 : \tau_2 \Rightarrow \underline{e_2}
                         \Gamma \vdash e_1 \ e_2 : \tau \Rightarrow e_1 \ e_2
          \Gamma \vdash e : \tau \Rightarrow e \quad \tau < \sigma \Rightarrow C(\tau, \sigma)
                         \Gamma \vdash e : \sigma \Rightarrow C(\tau, \sigma)e
```

Coherence of Conversions

- · Questions and Concerns:
 - Can we build arbitrary subtype relations just because we can write conversion functions?
 - Is real < int just because the "floor" function is a conversion?
 - What is the conversion from "real \rightarrow int" to "int \rightarrow int"?
- What are the restrictions on conversion functions?
- A system of conversion functions is coherent if whenever we have $\tau < \tau' < \sigma$ then
 - C(τ, τ) $= \lambda x.x$
 - C(τ,σ) = $C(\tau', \sigma) \circ C(\tau, \tau')$ (= composed with)
 - otherwise we end up with confusing uses of subsumption

Example of Coherence

- We want the following subtyping relations:
 - int < real $\Rightarrow \lambda x$:int. to IEEE x
 - real < int $\Rightarrow \lambda x$:real. floor x
- For this system to be coherent we need
 - C(int, real) \circ C(real, int) = $\lambda x.x$, and
 - $C(real, int) \circ C(int, real) = \lambda x.x$
- This means that
 - $\forall x : real . (toIEEE (floor x) = x)$
 - which is not true

Building Conversions

• We start from conversions on basic types

Comments

- With the conversion view we see why we do not necessarily want to impose antisymmetry for subtyping
 - Can have multiple representations of a type
 - We want to reserve type equality for representation equality
 - τ < τ' and also τ' < τ (are interconvertible) but not necessarily τ = τ'
 - e.g., Modula-3 has packed and unpacked records
- We'll encounter subtyping again for objectoriented languages
 - Serious difficulties there due to recursive types

Subtyping in POPL and PLDI 2005

- A simple typed intermediate language for object-oriented languages
- Checking type safety of foreign function calls
- Essential language support for generic programming
- Semantic type qualifiers
- Permission-based ownership
- ... (out of space on slide)

Homework

- Project Status Update Due Today
- Class Survey #2 Out Today
- Bonus Lecture #2 On Tuesday