

Engler: Automatically Generating Malicious Disks using Symex

- IEEE Security and Privacy 2006
- Use CIL and Symbolic Execution on Linux FS code
- Special model of memory, makes theorem prover calls, aims to hit all paths, has trouble with loops
- New: transform program so that it combines concrete and symbolic execution (cf. RTCG)
- New: uses contraint solver to automatically generate test case (= FS image)
- Found 5 bugs (4 panic, 1 root)
- Special thanks to Wei Hu for noticing this ...

Cunning Plan

- There are full-semester courses on automated deduction; we will elide details.
- Logic Syntax
- Theories
- Satisfiability Procedures
- Mixed Theories
- Theorem Proving
- Proof Checking
- SAT-based Theorem Provers (cf. Engler paper)

Motivation

- Can be viewed as "decidable AI"
 Would be nice to have a procedure to automatically reason from premises to conclusions ...
- Used to rule out the exploration of infeasible paths (model checking, dataflow)
- Used to reason about the heap (McCarthy, symbolic execution)
- Used to automatically synthesize programs from specifications (e.g. Leroy, Engler optional papers)
- Used to discover proofs of conjectures (e.g., Tarski conjecture proved by machine in 1996, efficient geometry theorem provers)
- Generally under-utilized

• Still experimental (even after 40 years)

Basic Symbolic Theorem Prover	
• Let's define prove(H,G)	
prove(H, true)	= true
prove(H, $G_1 \wedge G_2$)	= prove(H,G ₁) &&
	prove(H, G_2)
prove(H_1 , $H_2 \Rightarrow G$)	= prove($H_1 \wedge H_2$, G)
prove(H, ∀x. G)	= prove(H, $G[a/x]$)
	(a is "fresh")
prove(H, L)	= ???

Decision Procedures for Theories

- The Decision Problem
 - Decide whether a formula in a theory with firstorder logic is true
- Example:
 - Decide " $\forall x. x > 0 \Rightarrow (\exists y. x = y + 1)$ " in { \mathbb{N} , +, =, >}
- A theory is <u>decidable</u> when there is an algorithm that solves the decision problem
 - This algorithm is the <u>decision procedure</u> for that theory

Satisfiability Procedures

- The <u>Satisfiability Problem</u>
 - Decide whether a *conjunction of literals* in the theory is satisfiable
 - Factors out the first-order logic part
 - The decision problem can be reduced to the satisfiability problem
 - Parameters for ∀, skolem functions for ∃, negate and convert to DNF (sorry; I won't explain this here)
- "Easiest" Theory = Propositional Logic = <u>SAT</u>
 A decision procedure for it is a "<u>SAT solver</u>"

Mixed Theories

- Often we have facts involving symbols from multiple theories
 - E's symbols =, \neq , f, g, ... (uninterp function equality)
 - R's symbols =, \neq , +, -, \leq , 0, 1, ... (linear arithmetic)
 - Running Example (and Fact): $\models x \le y \land y + z \le x \land 0 \le z \implies f(f(x) - f(y)) = f(z)$ To prove this, we must decide:
 - To prove this, we must decide: $Unsat(x \le y, y + z \le x, 0 \le z, f(f(x) - f(y)) \ne f(z))$
- We may have a sat procedure for each theory - E's sat procedure by Ackermann in 1924
 - R's proc by Fourier
- The sat proc for their combination is much harder - Only in 1979 did we get E+R

Proof Generation

- We want our theorem prover to emit proofs
 - No need to trust the prover
 - Can find bugs in the prover
 - Can be used for proof-carrying code
 - Can be used to extract invariants
 - Can be used to extract models
- Implements the soundness argument
- On every run, a soundness proof is constructed

- To Prove: $3^*x=9 \Rightarrow (x = 7 \land x \le 4)$
 - Becomes Unsat: A ∧ (¬B ∨ ¬C)
 SAT Solver Returns: A=1, C=0
 - SAT Solver Returns: A=1, C=0 - Ask sat proc: unsat(3*x=9, $\neg x \le 4$) = true
 - Add constraint: $\neg(A \land C)$
 - Becomes Unsat: $A \land (\neg B \lor \neg C) \land \neg (A \land C)$
 - SAT Solver Returns: A=1, B=0
 - Ask sat proc: unsat(3*x=9, ¬ x=7) = false
 (x=3 is a satisfying assignment)
 - We're done! (original to-prove goal is false)
 - If SAT Solver returns "no satisfying assignment" then original to-prove goal is true

Homework

- Project Status Update
- Project Due Tue Apr 25
 - You have ~21 days to complete it.
 - Need help? Stop by my office or send email.