
1

#1

Automated Theorem ProvingAutomated Theorem Proving

andand

Proof CheckingProof Checking

#2

Engler: Automatically Generating

Malicious Disks using Symex

• IEEE Security and Privacy 2006

• Use CIL and Symbolic Execution on Linux FS code

• Special model of memory, makes theorem prover

calls, aims to hit all paths, has trouble with loops

• New: transform program so that it combines

concrete and symbolic execution (cf. RTCG)

• New: uses contraint solver to automatically

generate test case (= FS image)

• Found 5 bugs (4 panic, 1 root)

• Special thanks to Wei Hu for noticing this …

#3

Cunning Plan

• There are full-semester courses on
automated deduction; we will elide details.

• Logic Syntax

• Theories

• Satisfiability Procedures

• Mixed Theories

• Theorem Proving

• Proof Checking

• SAT-based Theorem Provers (cf. Engler paper)

#4

Motivation

• Can be viewed as “decidable AI”
– Would be nice to have a procedure to automatically
reason from premises to conclusions …

• Used to rule out the exploration of infeasible paths
(model checking, dataflow)

• Used to reason about the heap (McCarthy, symbolic
execution)

• Used to automatically synthesize programs from
specifications (e.g. Leroy, Engler optional papers)

• Used to discover proofs of conjectures (e.g., Tarski
conjecture proved by machine in 1996, efficient
geometry theorem provers)

• Generally under-utilized

#5

History

• Automated deduction is logical deduction
performed by a machine

• Involves logic and mathematics

• One of the oldest and technically deepest
fields of computer science
– Some results are as much as 75 years old

– “Checking a Large Routine”, Turing 1949

– Automation efforts are about 40 years old

– Floyd-Hoare axiomatic semantics

• Still experimental (even after 40 years)
#6

Standard Architecture

Program

Specification

Theorem

In A Logic

Meets Spec

Or

Found A Bug

Verification

Condition

Generation

Semantics

Va
lid
it
y

Pr
ov
ab
ili
ty

Automated
Theorem
Proving

2

#7

Logic Grammar

• We’ll use the following logic:

Goals: G ::= L | true |

G1 ∧ G2 | H ⇒ G | ∀x. G

Hypotheses: H ::= L | true | H1 ∧ H2

Literals: L ::= p(E1, …, Ek)

Expressions: E ::= n | f(E1, …, Em)

• This is a subset of first-order logic

– Intentionally restricted: no ∨ so far

– Predicate functions p: <, =, …

– Expression functions f: +, *, sel, upd,

#8

Theorem Proving Problem

• Write an algorithm “prove” such that:

• If prove(G) = true then � G

– Soundnes (must have)

• If � G then prove(G) = true

– Completeness (nice to have, optional)

• prove(H,G) means prove H ⇒ G

• Architecture: Separation of Concerns

– #1. Handle ∧, ⇒, ∀, =

– #2. Handle �, *, sel, upd, =

#9

Theorem Proving

• Want to prove true things

• Avoid proving false things

• We’ll do proof-checking

later to rule out the “cat

proof” shown here

• For now, let’s just get to

the point where we can

prove something

#10

Basic Symbolic Theorem Prover

• Let’s define prove(H,G) …

prove(H, true) = true

prove(H, G1 ∧ G2) = prove(H,G1) &&

prove(H, G2)

prove(H1, H2 ⇒ G) = prove(H1 ∧ H2, G)

prove(H, ∀x. G) = prove(H, G[a/x])

(a is “fresh”)

prove(H, L) = ???

#11

Theorem Prover for Literals

• We have reduced the problem to

prove(H,L)

• But H is a conjunction of literals L1 ∧ … ∧ Lk

• Thus we really have to prove that

L1 ∧ … ∧ Lk ⇒ L

• Equivalently, that L1 ∧ … ∧ Lk ∧ ¬ L is unsatisfiable

– For any assignment of values to variables the truth value

of the conjunction is false

• Now we can say

prove(H,L) = Unsat(H ∧ ¬ L)

#12

Theory Terminology

• A theory consists of a set of functions and
predicate symbols (syntax) and definitions
for the meanings of those symbols
(semantics)

• Examples:
– 0, 1, -1, 2, -3, …, +, -, =, < (usual meanings;
“theory of integers with arithmetic” or
“Presburger arithmetic”)

– =, � (axioms of transitivity, anti-symmetry, and
∀x. ∀y. x � y ∨ y � x ; “theory of total orders”)

– sel, upd (McCarthy’s “theory of lists”)

3

#13

Decision Procedures for Theories

• The Decision Problem

– Decide whether a formula in a theory with first-

order logic is true

• Example:
– Decide “∀x. x>0 ⇒ (∃y. x=y+1)” in {N, +, =, >}

• A theory is decidable when there is an

algorithm that solves the decision problem

– This algorithm is the decision procedure for that

theory

#14

Satisfiability Procedures

• The Satisfiability Problem

– Decide whether a conjunction of literals in the

theory is satisfiable

– Factors out the first-order logic part

– The decision problem can be reduced to the

satisfiability problem

• Parameters for ∀, skolem functions for ∃, negate and

convert to DNF (sorry; I won’t explain this here)

• “Easiest” Theory = Propositional Logic = SAT

– A decision procedure for it is a “SAT solver”

#15

Theory of Equality

• Theory of equality with uninterpreted

functions

• Symbols: =, ≠, f, g, …

• Axiomatically defined (A,B,C ∈ Expressions):

• Example satisfiability problem:

g(g(g(x)))=x ∧ g(g(g(g(g(x)))))=x ∧ g(x)≠x

A=A A=B

B=A

A=C

A=B B=C

f(A) = f(B)

A=B

#16

More Satisfying Examples

• Theory of Linear Arithmetic

– Symbols: ≥, =, +, -, integers

– Example: y > 2x + 1, x > 1, y < 0 is unsat

– Satisfiability problem is in P (loosely, no multiplication

means no tricky encodings)

• Theory of Lists

– Symbols: cons, head, tail, nil

– Theorem: head(x) = head(y) ∧ tail(x) = tail(y) ⇒ x = y

head(cons(A,B)) = A tail(cons(A,B) = B

#17

Mixed Theories

• Often we have facts involving symbols from
multiple theories
– E’s symbols =, ≠, f, g, … (uninterp function equality)
– R’s symbols =, ≠, +, -, �, 0, 1, … (linear arithmetic)

– Running Example (and Fact):
� x � y ∧ y + z � x ∧ 0 � z ⇒ f(f(x) – f(y)) = f(z)

– To prove this, we must decide:
Unsat(x � y, y + z � x, 0 � z, f(f(x) – f(y)) ≠ f(z))

• We may have a sat procedure for each theory
– E’s sat procedure by Ackermann in 1924

– R’s proc by Fourier

• The sat proc for their combination is much harder
– Only in 1979 did we get E+R

#18

Satisfiability of Mixed Theories

• Can we just separate out the terms in

Theory 1 from the terms in Theory 2 and see

if they are separately safisfiable?

– No, unsound, equi-sat ≠ equivalent.

• The problem is that the two satisfying

assignments may be incompatible

• Idea (Nelson and Oppen): Each sat proc

announces all equalities between variables

that it discovers

Unsat(x � y, y + z � x, 0 � z, f(f(x) – f(y)) ≠ f(z))

4

#19

Handling Multiple Theories

• We’ll use

cooperating

decision procedures

• Each sat proc works

on the literals it

understands

• Sat procs share

information

(equalities)

#20

Consider Equality and Arith

f(f(x) – f(y) ≠ f(z) x � y y + z � x 0 � z

x = y y � x

0 = zf(x) = f(y)

f(x) – f(y) = z

f(f(x) – f(y)) = f(z)
false

• How can we do

this in our prover?

#21

Nelson-Oppen: The E-DAG
• Represent all terms in one Equivalence DAG

– Node names act as variables shared between

theories!

f(f(x) – f(y)) ≠ f(z) ∧ y ≥ x ∧ x ≥ y + z ∧ z ≥ 0

f

-

y x z 0

ff

≥≥≥≥

≥≥≥≥ ≥≥≥≥f

+

#22

Nelson-Oppen: Processing

• Run each sat proc

– Report all contradictions (as usual)

– Report all equalities between nodes (key idea)

f

-

y x z 0

ff

≥≥≥≥

≥≥≥≥ ≥≥≥≥f

+

Implementation

details: Use union-

find to track node

equivalence classes

in E-DAG. When

merging A=B, also

merge f(A)=f(B).

#23

Nelson-Oppen: Processing

• Broadcast all discovered equalities

– Rerun sat procedures

– Until no more equalities or a contradiction

f

-

y x z 0

ff

≥≥≥≥

≥≥≥≥ ≥≥≥≥f

+

Contradiction

X

#24

Does It Work?

• If a contradiction is found, then unsat

– This is sound if sat procs are sound

– Because only sound equalities are ever found

• If there are no more equalities, then sat

– Is this complete? Have they shared enough info?

– Are the two satisfying assignments compatible?

– Yes!

– (Countable theories with infinite models admit

isomorphic models, convex theories have

necessary interpretations, etc.)

5

#25

Proofs
“Checking proofs ain’t like dustin’ crops, boy!”

#26

Proof Generation

• We want our theorem prover to emit proofs

– No need to trust the prover

– Can find bugs in the prover

– Can be used for proof-carrying code

– Can be used to extract invariants

– Can be used to extract models

• Implements the soundness argument

– On every run, a soundness proof is constructed

#27

Proof Representation

• Proofs are trees
– Leaves are hypotheses/axioms

– Internal nodes are inference rules

• Axiom: “true introduction”
– Constant: truei : pf

– pf is the type of proofs

• Inference: “conjunction introduction”
– Constant: andi : pf → pf → pf

• Inference: “conjunction elimination”
– Constant: andel : pf → Pf

• Problem:
– “andel truei : pf” but does not represent a valid proof

– Need a more powerful type system that checks content

⊢ true

⊢ A

⊢ A ∧ B

⊢ A ∧ B

⊢ A ⊢ B

truei

andi

andel

#28

Dependent Types

• Make pf a family of types indexed by formulas

– f : Type (type of encodings of formulas)

– e : Type (type of encodings of expressions)

– pf : f → Type (the type of proofs indexed by formulas: it

is a proof that f is true)

• Examples:

– true : f

– and : f → f → f

– truei : pf true

– andi : pf A → pf B → pf (and A B)

– andi : ΠA:f. ΠB:f. pf A → pf B → pf (and A B)

#29

Proof Checking

• Validate proof trees by type-checking them

• Given a proof tree X claiming to prove A ∧ B

• Must check X : pf (and A B)

• We use “expression tree equality”, so

– andel (andi “1+2=3” “x=y”) does not have type pf (3=3)

– This is already a proof system! If the proof-supplier
wants to use the fact that 1+2=3 ⇔ 3=3, she can include

a proof of it somewhere!

• Thus Type Checking = Proof Checking

– And it’s quite easily decidable!

#30

Parametric Judgment

• Universal Introduction Rule of Inference

• We represent bound variables in the logic

using bound variables in the meta-logic

– all : (e → f) → f

– Example: ∀x. x=x represented as (all (λx. eq x x))

– Note: ∀y. y=y has an α-equivalent representation

– Substitution is done by β-reduction in meta-logic

• [E/x](x=x) is (λx. eq x x) E

⊢ ∀x. A

⊢ [a/x]A (a is fresh)

6

#31

Parametric ∀ Proof Rules

⊢ ∀x. A

⊢ [a/x]A (a is fresh)

⊢ [E/x]A

⊢ ∀x. A

• Universal Introduction

– alli: ΠA:(e→ f). (Πa:e. pf (A a)) → pf (all A)

• Universal Elimination

– alle: ΠA:(e→ f). ΠE:e. pf (all A) → pf (A E)

#32

Parametric ∃ Proof Rules

⊢ [a/x]A

…

⊢ B

⊢ ∃x. A ⊢ B

⊢ ∃x. A

⊢ [E/x]A

• Existential Introduction

– existi: ΠA:(e→ f). ΠE:e. pf (A E) → pf (exists A)

• Existential Elimination

– existe: ΠA:(e→ f). ΠB:f.

pf (exists A) → (Πa:e. pf (A a) → pf B) → pf B

#33

SAT-Based Theorem Provers

• Recall separation of concerns:

– #1 Prover handles connectives (∀, ∧, ⇒)

– #2 Sat procs handle literals (+, �, 0, head)

• Idea: reduce proof obligation into

propositional logic, feed to SAT solver (CVC)

– To Prove: 3*x=9 ⇒ (x = 7 ∧ x � 4)

– Becomes Prove: A ⇒ (B ∧ C)

– Becomes Unsat: A ∧ ¬(B ∧ C)

– Becomes Unsat: A ∧ (¬B ∨ ¬C)

#34

SAT-Based Theorem Proving

• To Prove: 3*x=9 ⇒ (x = 7 ∧ x � 4)
– Becomes Unsat: A ∧ (¬B ∨ ¬C)

– SAT Solver Returns: A=1, C=0

– Ask sat proc: unsat(3*x=9, ¬ x�4) = true

– Add constraint: ¬(A ∧ C)

– Becomes Unsat: A ∧ (¬B ∨ ¬C) ∧ ¬(A ∧ C)

– SAT Solver Returns: A=1, B=0

– Ask sat proc: unsat(3*x=9, ¬ x=7) = false
• (x=3 is a satisfying assignment)

– We’re done! (original to-prove goal is false)

– If SAT Solver returns “no satisfying assignment” then
original to-prove goal is true

#35

Homework

• Project Status Update

• Project Due Tue Apr 25
– You have ~21 days to complete it.

– Need help? Stop by my office or send email.

