Automated Theorem Proving
and
Proof Checking

Copyright © 2003 Rabert T Baide,al ights rsarved. Vit PartiabyClis comt
YOU RE KIDDING, RIGHT

)
DEAD SERIOUS. T %
TEACHES LOGICAL &)

REASONING.

PartiallyClips

PLAYING "MINESWEEPER” AGAIN?

WELL, T CAN THINK OF SEVERAL COUNTRIES
WHERE SCHOOL KIDS LEARN TO SWEEP MINES,
AND THEY DON'T SEEH. TOO WELL-OFF TO NE

W TO EXTRAPOLATE A CONCLUSION
FROM KNOWN PRENISES. WHAT
CONSTLTUTES PROOF. HOW NGT TO
DELUDE YOURSELF. THE WORLD WOULD.
BE A LOT BETTER OFF IF WE TAUGHT

YEAH, HA-HA VERY POTGNANT.
IT'S FANTASTIC. THEY SHOULD BUT T'W SAYING IF THE WHOLL
TEACH IT FOR CREDIT IN SCHOOLS.

WORLD LEARNED TO THINK
LOGICALLY, THERE WOULON'T

TIHIS STUFF TO OUR KIDS. BE ANY HINES TO SWEEP.

Engler: Automatically Generating
Malicious Disks using Symex

« |EEE Security and Privacy 2006
» Use CIL and Symbolic Execution on Linux FS code

» Special model of memory, makes theorem prover
calls, aims to hit all paths, has trouble with loops

« New: transform program so that it combines
concrete and symbolic execution (cf. RTCG)

» New: uses contraint solver to automatically
generate test case (= FS image)

» Found 5 bugs (4 panic, 1 root)
 Special thanks to Wei Hu for noticing this ...

2]
Cunning Plan Motivation
o There are full-semester courses on . Cacvbeidv:;ewed as r:‘deddabledA'")
i i i ; - Wo e nice to have a procedure to automatica
aut(?mated deduction; we will elide details. reason From premise‘{s o o e so & 1cally
 Logic Syntax « Used to rule out the exploration of infeasible paths
« Theories (model checking, dataflow)
e s » Used to reason about the heap (McCarthy, symbolic
« Satisfiability Procedures execution) . P e '
» Mixed Theories « Used to automatically synthesize programs from
. - specifications (e.g. Leroy, Engler optional papers)
Theorem Prgvmg » Used to discover proofs of conjectures (e.g., Tarski
 Proof Checking conjecture proved by machine in 1996, efficient
.) geometry theorem provers)
SAT-based Theorem Provers (cf. Engler paper) . Generally under-utilized
#3] #a
History Standard Architecture
» Automated deduction is logical deduction Semantics
performed by a machine M
. . o c eets ec
« Involves logic and mathematics o
« One of the oldest and technically deepest bound 4 Bug
fields of computer science Verification
- Some results are as much as 75 years old Condition
- “Checking a Large Routine”, Turing 1949 Generation
- Automation efforts are about 40 years old Automated
- Floyd-Hoare axiomatic semantics Theorem Theorem
« Still experimental (even after 40 years) In A Logic Proving
5] 6]

Logic Grammar

« We’ll use the following logic:
Goals: G::=L | true |
GAG, |H=G | . G

Hypotheses: H:=L| true | H; A H,
Literals: L::=p(E, ..., Ep)
Expressions: E:=n| f(E, ..., Ey)

« This is a subset of first-order logic
- Intentionally restricted: no Vv so far
- Predicate functions p: <, =, ...
- Expression functions f: +, *, sel, upd,

#7

Theorem Proving Problem

» Write an algorithm “prove” such that:
o If prove(G) = true then £ G
- Soundnes (must have)
o If = G then prove(G) = true
- Completeness (nice to have, optional)
e prove(H,G) means prove H = G
« Architecture: Separation of Concerns
- #1. Handle A, =, V, =
- #2. Handle <, *, sel, upd, =

Theorem Provin

Al\ ca‘ﬁs hav‘e Lour)egg,
[hoe four legs.
Thethoe, [am @ cdl

» Want to prove true things

« Avoid proving false things

» We’ll do proof-checking
later to rule out the “cat
proof” shown here

 For now, let’s just get to
the point where we can
prove something

Basic Symbolic Theorem Prover

« Let’s define prove(H,G) ...

prove(H, true) = true

prove(H, G, A G;) = prove(H,G,) &&
prove(H, G,)

prove(H,, H, = G) = prove(H, A H,, G)

prove(H, vx. G) = prove(H, G[a/x])

(ais “fresh”)
prove(H, L) =

Theorem Prover for Literals

» We have reduced the problem to
prove(H,L)
 But His a conjunction of literals L; A ... A L
» Thus we really have to prove that
LA.AL=L
» Equivalently, that L; A ... A L, A = L is unsatisfiable

- For any assignment of values to variables the truth value
of the conjunction is false

« Now we can say
prove(H,L) = Unsat(H A = L)

Theory Terminology

« A theory consists of a set of functions and
predicate symbols (syntax) and definitions
for the meanings of those symbols
(semantics)

» Examples:

-0,1,-1,2,-3, .., + -, = < (usual meanings;
“theory of integers with arithmetic” or
“Presburger arithmetic”)

- =, < (axioms of transitivity, anti-symmetry, and
VX. V. x <y Vy<x; “theory of total orders”)

- sel, upd (McCarthy’s “theory of lists”)

Decision Procedures for Theories

» The Decision Problem
- Decide whether a formula in a theory with first-
order logic is true
» Example:
- Decide “¥x. x>0 = (Jy. x=y+1)” in {N, +, =, >}
« A theory is decidable when there is an
algorithm that solves the decision problem

- This algorithm is the decision procedure for that
theory

Satisfiability Procedures

e The Satisfiability Problem

- Decide whether a conjunction of literals in the
theory is satisfiable

- Factors out the first-order logic part

- The decision problem can be reduced to the
satisfiability problem
« Parameters for V, skolem functions for 3, negate and
convert to DNF (sorry; | won’t explain this here)
» “Easiest” Theory = Propositional Logic = SAT
- A decision procedure for it is a “SAT solver”

Theory of Equality

» Theory of equality with uninterpreted
functions

» Symbols: =, #, f, g, ...
» Axiomatically defined (A,B,C ¢ Expressions):
B=A A=B B=C A=B
A=A A=B A=C f(A) = f(B)
» Example satisfiability problem:
g(g(8(x)))=x A g(g(8(g(g(x)))))=x A g(x)=x

More Satisfying Examples

» Theory of Linear Arithmetic
- Symbols: >, =, +, -, integers
- Example: y > 2x + 1, x > 1, y < 0 is unsat

- Satisfiability problem is in P (loosely, no multiplication
means no tricky encodings)

» Theory of Lists
- Symbols: cons, head, tail, nil

head(cons(A,B)) = A tail(cons(A,B) = B

- Theorem: head(x) = head(y) A tail(x) = tail(y) = x =y

Mixed Theories

» Often we have facts involving symbols from
multiple theories
- E’s symbols =, =, f, g, ... (uninterp function equality)
- R’s symbols =, #, +, -, <, 0, 1, ... (linear arithmetic)
- Running Example (and Fact):
Ex<y Ay+z<x A 0<z = f(f(x)-f(y)) =f(2)
- To prove this, we must decide:
Unsat(x <y, y+z<x, 0 <z f(f(x) - f(y)) = f(z))
» We may have a sat procedure for each theory
- E’s sat procedure by Ackermann in 1924
- R’s proc by Fourier
» The sat proc for their combination is much harder
- Only in 1979 did we get E+R

Satisfiability of Mixed Theories
‘ Unsat(x <y, y+z<Xx,0<z, f(f(x) - f(y)) = f(z)) ‘

» Can we just separate out the terms in
Theory 1 from the terms in Theory 2 and see
if they are separately safisfiable?

- No, unsound, equi-sat = equivalent.

» The problem is that the two satisfying
assignments may be incompatible

« |Idea (Nelson and Oppen): Each sat proc
announces all equalities between variables
that it discovers

Handling Multiple Theories

e We'll use
cooperating

decision procedures %TLI m

« Each sat proc works = f(ZL u
on the literals it i :
understands

» Sat procs share
information
(equalities)

*THed, AS 40U CAN SEE, WE Give Taem

Some. MULTPL cribce TESTS.

Consider Equality and Arith

[f -t =f@)] (x<y] [yrz=<x]

f(x)-f(y)=z
f(00 - fy) = F@) | How can we do

this in our prover?

Nelson-Oppen: The E-DAG

» Represent all terms in one Equivalence DAG

- Node names act as variables shared between
theories!

ffx)-f(y)#f2) Ay >xAx>y+zAz>0

Nelson-Oppen: Processing

» Run each sat proc
- Report all contradictions (as usual)
- Report all equalities between nodes (key idea)

Implementation
details: Use union-
find to track node
equivalence classes
in E-DAG. When
merging A=B, also
merge f(A)=f(B).

Nelson-Oppen: Processing

» Broadcast all discovered equalities
- Rerun sat procedures
- Until no more equalities or a contradiction

Contradiction

Does It Work?

e If a contradiction is found, then unsat
- This is sound if sat procs are sound
- Because only sound equalities are ever found

« If there are no more equalities, then sat
- Is this complete? Have they shared enough info?
- Are the two satisfying assignments compatible?
- Yes!

- (Countable theories with infinite models admit
isomorphic models, convex theories have
necessary interpretations, etc.)

Proofs
“Checking proofs ain’t like dustin’ crops, boy!”

Proof Generation

» We want our theorem prover to emit proofs
- No need to trust the prover
- Can find bugs in the prover
- Can be used for proof-carrying code
- Can be used to extract invariants
- Can be used to extract models
 Implements the soundness argument
- On every run, a soundness proof is constructed

25 126
Proof Representation Dependent Types
+ Proofs are trees * Make pf a family of types indexed by formulas
- Leaves are hypotheses/axioms . .
- Internal nodes are inference rules ——————truei - f:Type (type of encodings of formulas)
« Axiom: “true introduction” Ftrue - e: Type (type of encodings of expressions)
- Constant: truei : pf A B - pf: f — Type (the type of proofs indexed by formulas: it
pf is the type of proofs F F andi is a proof that f is true)
¢ Inference: “con]unctjon introduction” FAAB . Examples:
- Constant: andi : pf — pf — pf f
« Inference: “conjunction elimination” FAAB - true '
- Constant: andel : pf — Pf Ta”de{ - and fafof
« Problem: - truei : pf true
- “andel truei : pf” but does not represent a valid proof - andi : pf A — pf B — pf (and A B)
- Need a more powerful type system that checks content andi : TIA:f. TIB:f. pf A — pf B — pf (and A B)
127 28]

Proof Checking

« Validate proof trees by type-checking them

» Given a proof tree X claiming to prove A A B

* Must check X : pf (and A B)

» We use “expression tree equality”, so
- andel (andi “1+2=3" “x=y”) does not have type pf (3=3)
- This is already a proof system! If the proof-supplier

wants to use the fact that 1+2=3 < 3=3, she can include
a proof of it somewhere!

e Thus Type Checking = Proof Checking
- And it’s quite easily decidable!

Parametric Judgment
« Universal Introduction Rule of Inference
F [a/x]JA (ais fresh)
Fvx. A
» We represent bound variables in the logic
using bound variables in the meta-logic
-all: (e—=f) > f
- Example: Vx. x=x represented as (all (Ax. eq x x))
- Note: Vy. y=y has an a-equivalent representation

- Substitution is done by B-reduction in meta-logic
o [E/x](x=x) is (Ax. eq x x) E

Parametric V Proof Rules

F[a/x]A (ais fresh)
FVvx. A
« Universal Introduction
- alli: TIA: (e — f). ([Ta:e. pf (A a)) — pf (all A)

FVx. A
F [E/X]A
« Universal Elimination
- alle: TTA: (e — f). IIE:e. pf (all A) — pf (AE)

Parametric 3 Proof Rules
- [E/X]A

« Existential Introduction - ax. A

- existi: ITA: (e — f). I1E:e. pf (A E) — pf (exists A)

F [a/x]A

- Existential Elimination F3x.A B

- existe: TTA: (e — f). TIB:f. B

pf (exists A) — (ITa:e. pf (A a) — pf B) — pf B

SAT-Based Theorem Provers

» Recall separation of concerns:
- #1 Prover handles connectives (V, A, =)
- #2 Sat procs handle literals (+, <, 0, head)
« |ldea: reduce proof obligation into
propositional logic, feed to SAT solver (CVC)
- To Prove: 3*x=9 = (x =7 A x < 4)
- Becomes Prove: A = (B A C)
- Becomes Unsat: A A —(B A C)
- Becomes Unsat: A A (=B v —=C)

SAT-Based Theorem Proving

e To Prove: 3*'x=9 = (x =7 Ax < 4)
- Becomes Unsat: A A (-B v —=C)
- SAT Solver Returns: A=1, C=0
Ask sat proc: unsat(3*x=9, - x<4) = true
- Add constraint: —(A A C)
- Becomes Unsat: AA (=B VvV =C) A =(A A C)
- SAT Solver Returns: A=1, B=0
- Ask sat proc: unsat(3*x=9, — x=7) = false
» (x=3 is a satisfying assignment)
- We’re done! (original to-prove goal is false)

- If SAT Solver returns “no satisfying assignment” then
original to-prove goal is true

Homework

» Project Status Update
» Project Due Tue Apr 25
- You have ~21 days to complete it.
- Need help? Stop by my office or send email.

