

Preliminary Definition

- A <u>calculus</u> is a method or system of calculation
- The early Greeks used pebbles arranged in patterns to learn arithmetic and geometry
- The Latin word for pebble is "calculus" (diminutive of calx/calcis)
- Popular flavors:
 - differential, integral, propositional, predicate, lambda, pi, join, of communicating systems

Cunning Plan

- Types of Concurrency
- Modeling Concurrency
- Pi Calculus
- · Channels and Scopes
- Semantics
- Security
- · Real Languages

Possible Concurrency

- No Concurrency
- · Threads and Shared Variables
 - A language mechanism for specifying interleaving computations; often run on a single processor
- Parallel (SIMD)
 - A single program with simultaneous operations on multiple data (high-perf physics, science, ...)
- Distributed processes
 - Code running at multiple sites (e.g., internet agents, DHT, Byzantine fault tolerance, Internet routing)
- Different research communities ⇒ different notions

(There Must Be) Fifty Ways to Describe Concurrency

- No Concurrency
 - Sequential processes are modeled by the λ -calculus. Natural way to observe an algorithm: examine its output for various inputs \Rightarrow functions
- · Threads and Shared Variables
 - Small-step opsem with contextual semantics (e.g., callcc), or special type systems (e.g., [FF00])
- · Parallel (SIMD)
 - Not in this class (e.g., Titanium, etc.)
- · Distributed processes
 - ??

Modeling Concurrency

- Concurrent systems are naturally non-deterministic
 - Interleaving of atomic actions from different processes
 - New concurrent scheduling possibly yields new result
- Concurrent processes can be observed in many ways
 - When are two concurrent systems equivalent?
 - Intra-process behavior vs. inter-process behavior
- Concurrency can be described in many ways
 - Process creation: fork/wait, cobegin/coend, data parallelism
 - Process communication: shared memory, message passing
 - Process synchronization: monitors, semaphores, transactions

Message Passing

- These "many ways" lead to a variety of process calculi
- We will focus on message passing!

Communication and Messages

- Communication is a fundamental concept
 - But not for everything (e.g., not much about parallel or scientific computing in this lecture)
- Communication through message passing
 - synchronous or asynchronous
 - static or dynamic communication topology
 - first-order or high-order data
- Historically: Weak treatment of communication
 - I/O often not considered part of the language
- Even "modern" languages have primitive I/O
 - First-class messages are rare
 - Higher-level remote procedure call is rare

Calculi and Languages

- · Many calculi and languages use message-passing
 - Communicating Sequential Processes (CSP) (Hoare, 1978)
 - Occam (Jones
 - Calculus of Communicating Systems (CCS) (Milner, 1980)
 - The Pi Calculus (Milner, 1989 and others)
 - Pict (Pierce and Turner)
 - Concurrent ML (Reppy)
 - Java RMI
- Messaging is built in some higher-level primitives
 - Remote procedure call
 - Remote method invocation

The Pi Calculus

- The pi calculus is a process algebra
 - Each process runs a different program
 - Processes run concurrently
 - But they can communicate
- Communication happens on channels
 - channels are first-class objects
 - channel names can be sent on channels
 - can have access restrictions for channels
- In λ -calculus everything is a function
- In Pi calculus everything is a process

Pi Calculus Grammar

- · Processes communicate on channels
 - c<M> send message M on channel c
 - c(x) receives message value x from channel c
- Sequencing
 - c<M>.p sends message M on c, then does p
 - c(x).p receives x on c, then does p with x (x is bound in p)
- Concurrency
 - $p \mid q$ is the parallel composition of p and q
- Replication
 - ! p creates an infinite number of replicas of p

Examples

· For example we might define

Speaker = air<M> // send msg M over air
Phone = air(x).wire<x> // copy air to wire
ATT = wire(x).fiber<x> // copy wire to fiber
System = Speaker | Phone | ATT

Communication between processes is modeled by reduction:

Speaker | Phone \rightarrow wire<M> // send msg M to wire wire<M> | ATT \rightarrow fiber<M> // send msg M to fiber

Composing these reductions we get
 Speaker | Phone | ATT → fiber<M> // send msg M to fiber

#12

Channel Visibility

- · Anybody can monitor an unrestricted channel!
- · Modeling such snooping:

WireTap = wire(x).wire<x>.NSA<x>

- Copies the messages from the wire to NSA
- Possible since the name "wire" is globally visible
- Now the composition: WireTap | wire<M> | ATT \rightarrow

wire<M>.NSA<M> | ATT \rightarrow

NSA<M> | fiber<M>

// OOPS!

Restriction

- The <u>restriction operator</u> (vc) p makes a fresh channel c within process p
 - v is the Greek letter "nu"
 - The name c is local (bound) in p
 - c is not known outside of p
- Restricted channels cannot be monitored wire(x) ... | (ν wire)(wire<M> | ATT) \rightarrow wire(x) ... | fiber<M>
- The scope of the name wire is restricted
- There is no conflict with the global wire

Restriction and Scope

- Restriction
 - is a binding construct (like λ , \forall , \exists , ...)
 - is lexically scoped
 - allocates a new object (a new channel)
 - somewhat like Unix pipe(2) system call

(vc)p is like let c = new Channel() in p

- c can be sent outside its initial scope
 - But only if p decides so (intentional leak)

First-Class Channels

- Channel c can leave its scope of declaration
 - via a message d<c> from within p
 - d is some other channel known to p
 - Intentional with "friend" processes (e.g., send my IM handle=c to a buddy via email=d)
- Allowing channels to be sent as messages means communication topology is dynamic
 - If channels are not sent as messages (or stored in the heap) then the communication topology is
 - This differentiates Pi-calculus from CCS

Example of First-Class Channels

Consider:

MobilePhone

= air(x).cell<x>

= wire<cell> ATT1 ATT2

= wire(y).y(x).fiber<x>

bound to

(v cell)(MobilePhone | ATT1) | ATT2

• ATT1 passes cell out of the static scope of the restriction v cell

Scope Extrusion

- A channel is just a name
 - First-class names must be usable in any scope
- The pi calculus restrictions to distribute:

((v c) p) | q = (v c)(p | q) if c not free in q

• Renaming is needed in general:

((v c) p) | q = ((v d) [d/c] p) | q= (v d)([d/c] p| q)

where "d" is fresh (does not appear in p or q)

• This scope extrusion distinguishes the pi calculus from other process calculi

Syntax of the Pi Calculus

There are many versions of the Pi calculus A basic version:

(p and q are processes) p,q ::= nil nil process (sometimes written 0) sending data y on channel x x<y>.p receiving data v from channel x x(y).pparallel composition $p \mid q$ replication

restriction (new channel x used in p) (v x)p

• Note that only variables can be channels and messages

!p

Operational Semantics

• One basic rule of computation: data transfer

$$\overline{x\langle y\rangle.p\mid x(z).q\
ightarrow\ p\mid [y/z]q}$$

- Synchronous communication: 1 sender, 1 receiver
- Both the sender and the receiver proceed afterwards
- Rules for local (non-communicating) progress:

$$\frac{p \to p'}{p \mid q \to p' \mid q} \qquad \frac{p \to p'}{(\nu x)p \to (\nu x)p'}$$

$$\frac{p \equiv p' \quad p' \to q' \quad q' \equiv q}{p \to q}$$

Structural Congruence

$$q \equiv p \qquad p \equiv q \qquad q \equiv r$$

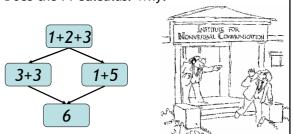
$$p \equiv p \qquad p \equiv q \qquad p \equiv r$$

$$\frac{p \equiv p'}{p \mid q \equiv p' \mid q} \qquad \frac{p \equiv p'}{(\nu x)p \equiv (\nu x)p'}$$

$$\stackrel{!}{p \equiv p \mid !p}$$

$$p \mid \text{nil} \equiv p$$

$$p \mid q \equiv q \mid p$$


$$(\nu x)(\nu y)p \equiv (\nu y)(\nu x)p$$

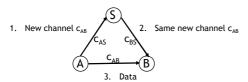
$$(\nu x)\text{nil} \equiv \text{nil}$$

$$(\nu x)(p \mid q) \equiv (\nu x)p \mid q \qquad x \text{ not free in } q$$

Semantics and Evaluation

- IMP opsem has the "diamond property"
- Does the Pi Calculus? Why?

Theory of Pi Calculus


- The Pi calculus does not have the Church-Rosser
 - Recall: WireTap | wire<M> | ATT → NSA<M> | fiber<M>
 - Also: WireTap | wire<M> | ATT → WireTap | fiber<M>
 - This captures the non-deterministic nature of concurrency
- · For Pi-calculus there are
 - Type systems
 - Equivalences and logics
 - Expressiveness results, through encodings of numbers, lists, procedures, objects

Pi Calculus Applications

- · A number of languages are based on Pi e.g., Pict (Pierce and Turner)
- · Specification and verification
- mobile phone protocols, security protocols
- Pi channels have nice built-in properties, such as:
 - integrity
 - confidentiality (with v)
 - exactly-once semantics
 - mobility (channels as first-class values)
- These properties are useful in high-level descriptions of security protocols
- More detailed descriptions are possible in the spi calculus (= pi calculus + cryptography)

A Typical Security Protocol

• Establishment and use of a secret channel:

- · A and B are two clients
- S is an authentication server
- c_{AS} and c_{BS} are existing private channels with server
- c_{AB} is a new channel for the clients

That Security Protocol in Pi

• That protocol is described as follows:

System(M) = $(v c_{AS})(v c_{BS}) A(M) | S | B$

- Where Work(y) represents what B does with the message M (bound to y) that it receives
- The $| c_{BS}(x). c_{\Delta S} < x >$ makes the server symmetric

#26

Some Security Properties

- An authenticity property
 - For all N, if B receives N then A sent N to B
- A secrecy property
 - An outsider cannot tell System(M) apart from System(N), unless B reveals some part of A's message
- Both of these properties can be formalized and proved in the Pi calculus
- The secrecy property can be treated via a simple type system

Mainstream Languages

- Communication channels are not found in popular languages
 - sockets in C are reminiscent of channels
 - STREAMS (never used) are even closer
 - ML has exactly what we've described (surprise)
- More popular is remote procedure call or (for OO languages) remote method invocation

Concurrent ML

- Concurrent ML (CML) extends of ML with:
 - threads
 - typed channels
 - pre-emptive scheduling
 - garbage collection for threads and channels
 - synchronous communication
 - events as first-class values
- OCaml has it (Event, Thread), etc.
 - "First-class synchronous communication. This module implements synchronous inter-thread communications over channels. As in John Reppy's Concurrent ML system, the communication events are firstclass values: they can be built and combined independently before being offered for communication."

Threads and Channels in CML

val spawn : (unit \rightarrow unit) \rightarrow thread (* create a new thread *) val channel : unit \rightarrow 'a chan (* create a new typed channel *) val accept : 'a chan \rightarrow 'a (* message passing operations *) val send : ('a chan * 'a) \rightarrow unit

So one can write, for example: fun serverLoop () = let val request = accept recCh in send (replyCh, workOn request); serverLoop ()

#30

Basic Events in Concurrent ML

val sync : 'a event → 'a (* force synchronization on an event, block until this communication succeeds *)

val transmit : ('a chan * 'a) \rightarrow unit event (* nonblocking; promises to do the send at some point *)

val receive: 'a chan → 'a event (* sets up the rendezvous, but you don't actually get the value until you sync *)

val choose : 'a event list \rightarrow 'a event (* succeeds when one of the events in the list succeeds *)

val wrap : ('a event * ('a \rightarrow 'b)) \rightarrow 'b event (* do an action after synchronization on an event *)

So you can write, as in Unix syscall select(2): select (mylist : 'a event list) : 'a = sync (choose mylist)

Java Remote Method Invocation

- · Java RMI is a Java extension with
 - Java method invocation syntax
 - similar semantics
 - static checks
 - distributed garbage collection
 - exceptions for failures

RMI notes

- Compare RMI with pure message passing
 - RMI is weaker, but OK for many purposes
- RMI not a perfect fit into Java:
 - non-remote objects are passed by copy in RMI
 - clients use remote interfaces, not remote classes
 - clients must handle RemoteException
 - using same syntax for MI and RMI leads to hidden performance costs
- · But it is not an unreasonable design!

Homework

- Project Status Update
- Project Due Tue Apr 25
 - You have ~21 days to complete it.
 - Need help? Stop by my office or send email.