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#1

Type Systems Type Systems 

for for 

Resource Resource 

ManagementManagement

#2

Linear Type Systems

• Type systems for managing resources are 

usually linear

• From linear logic, where each hypothesis 

must be used (discharged) exactly once

• Each important object in a linear type 

system must be freed exactly once

• Each important object is known by a unique 

name so that it can be tracked

#3

Linear Type System Drawbacks

• Perfect alias resolution is undecideable

• So we can never put an important object in 

memory in a way that allows it to be aliased

– Or we might free it 0 or 2 times

• Thus unique names cannot be *p or “the 

ship’s doctor” but must instead be “local 

variable mysock” or “Worf”

#4

Typical Linear Type System

• Judgment: S1 ⊢ cmd : S2
– S is the current set of resources

– Linear type systems are flow-sensitive

– Linear type systems behave like opsem

• Rules:

S1 ⊢ new Namei : S2

{Namei} ∈ S1 S2 = S1 ∪ {Namei}

S1 ⊢ c1 ; c2 : S3

S1 ⊢ c1 : S2 S2 ⊢ c2 : S3

S1 ⊢ del Namei : S2

S2 = S1 \ {Namei}

#5

Topic:

VaultVault

• There are easily two Vault papers; I will 

skim.

#6

Enter the Vault

• Vault is a novel programming language

– Designed ~2001 by Manuel Fähndrich and Rob 
DeLine at Microsoft Research

• Vault allows you to describe and statically 
enforce resource management protocols

• Vault can prevent resource leaks and API 
violations

• Vault is based on linear type systems
– In a linear type system, each resource must be 
used exactly once. 
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#7

Tracking Individual Objects

Rule 1: “Close every socket that you open.”

Rule 2: “Do not read from a socket after closing it.”

Are we obeying the rules?

void ReadFromSocks (SOCKET s1, SOCKET s2) {

…

read(s1,buf,n);

close(s1);

read(s2,buf,n);

close(s2);

}

#8

Vault Intution

• At every program point we will keep track 

of exactly which sockets you have and 

whether each one is opened or closed

• Every point = flow-sensitive analysis

• Sockets = all important resources

• Exactly which = “named objects” or “keys”

• Opened or closed = typestate of that object

• The type system is a dataflow analysis!

#9

Vault Heap Properties

• New notions: tracked and guarded objects

• Single pointer to each tracked object
– Tracked objects form linear regular trees

– No aliasing is possible with tracked objects

– Tracked objects have names (names = “keys”)

• Any number of pointers to guarded objects
– Many guarded objects inside one tracked object

– Not covered in this talk

• Goals:
– Model state of tracked objects statically

– Allow explicit but checked malloc/free

#10

Interfaces and Tracked Types

•Tracked Type Syntax:  tracked(K) T
– Can do free and cast (unless type T is abstract)

– Can do normal operations on type T

– But only when key K is accessible (= we hold K)

•Vault functions change the key set
– Change spec = function pre- and post conditions 

– Add key tracked(K) T foo() [new K];

– Remove key void bar(tracked(K) T) [-K];

– Change state void baz(tracked(K) T) [K(T)->(S)];

•Language primitives also change the key set
– Allocation expression adds a key new tracked T

– Deallocation expression removes a key free e

#11

Sockets in Vault
tracked(S) sock socket(domain, comm_style, 

int)[ new S @ raw ];

void bind(tracked(S) sock, sockaddr) 

[ S @ raw -> named ];

void close(tracked(S) sock) [ -S @ _ ];

void receive(tracked(S) sock, byte[]) 

[ S @ ready ];

tracked(N) sock accept(tracked(S) sock, 

sockaddr) 

[ S @ listening, new N @ ready ];

void listen(tracked(S) sock, int) 

[ S @ named -> listening ];

#12

Socket Client

• void work() { { }

tracked sock s = socket(…); { S @ raw }

bind(s, …); { S @ named }

listen(s, …); { S @ listening }

while(true) { { S @ listening } 

tracked sock t = accept(s); { S @ listening, N @ ready}

receive(t, buf); { S @ listening, N @ ready}

close(t); { S @ listening }

} { S @ listening }

close(s); { }

}
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#13

Vault Typechecking

• A function’s key transformer annotation gives 

its pre- and post-conditions

• On each path through a function, check

1. Pre-condition is transformed into post-condition 

2. All proof obligations are satisfied

• Pre-conditions of other function calls

• Primitive operations (memory access, free)

•Avoid exponential blow-up (state explosion) by

– requiring uniform predicate at join points

– allowing only simple function specs

#14

Not In My BackVault

void work() { { }
if (p) { }
tracked sock s = socket(…); { S @ raw }
else 
skip; { }
printf(“hello world\n”); ERROR
}

void aie() {
DoublyLinkedList * L = NULL; { }
while (rand() % 100 > 50) { { }
tracked sock s = socket(…); { S @ raw }
L = PrependNode(s,L); ERROR
}
}

All paths 

entering a join-

point must 

have the same 

tracked set.

We could alias 

s using L.

#15

Vault Evaluation

• Used for windows device drivers, directx d3d 

programs, parser combinators …

• More complicated (non-linear) data 

structures can be handled using the 

techniques in Paper #2 (adoption and focus)

• Concurrency is difficult (convoluted locking)

• Annotation burden can be high

• “Great design, hard to use”

#16

Topic:

Language Support ForLanguage Support For

Managing Resources InManaging Resources In

Exceptional SituationsExceptional Situations

• There are easily two WN papers; I will skim.

#17

Overarching Intuition

• Use simple policies 

– open/close, as in SLAM or Vault

• Use a linear type system for sets of 

resources

– Not for individual resources themselves!

• Close all resources along all paths

– Even those for unexpected exceptions

1. Motivate The Problem

2. Propose A New Language Feature
#18

Defining Terms

• Exceptional Situations:
– Network problems, DB access errors, OS resource 
exhaustion,  …

• Typical Exception-Handling:

– Resend packet, show dialog box to user, …

– Application-specific, don’t care in this lecture

• Exception-Handling Mistakes (Bugs!):

– One example: a network error occurs and the 
program forgets to release a database lock with 
an external shared database, …
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#19

The State Of The Art

• Most Common Exception Handlers

– #1. Do Nothing

– #2. Print Stack Trace, Abort Program

• Higher-level invariants should be restored, 

interface requirements should be respected

– Aside from handling the exceptional situation, 

code should clean up after itself

– What do we mean by “should”? 

#20

Example Safety Policy

• Safety Policy Governing Java Streams

• One FSM per Stream object

• Edges = events in program

• Start in start state, end in accepting state

closed opened

new

close

read, 

write,

flush,

…

#21

What’s Up In Real Life?

• Now knowing what we should be doing

• It is difficult for programmers to consider all 

of the possible execution paths in the 

presence of exceptions

• So there are often a few paths related to 

exceptional conditions in which the safety 

policy is violated

• Let’s see an example:

#22

Simplified Java Code

Stream input = new Stream();
Stream output = new Stream();
while (data = input.read())

output.write(data);
output.close();
input.close(); 

#23

Error Paths - Hazards

Stream input = new Stream();
Stream output = new Stream();
while (data = input.read())

output.write(data);
output.close();
input.close(); 

#24

Fix It (?) With Try-Finally

try { 
Stream input = new Stream();
Stream output = new Stream();
while (data = input.read())
output.write(data);

} finally { 
output.close();
input.close(); 
}
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#25

Fix It With Runtime Checks

input = output = null; 
try { 
input = new Stream();
output = new Stream();
while (data = input.read())

output.write(data);
} finally { 
if (output != null)
try { output.close(); } catch (Exception e) { }
if (input != null) 
try { input.close(); } catch (Exception e) { } 

}

Note: the blue 
exception-
handling code 
is a big  chunk 
of the program!

#26

Finding Exception Handling Bugs

• We consider four generic resources

– Sockets, files, streams, database locks

– From a survey of Java code

– Usually simple two-state safety policies

• Program should release them along all paths, 

even in exceptional situations

• Exceptional situations are rare …

• So use a static analysis to find mistakes

#27

Analysis Example Program

try {

Socket s = new Socket();

s.send(“GET index.html”);

s.close();

} finally { } // bug!

#28

Analysis Example

startnew socket

send

close

end

{ }

{socket}

{ }

{socket}

{socket}

{ } { }

#29

Analysis Example

startnew socket

send

close

end

{ }

{socket}

{ }

{socket}

{socket}

{ } { }

#30

Analysis Results

File, DB183783k… 18 others …

File, DB8183.9MTotalTotalTotalTotal

Strm, File1261.6Meclipseeclipseeclipseeclipse

DB, Strm40107kjbossjbossjbossjboss

Strm, DB37118kmckoimckoimckoimckoi----sqlsqlsqlsql

DB, File39162kportalportalportalportal

File17178kpcgenpcgenpcgenpcgen

DB322230kcompierecompierecompierecompiere

File, Strm27362kptolemy2ptolemy2ptolemy2ptolemy2

File, Strm27319korg.aspectjorg.aspectjorg.aspectjorg.aspectj

Forgotten 

Resources

Methods with Exception-
Handling Mistakes

Lines of 

Code

Program 

Name
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#31

Destructors and Finalizers

• Destructors – great for stack-allocated 

objects

– But error-handling contains arbitrary code

– e.g., 17 unique cleanups in undo (34 lines)

• Finalizers – widely reviled

– Called by GC: too late!

– No ordering guarantees

– Programs do not use them (13 user-defined ones 

in 4M LOC, libraries inconsistent)

#32

Fix It With Flags
int f = 0;                     // flag tracks progress
try {
openX(); f = 1; work(); 
openY(); f = 2; work(); 
openZ(); f = 3; work(); 
} finally {
switch (f) { // note fall-through!
case 3: try { closeZ(); } catch (Exception e) {}
case 2: try { closeY(); } catch (Exception e) {}
case 1: try { closeX(); } catch (Exception e) {}
}
} 

#33

Fix It With Flags (Ouch!)
int f = 0;                     // flag tracks progress
try {
openX(); f = 1; work(); 
if (…) { didY = true; openY(); f = 2; } work();
openZ(); f = 3; work(); 
} finally {
switch (f) { // note fall-through!
case 3: try { closeZ(); } catch (Exception e) {}
case 2: if (didY) { try { closeY(); } catch … }
case 1: try { closeX(); } catch (Exception e) {}
}
} 

#34

New Feature Motivation

• Avoid forgetting obligations

• No static program restrictions

• Optional lexical scoping

• Optional early or arbitrary cleanup

• Database / Workflow notions:

– Either my actions all succeed (a1 a2 a3)

– Or they rollback (a1 a2 error c2 c1)

– Compensating transaction, linear saga

#35

Compensation Stacks

• Store cleanup code in run-time stacks

– First-class objects, pass them around

• After “action” succeeds, push “cleanup”

– “action” and “cleanup” are arbitrary code 

(anonymous functions)

• Pop all cleanup code and run it (LIFO)

–When the stack goes out of scope

– At an uncaught exception

– Early, or when the stack is finalized

#36

Compensation Concepts

• Generalized destructors
– No made-up classes for local cleanup

– Can be called early, automatic bookkeeping

– Can have multiple stacks
• e.g., one for each request in a webserver

• Annotate interfaces to require them

– Cannot make a new socket without putting 
“this.close()” on a stack of obligations

• Will be remembered along all paths

– Details elsewhere …
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#37

Cinderella Story

Stream input = new Stream();
Stream output = new Stream();
while (data = input.read())

output.write(data);
output.close();
intput.close(); 

#38

“Assembly Language”

CompStack CS = new CompStack();
try { 
Stream input, output;
compensate { input = new Stream(); }
with (CS) { input.close(); }
compensate { output = new Stream(); }
with (CS) { output.close(); }
while (data = input.read())

output.write(data);
} finally { CS.runAll(); }

#39

With Annoted Interfaces

CompStack CS = new CompStack();
try { 
Stream input = new Stream(CS); 
Stream output = new Stream(CS); 
while (data = input.read())

output.write(data);
} finally { CS.runAll(); }

#40

Using Most Recent Stack

CompStack CS = new CompStack();
try { 
Stream input = new Stream(); 
Stream output = new Stream(); 
while (data = input.read())

output.write(data);
} finally { CS.runAll(); }

#41

Using Current Scope Stack

Stream input = new Stream(); 
Stream output = new Stream(); 
while (data = input.read())

output.write(data);

#42

Cinderella 2 (Before)

int f = 0;                     // flag tracks progress
try {
openX(); f = 1; work(); 
if (…) { didY = true; openY(); f = 2; } work();
openZ(); f = 3; work(); 
} finally {
switch (f) { // note fall-through!
case 3: try { closeZ(); } catch (Exception e) {}
case 2: if (didY) { try { closeY(); } catch … }
case 1: try { closeX(); } catch (Exception e) {}
}
} 
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#43

Cinderella 2 (After)

compensate { openX(); }
with { closeX(); }
work(); 
if (…) compensate { openY(); }

with { closeY(); }
work();
compensate { openZ(); }
with { closeZ(); }
work();
// using the “current scope stack” by default  

#44

Modeling Language

e ::= skip

| e1 ; e2

| if ⋆ then e1 else e2

| while ⋆ do e

| let ci = new CS() in e [ + CSi ] 

| compensate aj with bj using ci
| store ci [ - CSi ] 

| let ci = load in e

| run ci [ - CSi ] 

| runEarly aj from ci

Each compensation stack

comes with a unique

name “i” based on its

allocation site.

#45

Typing Judgment

• Live stack = stack that may have un-run 
compensating actions

• Dead stack = stack that definitely has no un-run 
compensating actions

• Judgment:

C, D ⊢ e : C’, D’

• Expression e typechecks in the context of live 
compensation stacks C and unused (dead) 
compensation stacks D and after executing e the 
new set of live stacks is C’ and the new set of dead 
stacks is D’

#46

Typing Rules

C, D ⊢ e1 ; e2 : C2, D2

C, D ⊢ e1 : C1, D1
C1, D1 ⊢ e2 : C2, D2

C, D ⊢ skip : C, D

C, D ⊢ if ⋆ then e1 else e2 : C1 ∪ C2, D1 ∩ D2

C, D ⊢ e1 : C1, D1 C, D ⊢ e2 : C2, D2

C1, D1 ⊢ while ⋆ do e : C ∪ C1, D ∩ D1

C1, D1 ⊢ e1 : C2, D2    C1 ∪ D1 = C2 ∪ D2

#47

More Typing Rules

C, D ⊢ compensate aj with bj using ci : C, D

i ∈ C  

C1, D1 ⊢ let ci = new CS() in e : C2, D3

C1, D1 ∪ {i} ⊢ e : C2, D2 D3 = D2 \ {i}

C, D ⊢ compensate aj with bj using ci : C ∪ {i}, D2

D2 = D \ {i}  

Not syntax-directed!

Why is this OK?

#48

Most Typing Rules

C, D ⊢ run ci : C2, D ∪ {i}

C2 = C \ {i}

C, D ⊢ run ci : C, D

i ∈ D

C, D ⊢ runEarly aj from ci : C, D

i ∈ C ∪ D

Load is similar to “let/new”

Store is similar to “run”
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#49

Case Studies

• Extend Java with compensation stacks

• Annotate key interfaces (File, DB, …)

• Annotate existing programs to use 

compensation stacks

– For library resources

– And for unique cleanup actions

– No new exception handlers!

• Two studies: expressiveness, reliability

#50

Brown’s undo

• Provides operator-level time travel

– Networked, logging SMTP and IMAP proxy

• 35,412 lines of Java, 128 change sites

– Five- and three-step sagas

– Complicated, unique cleanups with their own 

exception handling and synchronization

• Results

– 225 lines shorter (~1%)

– No measurable perf cost (1/2 std dev)

#51

Sun’s petstore

• “Amazon.com lite” plus inventory
– Raises 150 exceptions over 3,900 requests

– Avg Response: 52.06ms (std dev 100ms)

• 34,608 lines of Java, 123 change sites
– Two hours of work

– Three simultaneous resources (DB)

• Results:
– 168 lines shorter (~0.5%)

– 0 such exceptions over 3,900 requests

– Avg Response: 43.44ms (std dev 77ms)

#52

Compensation Conclusions

• Combines static and dynamic analyses

– CompStacks are tracked statically

– Individual obligations are handled dynamically

• Easy to use for real-world programs

• Related to linear type systems

• Meh, seems to work. 

#53

Homework

• Project Status Update

• Project Due Tue Apr 25
– You have ONE WEEK to complete it. 

– Need help? Stop by my office or send email.


