
1

#1

RegionRegion--Based Based

Memory ManagementMemory Management

#2

Cunning Plan

• Introduction to Regions

• Static and Dynamic Semantics

• Types and Effects

• Safety and Soundness

• Polymorphism

#3

Memory Management
• Manual memory deallocation is dangerous

– Deallocate too late ⇒ memory leaks ⇒ performance
problems

– Deallocate too early ⇒ dangling pointers ⇒ safety
problems

• Most type-safe languages disallow manual memory
deallocation
– Because their type systems cannot check absence of
dangling pointers

– Such languages use garbage collection ⇒ lack of control

• Question: Is there an effective type system for
mem mgmt that allows deallocation?
– Current best answer: region-based memory management

#4

Regions

• a.k.a. zones, arenas, …

• Every object is in exactly one
region

• Allocation via a region handle

• Deallocate an entire region

simultaneously

(cannot free an individual
object)

• Supports easy serialization

#5

Region-based Memory
Management Example

Region r = newregion();

for (i = 0; i < 10; i++) {

int *x = ralloc(r, (i + 1) * sizeof(int));

work(i, x);

}

deleteregion(r);

#6

Region Expressiveness

• Adds structure to memory management

• Allocate objects into regions based on lifetime

• Works well for objects with related lifetimes
• e.g., global/per-request/per-phase objects in a server

• Few regions:

– Easier to keep track of and reason about

– Delay freeing to convenient "group" time
• End of an iteration, closing a device, etc

• No need to write "free this data structure"
functions

2

#7

Region Expressiveness: lcc

• The lcc C compiler, written using unsafe
regions
– regions bring structure to an application's
memory

perm

func

stmt

Time
#8

Region Expressiveness: lcc

• The lcc C compiler, written using unsafe
regions
– regions bring structure to an application's
memory

perm

func

stmt

Time

#9

Region Expressiveness: lcc

• The lcc C compiler, written using unsafe
regions
– regions bring structure to an application's
memory

perm

func

stmt

Time
#10

Region Expressiveness: lcc

• The lcc C compiler, written using unsafe
regions
– regions bring structure to an application's
memory

perm

func

stmt

Time

#11

Region Expressiveness: lcc

• The lcc C compiler, written using unsafe
regions
– regions bring structure to an application's
memory

perm

func

stmt

Time
#12

Region Expressiveness: lcc

• The lcc C compiler, written using unsafe
regions
– regions bring structure to an application's
memory

perm

func

stmt

Time

3

#13

Safe Region-Based Memory
Management

• When is it safe to deallocate a region?

– Unsafe if you later user a pointer to an object in it!

– Safe if objects in the same region point to each other

– But we must handle pointers between regions

• Idea: nested regions lifetimes

– Use a stack of regions
• last region created is also first region deleted

– Stack frames are a special case of such regions

– Cannot point from older regions into newer ones

– Too restrictive in practice

• Idea: use a type system to keep track of regions
#14

Region-Flow Type System

• In F1 we did not model where results of expressions
are allocated (e.g., pairs)

– Now we’ll extend F1 to track regions

• Specify in what region to store expression results

Expr: e ::= λx.e | e1 e2| … | e @ ρ | e ! ρ

Region names: ρ (“rho”, Greek letter “r”)

• New expressions:

– “e @ ρ” evaluates e and puts the result in region ρ
• We assume that each value lives in a region

– Think of “e ! ρ” as an assertion that value of e is in
region ρ or “copy e from ρ”

#15

Example

let cons = λ xλ y. (x, y) @ ρL in

let lst = cons (2 @ ρ
E
)

(cons (1 @ ρE) (0 @ ρL)) in

… (fst (lst ! ρL)) ! ρE …

• Can deallocate ρL witout creating

dangling pointers

• If we deallocate ρE first

we create dangling pointers

2

0

1

ρL ρE

ρL for

lists, ρE for
elements

#16

Operational Semantics

• Values live in regions

v ::= … | <v>ρ
– “<v>ρ” means value v living in region ρ

• Evaluation rules

• Evaluation gets stuck if region check ! fails

e @ ρ → <v>ρ

e → v

e ! ρ → v

e → <v>ρ

#17

Typing Rules

• Add a new type to keep track of regions for values
τ ::= b | τ1 → τ2 | τ @ ρ

• Typing rules are straightforward

• Types keep track of regions of values
– All values that can flow into one variable must be from
the same region

• Soundness result:
– In well-typed programs the annotations in “e ! ρ” are
correct

– i.e., “e ! ρ” never gets stuck (and can be removed)

Γ ⊢ e @ ρ : τ @ ρ

Γ ⊢ e : τ

Γ ⊢ e ! ρ : τ

Γ ⊢ e : τ @ ρ

#18

Region-Flow Inference

• We start with unannotated programs

• We want to infer the region annotations as follows:

– Each value constructor v must be annotated

– Each deconstructor must be annotated

v ::= n @ ρ | (λx.e) @ ρ

e ::= v | (e1 ! ρ) e2 | (fst ! ρ) e

| if (e ! ρ) then e1 else e2

• We must know, at each use of a value, in what
region that value is allocated

4

#19

Annotation Example

• We abbreviate:
n @ ρ as nρ

(λ x. e) @ ρ as λρ x.e

(e1 ! ρ) e2 as e1
ρ e2

• Consider the code:

let fst = λ u. λ v. u in

(let x = λ p.(p 0) 1

in λ q. (q (x fst)) 2) fst

ρf ρ0ρx

ρf ρa

ρq ρxρf ρq

ρa

ρa

ρ1

ρ1

#20

Region-Flow Type Inference

• Type inference is always possible in this system

• There are multiple correct solutions
– e.g., use only one region throughout

• There is a “best” solution (up to renaming of
regions; best = uses largest # of regions)
– All other solutions can be obtained by merging some
regions in the best solution

• This program analysis is called value-flow analysis
– Can tell you what values could possibly flow to a use

– It is a weak form of analysis (equational)

For “x := y; x := z;” we get flow between x, y, z (in
both directions)

#21

Adding Region Allocation and
Deallocation

• So far we can track (statically) which values are in
which region

• We can think of “e @ ρ” as evaluating e and
allocating in region ρ space for the result

• We can think of “e ! ρ” as checking that the result
of e is in region ρ, and retrieving the result if so
– The type system tells us that the check is not necessary
at run-time. We do not even need to be able to tell at
runtime in which region an object is. No tags.

• Still need to know when it is safe to delete a region

#22

Region Irrelevance

• Assume Γ ⊢ e : τ such that

– Region ρ is used in e

– Region ρ does not appear in Γ
• Means that before we start e region ρ is empty

– Region ρ does not appear in τ
• Means that the result of e does not refer to any values in ρ

– The region ρ is relevant only during the execution of e

• Example:

– After evaluation of (λρ0 x. x)ρ0 1ρ1 we can erase ρ0 if nothing in
the context uses it

• Idea: tie region lifetime (relevance) to static scoping

#23

Statically-Scoped Regions

• Add a new construct
e ::= … | letreg ρ in e

– Creates a new region and binds it to the name ρ
– After e terminates the region is deleted

• Example:
letreg ρ0 in (λ

ρ0 x. x)ρ0 1ρ1 is well typed
letreg ρ0 in (cons 1

ρ1 ((λρ0 x. x)ρ0 2ρ0))ρ1 is ill typed
• Type system can detect dangling references. What are they here?

Γ, R ⊢ e @ ρ : τ @ ρ

Γ, R ⊢ e : τ ρ ∈ R

Γ, R ⊢ letreg ρ in e : τ

Γ, (R, ρ) ⊢ e : τ ρ ∉ RegionVars(Γ, τ)

Γ, R ⊢ e ! ρ : τ

Γ, R ⊢ e : τ @ ρ

#24

Unsoundness

• This system works well in first-order languages, where the
type of a value fully describes its dependencies
– A value of type (int @ ρ1 × bool @ ρ2) @ ρ1 has references into
regions ρ1 and ρ2 only

– A value of type (int @ ρ1 + bool @ ρ2) @ ρ3 has references into regions
ρ3 and (ρ1 or ρ2). Conservatively in ρ1, ρ2 and ρ3

• In higher-order languages we cannot tell so easily
t = letreg ρ0 in let x = true @ ρ0 in

λ y.if x ! ρ0 then y else false @ ρ1
– body of letreg has type boolρ1 → boolρ1

– Later, when t is used, it will access a dangling pointer to x

• Problem: The type of a function describes only the
input/output behavior of the function
– It does not describe the execution of the function!

5

#25

Types and Effects

• We enrich the type system to contain information about the
computation not just the result
– For each computation we keep a set of effects (interesting events
that occur as it executes)

• New Judgment: Γ ⊢ e :φ τ
– expression e computes a value of type τ and has effects among those
in the set φ

• We extend the function types as well

τ ::= int | τ @ ρ | τ1 →
φ τ2

• Example:

Γ ⊢ e :φ1 : int→φ2 int
– Expression e evaluates (with effects φ1) to a function, which when
given an int evaluates (with effects φ2) to an int

#26

Effects for Regions
• To detect dangling references we need to compute
for each expression what set of regions it
references at runtime

Γ ⊢ x :∅ τ

Γ(x) = τ

Γ ⊢ λx. e :∅ τ1→
φ τ2

Γ, x : τ ⊢ e :φ τ

Γ ⊢ e1 e2 :φ1 ∪ φ2 ∪ φ τ’

Γ ⊢ e1 :
φ1 τ→φ τ’ Γ ⊢ e2 :

φ2 τ

Γ ⊢ e @ ρ :φ ∪ { ρ } τ @ ρ

Γ ⊢ e :φ τ

Γ ⊢ e ! ρ :φ ∪ { p } τ

Γ ⊢ e :φ τ @ ρ

Γ ⊢ letreg ρ in e :φ – { ρ } τ

Γ ⊢ e :φ τ ρ ∉ RegionVars(Γ, τ)

#27

Handling That Old Example

• Consider again the example

t = letreg ρ0 in

let x = true @ ρ0 in

λ y. if x ! ρ0 then y else false @ ρ1

– body of letreg has type

bool @ ρ1 →
{ρ0, ρ1} bool @ ρ1

• Now the type says that ρ0 is referenced by
the result of t. This program is now ill-typed
(i.e., we will notice the region leak).

#28

Effect Types Systems

• We have collected a set of regions referenced
• Effects can model other intrinsic properties of
functions (depending on how the computation
proceeds, not only on the result)
– Behavioral effects
– Effects now have structure, with sequencing, choice,
recursion

• Effects have also been used to model
– cryptographic protocols
– synchronization protocols
– interference analysis for threads
– cleanup actions (previous lecture included a type-and-
effect system for compensation stacks)

#29

Soundness
• Here is one way to argue soundness

– Soundness = no dangling pointers

• Change the operational semantics of letreg to
get stuck if the region is referenced in the result
of the body

• Prove that well-typed programs never get stuck

• Will this work? Why?

⊢ letreg ρ in e ⇓ v

ρ’ = newregion() ⊢ [ρ’/ρ]e ⇓ v ρ’∉RegionVars(v)

#30

Soundness Problems

• Consider the program
t = let z = 0 @ ρ0 in λ x.(λ y. x) z

– Type is ∅ ⊢ t : {ρ0} int→∅ int
– Evaluates to t’s value = λ x.(λ y.x) <0>ρ0
– Not true that RegionVars(t’s value) = ∅

• Our system does allow dangling pointers
– But only when you will never dereference them

• In this respect it is more powerful than a garbage
collector (able to leap David Bacon in a single bound)
– Because it can see the rest of the computation
– The GC only sees a snapshot of the computation state

6

#31

• Introduce a special region called “dangling”
– Replace all dangling regions with this one

– And check that we never use it

• Prove now that well-typed programs do not get stuck
– No need to introduce the dangling checks at run-time

Soundness Attempt 2

⊢ letreg ρ in e ⇓ [dangling/ρ’]v

ρ’ = newregion() ⊢ [ρ’/ρ]e ⇓ v

⊢ e ! ρ ⇓ v

σ ⊢ e ⇓ <v>ρ ρ ≠ dangling

⊢ e @ ρ ⇓ <v>ρ

σ ⊢ e ⇓ v ρ ≠ dangling

#32

Region Polymorphism
• Consider this code again

let cons = λ xλ y. (x, y) @ ρL
• We need a different function to allocate pairs in
different regions. Inconvenient!

• Idea: allow functions to take regions as
parameters

• This is called region polymorphism
• We write let cons = λρ. λ x. λ y. (x, y) @ ρ

• Type of result of cons depends on the region
argument

• Type of cons is Πρ.τ1 → τ2 → (τ1 × τ2) @ ρ

#33

Region Polymorphism
• We add the following to the language

e ::= … | λ ρ. e (region abstraction)

| e ρ (region application)

τ ::= … | Πρ.φ τ (region polymorphism)

– In the type Πρ.φ τ region variable ρ is bound in φ and τ

– Note that region application does not “reference” the
region (it’s purely syntactic, as in “id [int] 5”)

– More opportunities for harmless dangling references

Γ ⊢ λρ. e :∅ Πρ.φ τ

Γ ⊢ e :φ τ

Γ ⊢ e ρ’ :φ’∪[ρ’/ρ]φ [ρ’/ρ]τ

Γ ⊢ e :φ’ Πρ.φ τ

#34

Effect Polymorphism

• Region polymorphism fails on higher-order languages

• Consider the map function for lists of integers

• Without regions:
map : (int→ int) × intlist→ intlist

• With regions (potentially moving the list also):

map : Πρ.Πρ’.∅ (int→φ int) × (intlist @ ρ)

→φ ∪ {ρ,ρ’} (intlist @ ρ’)

– But the effect φ is hardcoded

– Need a different map for each effect

• Déjà vu: Need effect polymorphism

#35

Effect Polymorphism

• We do not add syntax for effect polymorphism
– It is implicit; our type system tracks it

• We add types and typing rules
ε ∈ EffectVariables

τ ::= … | ∀ε. τ

– Very similar to value polymorphism

• We can now write the map function:
map : ∀ε.Πρ.Πρ’.∅ (int→ε int) × (intlist @ ρ)

→ε ∪ {ρ,ρ’} (intlist @ ρ’)

Γ ⊢ e :φ ∀ε.τ

Γ ⊢ e :φ τ ε ∉ EffectVars(Γ, φ)

Γ ⊢ e :φ [φ’/ε]τ

Γ ⊢ e :φ ∀ε.τ

#36

Regions In Practice

• Despite heavy use of regions in practice (systems code)

• The (formal) study of regions is less than 15 years old

• Few languages include regions
– MLKit (an implementation of ML)

• Regions are inferred and used as an implementation mechanism

– RC (Gay and Aiken, Berkeley)
• Reference counting of inter-region pointers

– Cyclone (safe variant of C)
• Somewhat lighter-weight

• Global region, stack regions, lexically-scoped regions

– All of which failed to set the world on fire …

• Compromise between complexity of the typing annotations
and expressiveness
– Danger is that the type system may require regions to be long-lived

7

#37

Homework

• Project Due Tue Apr 25
– You have FIVE DAYS to complete it.

– Need help? Stop by my office or send email.

