Memory Management

ANOTHER SHOW EXTOLLING I HATE TO
LOVE AND PEACE INTERRUPTED THINK WHAT
EVERY SEVEN MINVTES BY YOURE LEARNING
COMMERCIALS EXTOLLING FROV TH

GREED AND WASTE.
!

TM LEARNING T NEED

MONN TV SO T CAN

WATCH SOMEPLACE.
ELSE

Cunning Plan

« Introduction to Regions

« Static and Dynamic Semantics
» Types and Effects

« Safety and Soundness

» Polymorphism

Memory Management

» Manual memory deallocation is dangerous

- Deallocate too late = memory leaks =- performance
problems

- Deallocate too early = dangling pointers = safety
problems
» Most type-safe languages disallow manual memory
deallocation

- Because their type systems cannot check absence of
dangling pointers

- Such languages use garbage collection = lack of control
» Question: Is there an effective type system for
mem mgmt that allows deallocation?
- Current best answer: region-based memory management

i3]

Regions

» a.k.a. zones, arenas, ...

» Every object is in exactly one
region

« Allocation via a region handle

« Deallocate an entire region
simultaneously
(cannot free an individual
object)

« Supports easy serialization

Region-based Memory
Management Example

Region r = newregion();

for (i=0;i<10; i++) {
int *x = ralloc(r, (i + 1) * sizeof(int));
work(i, x);

}

deleteregion(r);

Region Expressiveness

Adds structure to memory management
Allocate objects into regions based on lifetime
Works well for objects with related lifetimes

« e.g., global/per-request/per-phase objects in a server
Few regions:
- Easier to keep track of and reason about
- Delay freeing to convenient "group” time

« End of an iteration, closing a device, etc
No need to write "free this data structure”
functions

Region Expressiveness: lcc

e The lcc C compiler, written using unsafe
regions
- regions bring structure to an application's

memory
perm

func Q

stmt O

Time

#7

Region Expressiveness: lcc

e The lcc C compiler, written using unsafe
regions
- regions bring structure to an application's

memory
perm

func Q

stmt O

Time

Region Expressiveness: lcc

» The lcc C compiler, written using unsafe
regions
- regions bring structure to an application's

memory
perm

func Q

stmt Q

Time

#9

Region Expressiveness: lcc

» The lcc C compiler, written using unsafe
regions
- regions bring structure to an application's

memory
perm

func 7 Q

stmt " O

Time

Region Expressiveness: lcc

» The lcc C compiler, written using unsafe
regions
- regions bring structure to an application's

memory
perm

func 7 Q

smt () () O 00

Time

Region Expressiveness: lcc

» The lcc C compiler, written using unsafe
regions
- regions bring structure to an application's

memory
perm

e (O C O (D

Time

Safe Region-Based Memory
Management

« When is it safe to deallocate a region?
- Unsafe if you later user a pointer to an object in it!
- Safe if objects in the same region point to each other
- But we must handle pointers between regions

« ldea: nested regions lifetimes

- Use a stack of regions
« last region created is also first region deleted

- Stack frames are a special case of such regions
- Cannot point from older regions into newer ones
- Too restrictive in practice

« |dea: use a type system to keep track of regions

Region-Flow Type System

+ In F; we did not model where results of expressions
are allocated (e.g., pairs)
- Now we’ll extend F, to track regions
» Specify in what region to store expression results
Expr: e::=ix.e|e; el ..le@ple!lp
Region names: p (“rho”, Greek letter “r”)
« New expressions:
- “e @ p” evaluates e and puts the result in region p
« We assume that each value lives in a region
- Think of “e ! p” as an assertion that value of e is in
region p or “copy e from p”

Example

let cons = A XL y. (X, ¥) @ p_in
let Ist =cons 2 @ pE)

(cons (1 @ pg) (0 @ py)) in

w (fst (st ! p)) ! pg ...

» Can deallocate p, witout creating
dangling pointers

« If we deallocate p; first
we create dangling pointers

lists, p; for
elements

Operational Semantics

» Values live in regions
V=l <v>
- “<v> " means value v living in region p

« Evaluation rules

e—Vv e—><v>p

!
e@p— <v>, elp— v

« Evaluation gets stuck if region check ! fails

Typing Rules

» Add a new type to keep track of regions for values
ti=blty—onltep
» Typing rules are straightforward
'e:z '-e:t@p

'Feep:t@p 'elp:t

Types keep track of regions of values

- All values that can flow into one variable must be from
the same region

Soundness result:

- In well-typed programs the annotations in “e ! p” are
correct

- i.e., “e ! p” never gets stuck (and can be removed)

Region-Flow Inference

» We start with unannotated programs

« We want to infer the region annotations as follows:
- Each value constructor v must be annotated
- Each deconstructor must be annotated

vii=nep| (Ax.e)@p
ex=v](e;!p)e, | (fst!lp)e
| if (e ! p) then e, else e,

« We must know, at each use of a value, in what
region that value is allocated

Annotation Example

+ We abbreviate:

nep as ne
(Ax.e)ep as AP X.€
(e1!p)e; as S

o Consider the code:
let fst = A u. X" v. uin

Pr Po | Pa Py

(let x=X"p.(p" 0")" 1

in 2"q.(q" (xprst))”" Zpi)pq fst

Region-Flow Type Inference

» Type inference is always possible in this system

» There are multiple correct solutions
- e.g., use only one region throughout

« There is a “best” solution (up to renaming of
regions; best = uses largest # of regions)
- All other solutions can be obtained by merging some

regions in the best solution

» This program analysis is called value-flow analysis
- Can tell you what values could possibly flow to a use
- It is a weak form of analysis (equational)

For “x :=y; x := z;” we get flow between x, y, z (in
both directions)

Adding Region Allocation and
Deallocation

« So far we can track (statically) which values are in
which region

» We can think of “e @ p” as evaluating e and
allocating in region p space for the result

We can think of “e ! p” as checking that the result
of e is in region p, and retrieving the result if so

- The type system tells us that the check is not necessary
at run-time. We do not even need to be able to tell at
runtime in which region an object is. No tags.

Still need to know when it is safe to delete a region

Region Irrelevance

e Assume I' - e : t such that
- Region pisusedine
- Region p does not appear in I"
« Means that before we start e region p is empty

- Region p does not appear in t
« Means that the result of e does not refer to any values in p

- The region p is relevant only during the execution of e
« Example:

- After evaluation of (LPox. x)» 17" we can erase p, if nothing in
the context uses it

« Idea: tie region lifetime (relevance) to static scoping

Statically-Scoped Regions

» Add a new construct
e:i=..]| letregpine
- Creates a new region and binds it to the name p
- After e terminates the region is deleted

IL(Ryp)te:r p ¢ RegionVars(T', 1)
ILRI letregpine:t

ILRFe:t@p I'RFe:x peR

INRFelp:t INRFeep:t@p

« Example:
letreg p, in (Arox. x) 101 is well typed
letreg p, in (cons 10" ((APox. x)° 270))*" js ill typed
« Type system can detect dangling references. What are they here?

#23 |

Unsoundness

o This system works well in first-order languages, where the
type of a value fully describes its dependencies
- A value of type (int @ p, x bool @ p,) @ p, has references into
regions p, and p, only
- Avalue of type (int @ p, + bool @ p,) @ p, has references into regions
p; and (p, or p,). Conservatively in p,, p, and p,
« In higher-order languages we cannot tell so easily
t = letreg p, in let x = true @ p, in
L y.if x I py then y else false @ p,
- body of letreg has type bool°t — boolr1
- Later, when t is used, it will access a dangling pointer to x
« Problem: The type of a function describes only the
input/output behavior of the function
- It does not describe the execution of the function!

Types and Effects

« We enrich the type system to contain information about the
computation not just the result

- For each computation we keep a set of effects (interesting events
that occur as it executes)

o New Judgment: I'-e ¢t
- expression e computes a value of type t and has effects among those

in the set ¢
« We extend the function types as well
ti=int | t@p | 1y 20,
« Example:

ke 9 :int =% int
- Expression e evaluates (with effects ¢,) to a function, which when
given an int evaluates (with effects ¢,) to an int

Effects for Regions

» To detect dangling references we need to compute
for each expression what set of regions it
references at runtime ILx:the:tr

F-ax.elr oo,
(x)=1 FHe r—=0t The, iz
r-x:%z I'Fe e #1UR20e ¢

ezt
F'Feep:virirta@p

'et@p
F'kelp:ouirle

ez p ¢ RegionVars(T', 1)
I'-letregpine :0-{r} ¢

#25] #26]
Handling That Old Example Effect Types Systems
« Consider again the example + We have collected a set of regions referenced
-1 . « Effects can model other intrinsic properties of
t = letreg p, in functions (depending on how the computation
let x = true @ py in proceeds, not only on the result)
- - Behavioral effects
!
Ay if x1p, theny else false @ p; - Effects now have structure, with sequencing, choice,
- body of letreg has type recursion
bool @ p, —+{: p1} bool @ p » Effects have also been used to model
! . ! - cryptographic protocols
» Now the type says that p, is referenced by - synchronization protocols
the result of t. This program is now ill-typed - ir:terferenct‘? ana(lysis for tilwretalds luded a ¢ .
. . . . - Cleanup actions (previous lecture included a type-and-
(]‘e') we will notice the region leak)- effect system for compensation stacks)
#27] #23]
Soundness Soundness Problems
» Here is one way to argue soundness .
- Soundness = no dangling pointers « Consider the program .
» Change the operational semantics of letreg to - T etis_ ée: tz'_“’gircft ‘LO‘”]:@\ Xy
get stuck if the region is referenced in the result yp) K
of the body - Evaluates to t’s value = A x. (A y.x) <0>po
) - Not true that RegionVars(t’s value) = ()
p’ =newregion() F [p’/ple Vv p’zRegionVars(v)
Fletregpinel v » Our system does allow dangling pointers
- But only when you will never dereference them
« Prove that well-typed programs never get stuck « In this respect it is more powerful than a garbage
« Will this work? Why? collector (able to leap David Bacon in a single bound)
- Because it can see the rest of the computation
- The GC only sees a snapshot of the computation state
#29] #30]

Soundness Attempt 2

« Introduce a special region called “dangling”
- Replace all dangling regions with this one
- And check that we never use it

p’ = newregion() Flp'/ple v

t letreg p in e |} [dangling/p’]v
ckel <v> p=dangling

Fe!
plv ocke|v p=dangling

Feepl<v>,

« Prove now that well-typed programs do not get stuck
- No need to introduce the dangling checks at run-time

Region Polymorphism
Consider this code again

letcons =L xry. (X,y) @p_

» We need a different function to allocate pairs in
different regions. Inconvenient!

Idea: allow functions to take regions as
parameters

This is called region polymorphism
* We write let cons = Ap. A X. L y. (X, y) @ p

» Type of result of cons depends on the region
argument

e Type of cons is IIp.ty = 1, = (11 X 1) @ p

Region Polymorphism
» We add the following to the language

en=..|Ap.e (region abstraction)
| ep (region application)
T i=..| Ip.t (region polymorphism)

- In the type I1p.? 1 region variable p is bound in ¢ and ©

F'Fe:tr ke Ip.ot

I'-ip.e:?Ip.t < Cep’ @Hue/ele [p’/p]t

- Note that region application does not “reference” the
region (it’s purely syntactic, as in “id [int] 5”)
- More opportunities for harmless dangling references

Effect Polymorphism

Region polymorphism fails on higher-order languages
Consider the map function for lists of integers
Without regions:

map : (int — int) x intlist — intlist
With regions (potentially moving the list also):

map : TIp.TTp’.? (int —¢ int) x (intlist @ p)

—0Ulpr} (intlist @ p’)

- But the effect ¢ is hardcoded
- Need a different map for each effect
Déja vu: Need effect polymorphism

Effect Polymorphism

» We do not add syntax for effect polymorphism
- It is implicit; our type system tracks it
» We add types and typing rules
¢ € EffectVariables
tii=..| Ve.t
- Very similar to value polymorphism

I'He:*t ¢ ¢ EffectVars(l, ¢) I'Fe:¢Ver

I'-e:¢Vet F'Fe:[p/e]r
» We can now write the map function:
map : Ve.Ilp.I1p’.% (int —* int) x (intlist @ p)
—eUlpe} (intlist @ p’)

Regions In Practice

Despite heavy use of regions in practice (systems code)
The (formal) study of regions is less than 15 years old

Few languages include regions
- MLKit (an implementation of ML)
« Regions are inferred and used as an implementation mechanism
- RC (Gay and Aiken, Berkeley)
« Reference counting of inter-region pointers
- Cyclone (safe variant of C)
« Somewhat lighter-weight
« Global region, stack regions, lexically-scoped regions
- All of which failed to set the world on fire ...
Compromise between complexity of the typing annotations
and expressiveness
- Danger is that the type system may require regions to be long-lived

#36]

Homework

» Project Due Tue Apr 25
- You have FIVE DAYS to complete it.
- Need help? Stop by my office or send email.

