

Cunning Plan: Focus On Objects

- A Calculus For OO
- Operational Semantics
- Type System
- Expressive Power
- Encoding OO Features

The Need for a Calculus

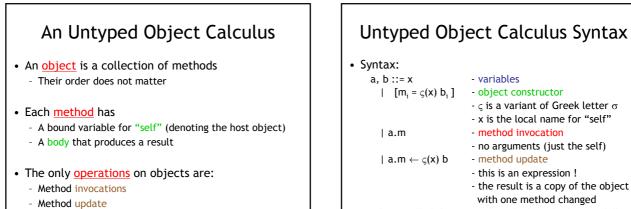
- There are many OO languages with many combinations of features
- We would like to study these features formally in the context of some primitive language
 - Small, essential, flexible
- We want a "λ-calculus" or "IMP" *for objects*

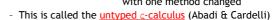
Why Not Use λ -Calculus for OO?

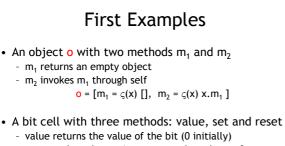
- We *could* define some aspects of OO languages using λ -calculus
 - e.g., the operational semantics by means of a translation to $\lambda\text{-calculus}$
- But then the notion of object be secondary - Functions would still be first-class citizens
- Some typing considerations of OO languages are hard to express in λ -calculus
 - i.e., object-orientation is not simply "syntactic sugar"

Object Calculi Summary

- As in $\lambda\text{-calculi}$ we have
 - operational semantics
 - denotational semantics type systems
 - type systems
 - type inference algorithms guidance for language design
- We will actually present a family of calculi
 - typed and untyped
 - first-order and higher-order type systems
- We start with an untyped calculus

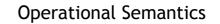






- - set sets the value to 1, reset sets the value to 0 - models state without λ /IMP (objects are primary)
 - **b** = [value = $\varsigma(x)$. 0,

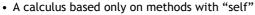
set = $\varsigma(x)$. x.value $\leftarrow \varsigma(y)$. 1, reset = $\varsigma(x)$. x.value $\leftarrow \varsigma(y)$. 0]



- $a \rightarrow b$ means that a reduces in one step to b
- The rules are: (let o be the object $[m_i = \zeta(x), b_i]$)

o.m_i \rightarrow [o/x] b_i $o.m_k \leftarrow \varsigma(y). b \rightarrow [m_k = \varsigma(y). b, m_i = \varsigma(x). b_i]$ $(i \in \{1, ..., n\} - \{k\})$

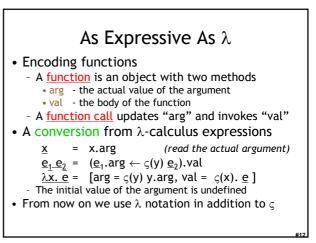
- · We are dealing with a calculus of objects
- This is a deterministic semantics (has the Church-Rosser or "diamond" property)



- How expressive is this language? Let's see.
- Can we encode languages with fields? Yes.
- Can we encode classes and subclassing? Hmm.
- Can we encode λ -calculus? Hmm.

· Encoding fields

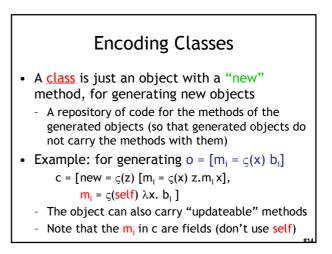
- Fields are methods that do not use self
- Field access "o.f" is translated directly
- to method invocation "o.f" - Field update "o.f \leftarrow e" is translated to "o.f $\leftarrow \varsigma(x)$ e"
- We will drop the $\zeta(x)$ from field definitions and updates

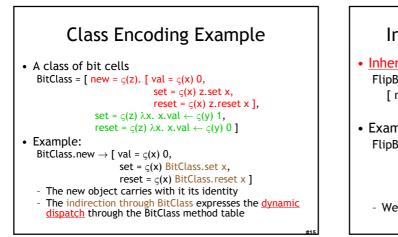


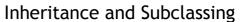
λ -calculus into *ζ*-calculus

- Consider the conversion of (λx.x) 5 Let $o = [arg = \varsigma(z) z.arg, val = \varsigma(x) x.arg]$ $(\lambda \mathbf{x}.\mathbf{x}) \mathbf{5} = (0.\operatorname{arg} \leftarrow \varsigma(\mathbf{y}) \mathbf{5}).\operatorname{val}$
- Consider now the evaluation of this latter g-term

```
• Let o' = [ \arg = \zeta(y) 5, val = \zeta(x) x.arg ]
  (o.arg \leftarrow \varsigma(y) 5).val
  o'.val = [arg = \varsigma(y) 5, val = \varsigma(x) x.arg].val
                                                                    \rightarrow
  x.arg[o'/x] = o'.arg
                                                                      \rightarrow
  5[o'/y] = 5
```







• Inheritance involves re-using method bodies FlipBitClass = [new = $\zeta(z)$ (BitClass.new).flip $\leftarrow \zeta(x) z$.flip x,

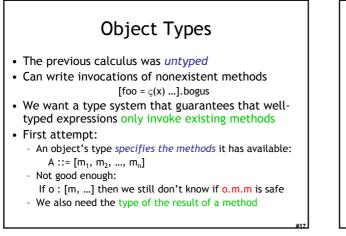
flip = $\varsigma(z) \lambda x. x.val \leftarrow not (x.val)$]

• Example:

 $FlipBitClass.new \rightarrow \text{[val = }\varsigma(x) \text{ 0,}$ set = $\varsigma(x)$ BitClass.set x,

reset = $\varsigma(x)$ BitClass.reset x,

- flip = c(x) FlipBitClass.flip x
- We can model method overriding in a similar way



First-Order Object Types. Subtyping

• Second attempt:

 $[m_1$

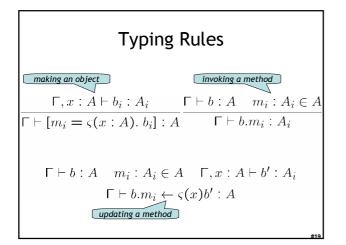
- $A ::= [m_i : A_i]$
- Specify the available methods and their result types
- Wherever an object is usable another with more methods should also be usable
 - This can be expressed using (width) subtyping:

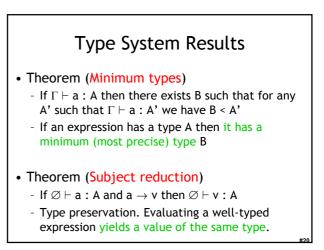
$$A < B \quad B < C$$

$$A < A \quad A < C$$

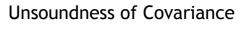
$$n \ge k$$

$$: A_1, \dots, m_n : A_n] < [m_1 : A_1, \dots, m_k : A_k]$$









- Object types are <u>invariant</u> (not co/contravariant)
- Example of covariance being unsafe:
 - Let U = [] and L = [m : U]
 - By our rules L < U
- Let P = [x : U, f : U] and Q = [x : L, f : U]
 - Assume we (mistakenly) say that Q < P (hoping for covariance in the type of x)

- Consider the expression:

- $q: Q = [x = [m = []], f = \varsigma(s:Q) s.x.m]$ - Then q: P (by subsumption with Q < P)
- Hence $q.x \leftarrow [] : P$
- This yields the object [$x = [], f = \varsigma(s:Q) s.x.m$]
- Hence $(q.x \leftarrow []).f: U$ yet $(q.x \leftarrow []).f$ fails!

Covariance Would Be Nice Though

- Recall the type of bit cells BitType = [value : int, set : BitType, reset : BitType]
- Consider the type of flipable bit cells FlipBitType = [value : int, set : FlipBitType, reset : FlipBitType, flip : FlipBitType]
- We would expect that FlipBitType < BitType
- Does not work because object types are invariant
- We need covariance + subtyping of recursive types
 - Several ways to fix this

Variance Annotations

- Covariance fails if the method can be updated
 If we never update set, reset or flip we could allow covariance
- We annotate each method in an object type with a <u>variance</u>:
 - + means read-only. Method invocation but not update
 - means write-only. Method update but not invocation
 - ${\rm 0}\ {\rm means}\ {\rm read-write}.$ Allows both update and invocation
- We must change the typing rules to check annotations
- And we can relax the subtyping rules

Subtyping with Variance Annotations

- Invariant subtyping (Read-Write) [... m_i^0 : B ...] < [... m_i^0 : B' ...] if B = B'
- Covariant subtyping (Read-only) $[... m_i^*:B ...] < [... m_i^*:B' ...] \quad \text{if } B < B'$
- Contravariant subtyping (Write-only) [... $m_{i^{-}}$: B ...] < [... $m_{i^{-}}$: B' ...] if B' < B
- In some languages these annotations are implicit - e.g., only fields can be updated

Classes, Types and Variance • Recall the type of bit cells BitType = [value⁰ : int, set⁺ : BitType, reset⁺ : BitType] • Consider the type of flipable bit cells FlipBitType = [value⁰ : int, set⁺ : FlipBitType, reset⁺ : FlipBitType, flip⁺ : FlipBitType] • Now we have FlipBitType < BitType - Recall the subtyping rule for recursive types FlipBitType < BitType $\frac{\tau < \sigma}{\mu$ FlipBitType. $\tau < \mu$ BitType. σ

Classes and Types

- Let A = [m_i : B_i] be an object type
- Let Class(A) be the type of classes for objects of type A
 - $Class(A) = [new : A, m_i : A \rightarrow B_i]$ A class has a generator and the body for the methods

Types are distinct from classes

- A class is a "stamp" for creating objects
- Many classes can create objects of the same type
- Some languages take the view that two objects have the same type only if they are created from the same class
- With this restriction, types are classes
 In Java both classes and interfaces act as types

Higher-Order Object Types

- We can define <u>bounded polymorphism</u>
- Exmaple: we want to add a method to BitType that can copy the bit value of self to another object lendVal = c(z) λx:t<BitType. x.val ← z.val
 - Can be applied to a BitType or a subtype lendVal : $\forall t < BitType. t \rightarrow t$
 - Returns something of the same type as the input
 - Can infer that "z.lendVal y : FlipBitType" if "y : FlipBitType"
- We can add <u>bounded existential types</u>
 - Ex: abstract type with interface "make" and "and" Bits = $\exists t < BitType. \{make : nat \rightarrow t, and : t \rightarrow t \rightarrow t\}$
 - We only know the representation type t < BitType

Conclusions

- Object calculi are both simple and expressive
- Simple: just method update and method invocation
- Functions vs. objects
 - Functions can be translated into objects
 - Objects can also be translated into functions
 - But we need sophisticated type systems
 A complicated translation
- Classes vs. objects
 - Class-based features can be encoded with objects: subclassing, inheritance, overriding

