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#1

Modeling and Understanding Modeling and Understanding 

ObjectObject--Oriented ProgrammingOriented Programming

#2

Official Survey

• Please fill out the Toolkit course survey

• 40142   CS 655-1        

• Apr-21-2006 Midnight → May-04-2006 9am 

– Why not do it this evening?

#3

Cunning Plan: Focus On Objects

• A Calculus For OO

• Operational Semantics

• Type System

• Expressive Power

• Encoding OO Features

#4

The Need for a Calculus

• There are many OO languages with many 

combinations of features

• We would like to study these features 

formally in the context of some primitive 

language

– Small, essential, flexible

• We want a “λ-calculus” or “IMP” for objects

#5

Why Not Use λ-Calculus for OO? 

• We could define some aspects of OO languages 

using λ-calculus

– e.g., the operational semantics by means of a translation 

to λ-calculus

• But then the notion of object be secondary

– Functions would still be first-class citizens

• Some typing considerations of OO languages are 

hard to express in λ-calculus

– i.e., object-orientation is not simply “syntactic sugar”

#6

Object Calculi Summary

• As in λ-calculi we have

– operational semantics

– denotational semantics

– type systems

– type inference algorithms

– guidance for language design

• We will actually present a family of calculi

– typed and untyped

– first-order and higher-order type systems

• We start with an untyped calculus
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#7

An Untyped Object Calculus

• An object is a collection of methods

– Their order does not matter

• Each method has

– A bound variable for “self” (denoting the host object)

– A body that produces a result

• The only operations on objects are:

– Method invocations

– Method update

#8

Untyped Object Calculus Syntax

• Syntax:
a, b ::= x                  - variables

|   [mi = ς(x) bi ]  - object constructor

- ς is a variant of Greek letter σ

- x is the local name for “self”

| a.m                 - method invocation

- no arguments (just the self)

| a.m ← ς(x) b    - method update

- this is an expression !

- the result is a copy of the object

with one method changed

– This is called the untyped ς-calculus (Abadi & Cardelli)

#9

First Examples

• An object o with two methods m1 and m2

– m1 returns an empty object

– m2 invokes m1 through self

o = [m1 = ς(x) [],  m2 = ς(x) x.m1 ]

• A bit cell with three methods: value, set and reset
– value returns the value of the bit (0 initially)

– set sets the value to 1, reset sets the value to 0

– models state without λ/IMP (objects are primary)

b = [ value = ς(x). 0, 

set = ς(x). x.value ← ς(y). 1, 

reset = ς(x). x.value ← ς(y). 0 ] 

#10

Operational Semantics

• a → b means that a reduces in one step to b

• The rules are:  (let o be the object [mi = ς(x). bi ] )

o.mi → [o/x] bi

o.mk ← ς(y). b → [mk = ς(y). b,  mi = ς(x). bi] 

(i ∈ {1,…, n} - { k})

• We are dealing with a calculus of objects

• This is a deterministic semantics (has the Church-

Rosser or “diamond” property)

#11

Expressiveness

• A calculus based only on methods with “self”
– How expressive is this language? Let’s see. 

– Can we encode languages with fields? Yes. 

– Can we encode classes and subclassing? Hmm.

– Can we encode λ-calculus? Hmm.

• Encoding fields
– Fields are methods that do not use self 

– Field access “o.f” is translated directly 
• to method invocation “o.f”

– Field update “o.f ← e” is translated to “o.f ← ς(x) e”

– We will drop the ς(x) from field definitions and updates

#12

As Expressive As λ

• Encoding functions
– A function is an object with two methods

• arg - the actual value of the argument

• val - the body of the function

– A function call updates “arg” and invokes “val”

• A conversion from λ-calculus expressions 

x =   x.arg (read the actual argument)

e1 e2 =   (e1.arg ← ς(y) e2).val

λx. e =   [arg = ς(y) y.arg, val =  ς(x). e ]
– The initial value of the argument is undefined

• From now on we use λ notation in addition to ς
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#13

λ-calculus into ς-calculus

• Consider the conversion of (λx.x) 5

Let o = [ arg = ς(z) z.arg, val = ς(x) x.arg]

(λx.x) 5 = (o.arg ← ς(y) 5).val

• Consider now the evaluation of this latter ς-term

• Let o’ = [ arg = ς(y) 5, val = ς(x) x.arg]

(o.arg← ς(y) 5).val                                 →

o’.val = [arg = ς(y) 5, val = ς(x) x.arg].val →

x.arg[o’/x] = o’.arg →

5[o’/y] = 5

#14

Encoding Classes

• A class is just an object with a “new”

method, for generating new objects

– A repository of code for the methods of the 

generated objects (so that generated objects do 

not carry the methods with them)

• Example: for generating o = [mi = ς(x) bi]

c = [new = ς(z) [mi = ς(x) z.mi x],

mi = ς(self) λx. bi ]

– The object can also carry “updateable” methods

– Note that the mi in c are fields (don’t use self)

#15

Class Encoding Example

• A class of bit cells
BitClass = [ new = ς(z). [ val = ς(x) 0, 

set = ς(x) z.set x,  

reset = ς(x) z.reset x ],
set = ς(z) λx. x.val ← ς(y) 1, 

reset = ς(z) λx. x.val← ς(y) 0 ]

• Example:
BitClass.new → [ val = ς(x) 0, 

set = ς(x) BitClass.set x,  

reset = ς(x) BitClass.reset x ]

– The new object carries with it its identity

– The indirection through BitClass expresses the dynamic 
dispatch through the BitClass method table

#16

Inheritance and Subclassing

• Inheritance involves re-using method bodies

FlipBitClass = 

[ new = ς(z) (BitClass.new).flip ← ς(x) z.flip x,

flip = ς(z) λx. x.val ← not (x.val) ]

• Example: 
FlipBitClass.new → [ val = ς(x) 0, 

set = ς(x) BitClass.set x,  

reset = ς(x) BitClass.reset x,

flip = ς(x) FlipBitClass.flip x ]

– We can model method overriding in a similar way

#17

Object Types

• The previous calculus was untyped

• Can write invocations of nonexistent methods
[foo = ς(x) …].bogus

• We want a type system that guarantees that well-
typed expressions only invoke existing methods

• First attempt:
– An object’s type specifies the methods it has available:

A ::= [m1, m2, …, mn]

– Not good enough:

If o : [m, …] then we still don’t know if o.m.m is safe

– We also need the type of the result of a method

#18

First-Order Object Types. 

Subtyping
• Second attempt:

A ::= [mi : Ai]

– Specify the available methods and their result types

• Wherever an object is usable another with more 

methods should also be usable

– This can be expressed using (width) subtyping:
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#19

Typing Rules

making an object

updating a method

invoking a method

#20

Type System Results

• Theorem (Minimum types)

– If Γ ⊢ a : A then there exists B such that for any 

A’ such that Γ ⊢ a : A’ we have B < A’

– If an expression has a type A then it has a 

minimum (most precise) type B 

• Theorem (Subject reduction)

– If ∅ ⊢ a : A and a → v then ∅ ⊢ v : A

– Type preservation. Evaluating a well-typed 

expression yields a value of the same type.

#21

Type Examples
• Consider that old BitCell object

o = [ value = ς(x). 0, 

set = ς(x). x.value ← ς(y). 1, 

reset = ς(x). x.value ← ς(y). 0 ]

• An appropriate type for it would be

BitType = [ value : int, set : BitType, reset : BitType]

– Note that this is a recursive type

– Consider part of the derivation that o : BitType (for set)

#22

Unsoundness of Covariance

• Object types are invariant (not co/contravariant)

• Example of covariance being unsafe:
– Let U = []    and L = [m : U]

– By our rules L < U

– Let P = [x : U, f : U] and Q = [x : L, f : U]

– Assume we (mistakenly) say that Q < P (hoping for 
covariance in the type of x)

– Consider the expression:

q : Q = [x = [m = []],   f = ς(s:Q) s.x.m ]
– Then q : P (by subsumption with Q < P)
– Hence q.x ← []  : P

– This yields the object [ x = [], f = ς(s:Q) s.x.m ]
– Hence (q.x ← []).f : U   yet   (q.x ← []).f fails!

#23

Covariance Would Be Nice Though

• Recall the type of bit cells

BitType = [ value : int, set : BitType, reset : BitType]

• Consider the type of flipable bit cells

FlipBitType = [ value : int, set : FlipBitType, reset : 

FlipBitType, flip : FlipBitType]

• We would expect that FlipBitType < BitType

• Does not work because object types are invariant

• We need covariance + subtyping of recursive types

– Several ways to fix this

#24

Variance Annotations

• Covariance fails if the method can be updated

– If we never update set, reset or flip we could allow 

covariance

• We annotate each method in an object type with a 

variance:

+ means read-only. Method invocation but not update

- means write-only. Method update but not invocation

0 means read-write. Allows both update and invocation

• We must change the typing rules to check 

annotations

• And we can relax the subtyping rules
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#25

Subtyping with 

Variance Annotations
• Invariant subtyping (Read-Write)

[… mi
0 : B …] < [… mi

0 : B’ …]     if B = B’

• Covariant subtyping (Read-only)
[… mi

+ : B …] < [… mi
+ : B’ …]    if B < B’

• Contravariant subtyping (Write-only)
[… mi

- : B …] < [… mi
- : B’ …]   if B’ < B

• In some languages these annotations are implicit
– e.g., only fields can be updated

#26

Classes, Types and Variance

• Recall the type of bit cells
BitType = [ value0 : int, 

set+ : BitType, reset+ : BitType]

• Consider the type of flipable bit cells
FlipBitType = [ value0 : int, set+ : FlipBitType, 
reset+ : FlipBitType, flip+ : FlipBitType]

• Now we have FlipBitType < BitType
– Recall the subtyping rule for recursive types

#27

Classes and Types

• Let A = [mi : Bi] be an object type

• Let Class(A) be the type of classes for objects of 
type A

Class(A) = [new : A, mi : A → Bi] 

– A class has a generator and the body for the methods

• Types are distinct from classes
– A class is a “stamp” for creating objects

– Many classes can create objects of the same type

– Some languages take the view that two objects have the 
same type only if they are created from the same class
• With this restriction, types are classes

– In Java both classes and interfaces act as types

#28

Higher-Order Object Types

• We can define bounded polymorphism

• Exmaple: we want to add a method to BitType that 
can copy the bit value of self to another object

lendVal = ς(z) λx:t<BitType. x.val← z.val

– Can be applied to a BitType or a subtype

lendVal : ∀t < BitType. t → t

– Returns something of the same type as the input

– Can infer that “z.lendVal y : FlipBitType” if “y : 
FlipBitType”

• We can add bounded existential types
– Ex: abstract type with interface “make” and “and”

Bits = ∃t < BitType. {make : nat → t, and : t → t → t}

– We only know the representation type t < BitType

#29

Conclusions

• Object calculi are both simple and expressive

• Simple: just method update and method invocation

• Functions vs. objects

– Functions can be translated into objects

– Objects can also be translated into functions

• But we need sophisticated type systems

• A complicated translation

• Classes vs. objects

– Class-based features can be encoded with objects: 

subclassing, inheritance, overriding

#30

Homework

• Good luck with your project presentations!

• Have a lovely summer. 


