
1

1

Object Oriented Programming

2

OOP(S)

3

One-Slide Summary

• There are several (overlapping) kinds of

polymorphism:

– subtype

– ad-hoc

– parametric

• I like generic programming

2

4

Metaphysics

• Why are we here?

• What is ‘polymorphism’ anyway?

• How does this relate to car insurance?

5

Motivation (1)

• Typical example—containers:

class IntList {
//...
public int get(int i) {

//...
}

}
class StringList {

// ...
public String get(int i) {

//...
}

}

6

Motivation (2)

• Wouldn’t it be nice if we could not-rewrite

our code for every element type?

• Typical Example Continued:

class ObjectList {
//...
public Object get(int i) {

//...
}

}

3

7

Motivation (3)

class ObjectList {
//...
public Object get(int i) {

//...
}

}

PLResearcher wes = ...;
myList.add(wes)

Researcher x = (Researcher)myList.get(0);
// Does this work?

8

Polymorphism

• This is polymorphism; our List class now

works for different element types

• More importantly, we only needed to code

it once

PLResearcher wes = ...;
myList.add(wes)

Researcher x = (Researcher)myList.get(0);

9

Polymorphism (2)

• Several types:

– Subtype polymorphism

(as featured just now)

– Ad-hoc polymorphism

(similar to overloaded operators)

– Parametric polymorphism

(same code works for all types)

4

10

Guided Questions

• Are these kinds of polymorphism mutually

exclusive?

• Did our List example ‘work for all types?’

• Is the Godfather Object the best way to

implement parametric polymorphism?

11

Problems with Object

• Before Object, we could do this:

StudentListList teams; // list containing Lists

StudentList team_a;
StudentList team_b;
teams.add(team_a) ; teams.add(team_b);
//...

// Get the second student from the first team
Student two_of_one = teams.get(0).get(1)

12

Problems with Object (2)

• Now, we need to cast:

List teams; // list containing StudentLists

List team_a;
List team_b;
teams.add(team_a) ; teams.add(team_b);
//...

// Get the second student from the first team
Student two_of_one =

(Student) ((List)teams.get(0)).get(1)

5

13

The Bad Place (3)

case teams.get(0) of
slist : List =>
case slist.get(1) of
x : Student => x.blah()
esac;

esac

14

The Bad Place (4)

• Casting is error prone

• Might cause runtime errors

• No way to ensure homogenous collections

• So Java < 5…

15

Parameterized Types

• The Typical Example, continued:

class List<T> {
//...
public T get(int i) {

//...
}

}

List<Dog> myList;
Dog milo = ...;
myList.add(milo)

Dog x = myList.get(0);

6

16

The Cunning Plan

• Let’s add templates to COOL

(since we have nothing better to do)

• We’ll keep things simple:

– one type parameter per class

– can’t do ‘new T’ or ‘case e of x : T’

(i.e. we really just want to rewrite the casts)

17

Adding PT to COOL (2)

• While we’re here, let’s redefine types

altogether:

T ::= C | P<t> | t

C : Normal Type (e.g. StudentList)

P<t> : Parameterized Type (e.g. List<T>)

t : A type parameter

(e.g. T within List<T>{ … })

18

Adding PT to COOL (3)

• Previously our typing judgments had the

form:

O, M, C ├ e : T

• Instead of just C, we need C | P<T>

• We’ll call it W

7

19

Adding PT to COOL (4)

• We now define some

new judgments to

check types:

Let W ├ T : type
denote that T is a

valid type within

class definition W

W ├ C : type

W=P<t> ├ t : type

W ├ P<T> : type

W ├ T : type

20

Adding PT to COOL (5)

O, M⇔ W ⇔ W ⇔ W ⇔ W ├ e0.f(e1) : T2’’

O, M, W ├ e0 : P<T>

O, M, W ├ e1 : T1

M(P<x>, f) = (T1’, T2’)

T1 ≤ T1’’

• What’s wrong with this picture?

– T1” is the result of replacing x with T in T1’

– T2” is the result of replacing x with T in T2’

21

Adding PT to COOL (6)

• Need to add power to ≤

C0 ≤ C1 if C0 inherits C1 { … }

C ≤ P<T> if C inherits P<T> { … }

P<T> ≤ C if P<t> inherits C { … }

P<T> ≤ R<T> if P<t> inherits R<t> { … }

t ≤ t ≤ Object

• Conclusion: type parameters are only

moved around, or used as Object

8

22

Guided Questions

• Sigh. Did we add any ‘new power’ to

COOL?

• How might one implement the scheme we

just described?

23

Postmortem

• Not all templates are created equal

• Java 1.5 Generics are very similar to what

we just did with COOL

• What if we do allow ‘new’ and such?

24

Fun with C++ Templates

• C++ templates are

Soooo 90s

• C++ templates are

awesome

• Awesome = you can

build Turing Machines

9

25

(http://osl.iu.edu/~tveldhui/papers/2003/turing.pdf)

26

Fun with C++ Templates (3)

• More explainable example:

template <int N>
struct fact {
static const int value = N * fact<N – 1>::value;
};

template < >
struct fact<1> {
static const int value = 1;

};

cout << fact<5>::value << endl; // result = ?

27

Fun with C++ Templates (4)

• Note that this looks almost… functional:

let rec fact n = match n with 1 -> 1
| n -> n * fact(n – 1)

(*
.
.
.
(but slightly more verbose)
*)

template <int N>
struct fact {
static const int value = N * fact<N – 1>::value;
};

template < >
struct fact<1> {
static const int value = 1;

};

cout << fact<5>::value << endl; // result = 120

10

28

Fun with C++ Templates (5)

• C++ templates are compile-time ad-hoc

• Let’s try a less ethereal example:

• This works on any EltType that has
operator< defined

template <typename EltType>
EltType & max(EltType & a, EltType & b) {

return (a < b ? b : a);
}

29

Fun with C++ Templates (6)

• ‘Compare’ this with:

• Note that multiple inheritance doesn’t
really help here

public interface LtComparable {
public bool lessThan(LtComparable o);

}
//...

LtComparable max(LtComparable a, LtComparable b)
{
return (a.lessThan(b) ? b : a);

}

30

Fun with C++ Templates (7)

• This is ‘generic programming’

• TA’s Definition: using (compile-time) ad-

hoc polymorphism to define ‘Concepts’

• Most common example: the C++ STL

11

31

Shorter Version

• There are different kinds of polymorphism;
not all are created equal

• We could add parametric-ish
polymorphism to COOL with relative ease

• There is a reason why we disallowed
dispatch on template parameter
instances…

32

Postpostmortem

• We didn’t make it here in 8 minutes

• WA4 Due Friday, 11:59pm

– re-construct AST from cl-ast file

– do some basic checks, e.g. no circular

inheritance

33

Karma Points
def build_classes(num):
resultlist = []
for i in range(num):
cur = dict([(LINE, lines[++lineno] + "\n"),

(NAME, lines[++lineno] + "\n"),
(INHERITS, build_inherits() + "\n"),
(CHILDCOUNT, lines[++lineno] + "\n"),

(CHILDREN, build_class_features(int(lines[++lineno])))
])

resultlist.append(cur)

return resultlist

NAME,INHERITS,CHILDCOUNT,CHILDREN,LINE = 0, 1, 2, 3, 4
lineno = 0
ast_tree_root = dict
f = open(sys.argv[1])
lines = [x.rstrip("\r\n") for x in f.readlines()]
f.close()

ast_tree_rt =
dict([(NAME, ""),

(LINE, ""),
(INHERITS, ""),
(CHILDCOUNT, lines[0] + "\n"),
(CHILDREN, build_classes(int(lines[0])))

])

sys.stdout.write(ast_tree_rt[CHILDREN][0][NAME])

