Object Oriented Programming

One-Slide Summary

» There are several (overlapping) kinds of
polymorphism:
— subtype
—ad-hoc
— parametric

« | like generic programming

Metaphysics

* Why are we here?

* What is ‘polymorphism’ anyway?
Quote in About 8 Minutes gL
®

It's about you. And it's about time.
@®

» How does this relate to car insurance?

Motivation (1)

» Typical example—containers:

class IntList {
Olcoa
public int get(int i) {
oo

}
class StringList {
00 aoo
public String get(int i) {
oo

Motivation (2)

» Wouldn't it be nice if we could not-rewrite
our code for every element type?

 Typical Example Continued:
iclass Objectlist { 777
/...
public Object get(int i) {
/...

Motivation (3)

! class ObjectList {
oo
public Object get(int i) {
Olcoa
}
}

| PLResearcher wes = ...;
ymyList.add (wes)
1

:Researcher x = (Researcher)myList.get(0);

:_// Does this work?

Polymorphism

: PLResearcher wes = ...;
ymyList.add (wes)
1

:Researcher x = (Researcher)myList.get(0);

+ This is polymorphism; our List class now
works for different element types

* More importantly, we only needed to code
it once

Polymorphism (2)

Several types:
— Subtype polymorphism
(as featured just now)

— Ad-hoc polymorphism
(similar to overloaded operators)

— Parametric polymorphism
(same code works for all types)

Guided Questions

+ Are these kinds of polymorphism mutually
exclusive?

* Did our List example ‘work for all types?’

* Is the Godfather Object the best way to
implement parametric polymorphism?

Problems with Object

» Before Object, we could do this:

:StudentListList teams; // list containing Lists

1

| StudentList team a;

| StudentList team b;

:teams.add(team_a) ; teams.add(team b);

(W

1

1

1// Get the second student from the first team
| Student two_of one = teams.get(0).get(1)

Problems with Object (2)

* Now, we need to cast:

| List teams; // list containing Studentlists

1

| List team a;

1List team b;

:teams.add(team_a) ; teams.add(team b) ;

/...

1

1

1// Get the second student from the first team
:Student two_of one =

L (Student) ((List)teams.get(0)) .get(1l)

The Bad Place (3)

case teams.get(0) of
slist : List =>

case slist.get(l) of

x : Student => x.blah()
esac;

» Casting is error prone

* Might cause runtime errors

« SoJava<5...

Parameterized Types

* The Typical Example, continued:

Celass mist<r> (TTTTTTTTTTOA

Wl oo

public T get(int i) {
Maoo

}
}

I List<Dog> myList;
:Dog milo = ...;
jmyList.add (milo)

1

:Dog x = myList.get(0);

The Cunning Plan

* Let's add templates to COOL
(since we have nothing better to do)

+ We'll keep things simple:
—one type parameter per class

—can'tdo ‘new T or‘case e of x : T
(i.e. we really just want to rewrite the casts)

Adding PT to COOL (2)

» While we're here, let’s redefine types
altogether:

T:= C |P<t>]|t

C : Normal Type (e.g. StudentList)
P<t> : Parameterized Type (e.g. List<T>)
t . A type parameter

(e.g. T within List<T>{ ... })

Adding PT to COOL (3)

» Previously our typing judgments had the
form:

O,M,Cte:T
* Instead of just C, we need C | P<T>

 We'll call it W

Adding PT to COOL (4)

* We now define some

new judgments to W tC: type
check types:
Let Wt T: type W=P<t> tt : type

denote that T is a
valid type within
class definition W W T : type

W t P<T>: type

Adding PT to COOL (5)

O,M,W }e,:P<T>

O,M,W }fe, :T,
M(P<x>, f) = (T, T;)
T,<T,”

O,M& W | eyfleq): Ty

* What's wrong with this picture?
— T, is the result of replacing x with T in T,
— T,” is the result of replacing x with T in T,

20

Adding PT to COOL (6)

* Need to add power to <

Cy=Cy if Cyinherits C, { ... }
C<P<T> if C inherits P<T>{ ... }
P<T><C if P<t>inherits C { ... }

P<T><R<T> if P<t>inherits R<t>{ ...}
t <t < Object

» Conclusion: type parameters are only
moved around, or used as Object

21

Guided Questions

+ Sigh. Did we add any ‘new power’ to
COOL?

* How might one implement the scheme we
just described?

Postmortem

* Not all templates are created equal

+ Java 1.5 Generics are very similar to what
we just did with COOL

* What if we do allow ‘new’ and such?

23

Fun with C++ Templates

* C++ templates are
Soooo 90s

* C++ templates are
awesome

* Awesome = you can
build Turing Machines

24

turing.cpp: In instantiation of ‘Configuration<Q0,Pair<Blank,Pair<Bl]
TransitionFunction>’:

turing.cpp:82: instantiated from ‘Configuration<Ql,Pair<Blank,Pair|
turing.cpp:82: instantiated from ‘Configuration<Q0,Pair<Blank,Pair|
turing.cpp:82: instantiated from ‘Configuration<Ql,Pair<Blank,Nil

turing.cpp:82: instantiated from ‘Configuration<Q0,Pair<Blank,Nil

turing.cpp:82: instantiated from ‘Configuration<Q1,Nil,Blank,Pair

turing.cpp:82: instantiated from ‘Configuration<QO,Nil,A,Pair<A,Pa
turing.cpp:163: instantiated from here

turing.cpp:91: no type named ‘halted_configuration’ in ‘struct Appl
Pair<Blank,Pair<Blank,Nil> > >,Blank,Nil,TransitionFunction>’

Figure 1: Compiler errors from g++ 2.95.2. Reading the error messages
Far (g1, #aa) Far (qo, #aa) Far (g1, #4£a) Far (o, ##a) Far (o, ## 4.

(http://osl.iu.edu/~tveldhui/papers/2003/turing.pdf)

25
Fun with C++ Templates (3)
* More explainable example:
itemplate <int N> 77T 1
:struct fact { I
I static const int value = N * fact<N - 1>::value; :
R E !
1
| template < > :
:struct fact<1> {]
| static const int value = 1; :
: Yi :
:cout << fact<5>::value << endl; // result = ? :
26

Fun with C++ Templates (4)

* Note that this looks almost... functional:

template <int N>

struct fact {

static const int value = N * fact<N - 1>::value;
}i

template < >
struct fact<1> {
static const int value = 1;

I
I
I
I
[
I
I
I
[
I
I
1'};
[

I

1t = 120

| cout << fact<5>::

lue << endl; //

27

Fun with C++ Templates (5)

» C++ templates are compile-time ad-hoc

* Let’s try a less ethereal example:

I E1tType & max(EltType & a, EltType & b) {
: return (a <b ? b : a);

» This works on any EltType that has
operator< defined

28
Fun with C++ Templates (6)
* ‘Compare’ this with:
\public interface LtComparable { 1
: public bool lessThan(LtComparable o) ; I
1}]
/.. |
I 1
:LtComparahle max (LtComparable a, LtComparable b) :
1 { 1
: return (a.lessThan(b) ? b : a); :
L |
* Note that multiple inheritance doesn’t
really help here
29
Fun with C++ Templates (7
e Thisi{e” % s sy [il8) 3
I Sequence i
.« TAs j-
hoc p Des;rlpllon
A Sequ‘e[mfpl:unrl lements are arranged In a strict linear
Refinement of
o MoSt | rorvera coaier, pefaut constructinte
Associated types
Nono, excopt for those of Forward Container.
Notation g
30

10

Shorter Version

 There are different kinds of polymorphism;
not all are created equal

* We could add parametric-ish
polymorphism to COOL with relative ease

» There is a reason why we disallowed
dispatch on template parameter
instances...

31

Postpostmortem

* We didn’'t make it here in 8 minutes
Quote in About 8 Minutes ,‘

It's about you. And it's about time.
@ B

* WA4 Due Friday, 11:59pm
—re-construct AST from cl-ast file

— do some basic checks, e.g. no circular
inheritance

32

Karma Points

rNAME,INHERITS,CEILDCOU'NT,CHILDREN,LINE =0,1, 2, 3, 4
:lineno =0

| ast_tree root = dict

I'£f = open(sys.argv[1l])

:lines = [x.rstrip("\r\n") for x in f.readlines()]

1 £.close()

ast_tree rt =
dict([(NAME, ""),
(LINE, ""),
(INHERITS, ""),
(CHILDCOUNT, lines[0] + "\n"),
(CHILDREN, build classes(int(lines[0])))
1)

| Sys.stdout.write (ast_tree_ rt[CHILDREN] [0] [NAME])

11

