
1

#1

Functional ProgrammingFunctional Programming

Introduction to COOLIntroduction to COOL

#2

Cunning Plan

• Functional Programming

– Types

– Pattern Matching

– Higher-Order Functions

• Classroom Object-Oriented Language

– Methods

– Attributes

– Inheritance

– Method Invocation

#3

One-Slide Summary

• Higher-order functions take functions as

arguments. Examples include sort and filter.

They are a powerful part of functional

programming.

• Cool is a strongly-typed expression-based OO

language with inheritance and dynamic

dispatch. You will write an interpreter for it.

2

#4

ML Innovative Features

• Type system

– Strongly typed

– Type inference

– Abstraction

• Modules

• Patterns

• Polymorphism

• Higher-order functions

• Concise formal semantics

There are many ways of trying to

understand programs. People often rely

too much on one way, which is called

“debugging” and consists of running a

partly-understood program to see if it

does what you expected. Another way,

which ML advocates, is to install some

means of understanding in the very

programs themselves.

- Robin Milner, 1997

#5

Type System
• Type Inference

– let rec add_elem (s,e) = match s with

– | [] -> [e]

– | hd :: tl when e = hd -> s

– | hd :: tl -> hd :: add_elem(tl, e)

– val add_elem : αααα list * αααα -> αααα list = <fun>

• ML infers types
– Inconsistent or incomplete type is an error

• Optional type declarations (exp : type)
– Clarify ambiguous cases

– Documentation

#6

Pattern Matching
• Simplifies Code (eliminates ifs, accessors)

– type btree = (* binary tree of strings *)

– | Node of btree * string * btree

– | Leaf of string

– let rec height tree = match tree with

– | Leaf _ -> 1

– | Node(x,_,y) -> 1 + max (height x) (height y)

– let rec mem tree elt = match tree with

– | Leaf str | Node(_,str,_) -> str = elt

– | Node(x,_,y) -> mem x elt || mem y elt

3

#7

Pattern Matching Mistakes

• What if I forget a case?

– let rec is_odd x = match x with

– | 0 -> false

– | 2 -> false

– | x when x > 2 -> is_odd (x-2)

– Warning P: this pattern-matching is not
exhaustive.

– Here is an example of a value that is not

matched: 1

#8

Polymorphism

• Functions and type inference are
polymorphic
– Operate on more than one type

– let rec length x = match x with

– | [] -> 0

– | hd :: tl -> 1 + length tl

– val length : α list -> int = <fun>

– length [1;2;3] = 3

– length [“algol”; ”smalltalk”; ”ml”] = 3

– length [1 ; “algol”] = ?

αmeans “any

one type”

#9

Higher-Order Functions
• Function are first-class values

– Can be used whenever a value is expected

– Notably, can be passed around

– Closure captures the environment

– let rec map f lst = match lst with
– | [] -> []
– | hd :: tl -> f hd :: map f tl

– val map : (αααα -> ββββ) -> αααα list -> ββββ list = <fun>
– let offset = 10 in
– let myfun x = x + offset in
– val myfun : int -> int = <fun>
– map myfun [1;8;22] = [11;18;32]

• Extremely powerful programming technique
– General iterators

– Implement abstraction

f is itself a
function!

4

#10

The Story of Fold

• We’ve seen length and map

• We can also imagine …

– sum [1; 5; 8] = 14

– product [1; 5; 8] = 40

– and [true; true; false] = false

– or [true; true; false] = true

– filter (fun x -> x>4) [1; 5; 8] = [5; 8]

– reverse [1; 5; 8] = [8; 5; 1]

– mem 5 [1; 5; 8] = true

• Can we build all of these?

#11

The House That Fold Built

• The fold operator comes from Recursion
Theory (Kleene, 1952)

– let rec fold f acc lst = match lst with

– | [] -> acc

– | hd :: tl -> fold f (f acc hd) tl

– val fold : (αααα -> ββββ -> αααα) -> αααα -> ββββ list -> αααα = <fun>

• Imagine we’re summing a list:

9 2 7 4 5 7 4 5… 11

f

4 518 … 27

acc lst

#12

It’s Lego Time

•• LetLet’’s build things out of Folds build things out of Fold

–– lengthlength lstlst = fold (fun acc = fold (fun acc eltelt --> > acc + 1acc + 1)) 00 lstlst

–– sumsum lstlst = fold (fun acc = fold (fun acc eltelt --> > acc + acc + eltelt)) 00 lstlst

–– productproduct lstlst = fold (fun acc = fold (fun acc eltelt --> > acc * acc * eltelt)) 11 lstlst

–– andand lstlst = fold (fun acc = fold (fun acc eltelt --> > acc acc &&&& eltelt)) truetrue lstlst

•• How would we do How would we do oror??

•• How would we do How would we do reversereverse??

5

#13

Tougher Legos
• Examples:

– reverse lst = fold (fun acc e -> acc @ [e]) [] lst
• Note typing: (acc : αααα list) (e : αααα)

– filter keep_it lst = fold (fun acc elt ->

– if keep_it elt then elt ::acc else acc) [] lst

– mem wanted lst = fold (fun acc elt ->

– acc || wanted = elt) false lst
• Note typing: (acc : bool) (e : αααα)

• How do we do map?
– Recall: map (fun x -> x +10) [1;2] = [11;12]

– Let’s write it on the board …

#14

Map From Fold

• let map myfun lst =

• fold (fun acc elt -> (myfun elt) :: acc) [] lst

– Types: (myfun : αααα -> ββββ)

– Types: (lst : αααα list)

– Types: (acc : ββββ list)

– Types: (elt : αααα)

• How do we do sort?

– (sort : (αααα * αααα -> bool) -> αααα list -> αααα list)

Do nothing which is of no use.

- Miyamoto Musashi, 1584-1645

#15

Sorting Examples
• langs = [“fortran”; “algol”; “c”]

• courses = [216; 333; 415]

• sort (fun a b -> a < b) langs
– [“algol”; “c”; “fortran”]

• sort (fun a b -> a > b) langs
– [“fortran”; “c”; “algol”]

• sort (fun a b -> strlen a < strlen b) langs
– [“c”; “algol”; “fortran”]

• sort (fun a b -> match is_odd a, is_odd b with

• | true, false -> true (* odd numbers first *)

• | false, true -> false (* even numbers last *)

• | _, _ -> a < b (* otherwise ascending *)) courses
– [333 ; 415 ; 216]

Java uses Inner

Classes for

this.

6

#16

Partial Application and Currying

• let myadd x y = x + y

• val myadd : int -> int -> int = <fun>

• myadd 3 5 = 8

• let addtwo = myadd 2
– How do we know what this means? We use referentail
transparency! Basically, just sustitute it in.

• val addtwo : int -> int = <fun>

• addtwo 77 = 79

• Currying: “if you fix some arguments, you
get a function of the remaining arguments”

#17

Applicability

• ML, Python and Ruby all support functional

programming

– closures, anonymous functions, etc.

• ML has strong static typing and type

inference (as in this lecture)

• Ruby and Python have “strong” dynamic

typing (or duck typing)

• All three combine OO and Functional

– … although it is rare to use both.

Q: General (458 / 842)

• This cultural anthropologist wrote the
controversial 1928 classic Coming of Age in
Samoa. The book's forward by Franz Boas
includes: "Courtesy, modesty, good manners,
conformity to definite ethical standards are
universal, but what constitutes courtesy,
modesty, good manners, and definite ethical
standards is not universal. It is instructive to
know that standards differ in the most
unexpected ways."

7

#19

Cool Overview
• Classroom Object Oriented Language

• Designed to

– Be implementable in one semester

– Give a taste of implementation of modern
features

•Abstraction

•Static typing

•Reuse (inheritance)

•Memory management

•And more …

• But many things are left out

#20

A Simple Example

• Cool programs are sets of class definitions

– A special class Main with a special method main

– No separate notion of subroutine

• class = a collection of attributes and

methods

• Instances of a class are objects

class Point {

x : Int ←←←← 0;

y : Int ←←←← 0;

};

#21

Cool Objects

• The expression “new Point” creates a

new object of class Point

• An object can be thought of as a record

with a slot for each attribute

class Point {

x : Int ←←←← 0;

y : Int; (* use default value *)

};

x y

0 0

8

#22

Methods

• Methods refer to the current object using self

class Point {

x : Int ←←←← 0;

y : Int ←←←← 0;

movePoint(newx : Int, newy : Int): Point {

{ x ←←←← newx;

y ←←←← newy;

self;

} -- close block expression

}; -- close method

}; -- close class

• A class can also define methods for

manipulating the attributes

#23

Information Hiding in Cool

• Methods are global

• Attributes are local to a class

– They can only be accessed by the class’s

methods

• Example:
class Point {

. . .

x () : Int { x };

setx (newx : Int) : Int { x ←←←← newx };

};

#24

Methods

• Each object knows how to access the code of a

method

• As if the object contains a slot pointing to the code

• In reality implementations save space by

sharing these pointers among instances of

the same class

x y

0 0

movePoint

*

x y

0 0

methods

movePoint

*

9

#25

Inheritance

• We can extend points to colored points

using subclassing => class hierarchy
class ColorPoint inherits Point {

color : Int ←←←← 0;

movePoint(newx : Int, newy : Int): Point {

{ color ←←←← 0;

x ←←←← newx; y ←←←← newy;

self;

}

};

}; x y
0 0

color
0

movePoint
*

#26

Cool Types

• Every class is a type

• Base classes:

– Int for integers

– Bool for boolean values: true, false

– String for strings

– Object root of the class hierarchy

• All variables must be declared

– compiler infers types for expressions (like Java)

#27

Cool Type Checking

• Is well-typed if P is an ancestor of C in

the class hierarchy

– Anywhere an P is expected a C can be used

• Type safety:

– A well-typed program cannot result in

runtime type errors

x : P;

x ←←←← new C;

10

#28

Method Invocation and

Inheritance
• Methods are invoked by (dynamic) dispatch

• Understanding dispatch in the presence of
inheritance is a subtle aspect of OO
languages

p : Point;

p ←←←← new ColorPoint;

p.movePoint(1,2);

� p has static type Point

� p has dynamic type ColorPoint

� p.movePoint must invoke the ColorPoint version

#29

Method Invocation

• Example: invoke one-argument method m

e.m(e’)

…

2

…
1

m: self ←←←←

x ←←←←

<method code>

4

5

5

6

1. Eval. argum e’

3. Find class of e

4. Find code of m

2. Eval. e

5. Bind self and x

6. Run method

…

…

3

method
table

#30

Other Expressions
• Expression language (every expression has a

type and a value)
– Conditionals if E then E else E fi

– Loops: while E loop E pool

– Case statement case E of x : Type ⇒⇒⇒⇒ E; … esac

– Arithmetic, logical operations

– Assignment x ←←←← E

– Primitive I/O out_string(s), in_string(), …

• Missing features:

– Arrays, Floating point operations, Interfaces,

Exceptions, … (you tell me!)

11

#31

Cool Memory Management

• Memory is allocated every time new is

invoked

• Memory is deallocated automatically when

an object is not reachable anymore

– Done by a garbage collector (GC)

#32

Course Project

• A complete interpreter
– Cool Source ==> Executed Program

– No optimizations

• Split in 5 programming assignments (PAs)

• There is adequate time to complete
assignments
– But start early and please follow directions

– Turn in early to test the turn-in procedure

• Individual or team (max. 2 students)

#33

Homework

• Friday: PA0 due

• Tuesday: Chapters 2.1 – 2.2

• Tuesday: Dijkstra paper (optional)

• Tuesday: Landin paper (very optional)

