
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cunning Plan

- Informal Sketch of Lexical Analysis
\qquad
- Identifies tokens from input string
- lexer : (char list) \rightarrow (token list)
- Issues in Lexical Analysis
- Lookahead \qquad
- Ambiguity
- Specifying Lexers \qquad
- Regular Expressions
- Examples \qquad
\qquad

One-Slide Summary

\qquad

- Lexical analysis turns a stream of characters \qquad into a stream of tokens.
- Regular expressions are a way to specify sets
\qquad of strings. We use them to describe tokens.

Lexical Analysis

- What do we want to do? Example:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
if ($\mathbf{i}==\mathrm{j}$)
z = 0;
else
$z=1 ;$ \qquad
- The input is just a sequence of characters:
\tif $(i=j) \backslash n \backslash t \mid t z=0 ;$ nn\telse\n\t\tz = 1;
- Goal: Partition input string into substrings
\qquad
\qquad
- And classify them according to their role

What's a Token?

- Output of lexical analysis is a list of tokens \qquad
- A token is a syntactic category
- In English:
noun, verb, adjective, ...
- In a programming language:

Identifier, Integer, Keyword, Whitespace, ...

- Parser relies on the token distinctions:
- e.g., identifiers are treated differently than keywords

Tokens

- Tokens correspond to sets of strings.
- Identifier: strings of letters or digits, \qquad starting with a letter
- Integer: a non-empty string of digits
- Keyword: "else" or "if" or "begin" or ...
- Whitespace: a non-empty sequence of blanks, newlines, and tabs
- OpenPar: a left-parenthesis

Lexical Analyzer: Implementation

- An implementation must do two things:

1. Recognize substrings corresponding to tokens
2. Return the value or lexeme of the token \qquad

- The lexeme is the substring
\qquad
\qquad

Example

\qquad

- Recall:
\tif $(i==j) \backslash n \backslash t \backslash t z=0 ;$ n \backslash telse\n\t\tz $=1$;
- Token-lexeme pairs returned by the lexer: \qquad
- (Whitespace, "\t")
- (Keyword, "if") \qquad
- (OpenPar, "(")
- (Identifier, "i")
- (Relation, "==")
- (Identifier, "j") \qquad
- ... \qquad

Lexical Analyzer: Implementation

- The lexer usually discards "uninteresting" tokens that don't contribute to parsing.
- Examples: Whitespace, Comments

Question: What happens if we remove all whitespace and all comments prior to lexing?

Lookahead

\qquad

- Two important points: \qquad

1. The goal is to partition the string. This is
\qquad recognizing one token at a time
2. "Lookahead" may be required to decide where one token ends and the next token begins

- Even our simple example has lookahead issues
i vs. if
= vs. ==

Next We Need

- A way to describe the lexemes of each token
- A way to resolve ambiguities
\qquad
- Is if two variables i and f ?
- Is == two equal signs = =?

Regular Languages

- There are several formalisms for specifying tokens
- Regular languages are the most popular
- Simple and useful theory
- Easy to understand
- Efficient implementations
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Languages

Def. Let Σ be a set of characters. A language over Σ is a set of strings of characters drawn from Σ
(Σ is called the alphabet) \qquad
\qquad
\qquad

Examples of Languages

\qquad

- Alphabet = English characters
- Language = English sentences
- Not every string on English characters is an English sentence
- Alphabet = ASCII
- Language = C programs
- Note: ASCII character set is different from English character set
\qquad
\qquad
\qquad
\qquad
\qquad

Notation

- Languages are sets of strings
- Need some notation for specifying which sets we want
- For lexical analysis we care about regular languages, which can be described using regular expressions.

Regular Expressions and Regular Languages

- Each regular expression is a notation for a regular language (a set of words)
- You'll see the exact notation in a minute!
- If A is a regular expression then we write $L(A)$ to refer to the language denoted by A

Atomic Regular Expressions

- Single character: 'c'

$$
L\left({ }^{\prime} c \text { ' }\right)=\{\text { "c" }\} \quad \text { (for any } c \in \Sigma \text {) }
$$

- Concatenation: $A B$ (where A and B are reg. exp.)
\qquad
\qquad
\qquad $L(A B)=\{a b \mid a \in L(A)$ and $b \in L(B)\}$
- Example: $L\left({ }^{\prime} i\right.$ ' 'f') $=\{$ "if" $\}$
(we will abbreviate ' i ' ' f ' as 'if')
\qquad
\qquad

Compound Regular Expressions

- Union

$$
L(A \mid B)=\{s \mid s \in L(A) \text { or } s \in L(B)\}
$$

- Examples:
'if' | 'then' | 'else' = \{ "if", "then", "else" $\}$
' 0 ' | ' 1 ' | ... | ' 9 ' = \{ "0", " $1 "$ "..., " 9 " \} (note the ... are just an abbreviation)
- Another example:
(‘0’ | '1’) (‘0’ | '1’) = \{ "00", "01", " 10 ", " 11 " $\}$

More Compound Regular Expressions

- So far we do not have a notation for infinite \qquad languages
- Iteration: A^{*}

$$
L\left(A^{*}\right)=\{" "\} \cup L(A) \cup L(A A) \cup L(A A A) \cup \ldots
$$

- Examples:
' 0 ’* $=$ \{ "", "0", "00", "000", ...\}
' 1 ' ' 0 '* $=$ \{ strings starting with 1 , followed by 0 's \}
- Epsilon: ε
$\mathrm{L}(\varepsilon)=\{" "\}$

Example: Keyword

- Keyword: "else" or "if" or "begin" or ... \qquad
'else' | ‘if’ | 'begin' | ...
(Recall: ‘else' abbreviates 'e' 'l' 's' 'e')

Example: Integers

Integer: a non-empty string of digits

```
digit = '0` | '1' | `2` | '3` | '4` | '5` | '6' | '7'
    | '8' | '9'
number = digit digit*
```

Abbreviation: $\mathrm{A}^{+}=\mathrm{A} \mathrm{A}^{*}$

Example: Identifier

Identifier: strings of letters or digits, starting with a letter
letter = 'A' | ... | 'Z' | 'a' | ... | 'z'
identifier $=$ letter (letter | digit) *

Is (letter* | digit*) the same?

Example: Whitespace

Whitespace: a non-empty sequence of blanks, newlines, and tabs

(Can you spot a small mistake?)

Example: Phone Numbers

- Regular expressions are all around you!
- Consider (434) 924-1021
$\Sigma \quad=\{0,1,2,3, \ldots, 9,(),-$,
area $=$ digit 3
exchange $=$ digit 3
phone $=$ digit 4
number =
'(' area ')' exchange '-' phone
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 4 \qquad

Example: Email Addresses

- Consider weimer@cs.virginia.edu \qquad
$\Sigma \quad=$ letters $\cup\{$., @ \}
name $=$ letter $^{+}$ \qquad
address = name ‘@’ name (‘.' name)* \qquad
\qquad
\qquad

Summary

- Regular expressions describe many useful \qquad languages
- Next: Given a string s and a $\operatorname{rexp} R$, is \qquad

$$
s \in L(R) ?
$$

\qquad

- But a yes/no answer is not enough!
- Instead: partition the input into lexemes
- We will adapt regular expressions to this goal
\qquad
\qquad
\qquad

Outline

- Specifying lexical structure using regular expressions
- Finite automata
- Deterministic Finite Automata (DFAs)
- Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions

RegExp \Rightarrow NFA \Rightarrow DFA \Rightarrow Tables

Regular Expressions =>
 Lexical Spec. (1)

1. Select a set of tokens

- Number, Keyword, Identifier, ...

2. Write a R.E. for the lexemes of each token

- Number = digit ${ }^{+}$
- Keyword = 'if' | 'else' | ...
- Identifier = letter (letter | digit)*
- OpenPar = ‘(‘ \qquad
- ...

Regular Expressions => Lexical Spec. (2)

3. Construct R, matching all lexemes for all tokens

$$
\begin{aligned}
& \text { R = Keyword | Identifier | Number | } \\
& =R_{1} \quad\left|R_{2} \quad\right| R_{3} \mid \ldots
\end{aligned}
$$

Fact: If $s \in L(R)$ then s is a lexeme

- Furthermore $s \in L\left(R_{j}\right)$ for some " j "
- This " j " determines the token that is reported

Regular Expressions => Lexical Spec. (3)

4. Let the input be $x_{1} \ldots x_{n}$
($\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}$ are characters in the language alphabet Σ)

- For $1 \leq \mathrm{i} \leq \mathrm{n}$ check

$$
x_{1} \ldots x_{i} \in L(R) ?
$$

5. It must be that
$x_{1} \ldots x_{i} \in L\left(R_{j}\right)$ for some i and j
6. Remove $x_{1} \ldots x_{i}$ from input and go to step (4.)

Lexing Example

R = Whitespace | Integer | Identifier | '+' \qquad

- Parse " $f+3+g$ "
" f " matches R , more precisely Identifier \qquad
"+" matches R, more precisely ‘+’
- The token-lexeme pairs are (Identifier, " f "), (‘+', "+"), (Integer, " 3 ") (Whitespace, " "), (‘+’, "+"), (Identifier, " g ")
- We would like to drop the Whitespace tokens after matching Whitespace, continue matching

Ambiguities (1)

- There are ambiguities in the algorithm \qquad
- Example:

R = Whitespace | Integer | Identifier | '+' \qquad

- Parse "foo+3"
- " f " matches R, more precisely Identifier
- But also "fo" matches R, and "foo", but not "foo+"
- How much input is used? What if
- $x_{1} \ldots x_{i} \in L(R)$ and also $x_{1} \ldots x_{k} \in L(R)$
"Maximal munch" rule: Pick the longest possible substring that matches R
\qquad
\qquad
\qquad
\qquad

More Ambiguities

R = Whitespace | 'new' | Integer | Identifier

- Parse "new foo"
- "new" matches R, more precisely 'new'
- but also Identifier, which one do we pick?
- In general, if $x_{1} \ldots x_{i} \in L\left(R_{j}\right)$ and $x_{1} \ldots x_{i} \in$ $L\left(R_{k}\right)$
- Rule: use rule listed first (j if $\mathrm{j}<\mathrm{k}$)
- We must list 'new' before Identifier

Error Handling

R = Whitespace | Integer | Identifier | '+'

- Parse "=56"
- No prefix matches R: not "=", nor "=5", nor "=56" \qquad
- Problem: Can't just get stuck ...
- Solution:
- Add a rule matching all "bad" strings; and put it last
- Lexer tools allow the writing of:
$R=R_{1}|\ldots| R_{n} \mid$ Error \qquad
- Token Error matches if nothing else matches

Summary

- Regular expressions provide a concise \qquad notation for string patterns
- Use in lexical analysis requires small \qquad extensions
- To resolve ambiguities
- To handle errors
- Good algorithms known (next)
- Require only single pass over the input
- Few operations per character (table lookup)

Finite Automata

- Regular expressions = specification \qquad
- Finite automata = implementation
- A finite automaton consists of \qquad
- An input alphabet Σ
- A set of states S \qquad
- A start state n
- A set of accepting states $F \subseteq S$ \qquad
- A set of transitions state $\rightarrow{ }^{\text {input }}$ state

Finite Automata

- Transition

$$
\mathbf{s}_{1} \rightarrow^{\mathrm{a}} \mathbf{s}_{2}
$$

- Is read

In state s_{1} on input "a" go to state s_{2} \qquad

- If end of input (or no transition possible) \qquad
- If in accepting state \Rightarrow accept
- Otherwise \Rightarrow reject \qquad
\qquad

Finite Automata State Graphs \qquad

- A state \qquad
- The start state

\qquad
- An accepting state

- A transition

\qquad
\qquad

A Simple Example

- A finite automaton that accepts only "1"

- A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state

Another Simple Example

- A finite automaton accepting any number of 1 's followed by a single 0
- Alphabet $\Sigma=\{0,1\}$

- Check that "1110" is accepted but "110..." is not

And Another Example

- Alphabet $\Sigma=\{0,1\}$ \qquad
- What language does this recognize? \qquad

\qquad
\qquad
\qquad

And Another Example

- Alphabet still $\Sigma=\{0,1\}$
\qquad

- The operation of the automaton is not \qquad completely defined by the input
- On input "11" the automaton could be in either state
\qquad

Epsilon Moves

- Another kind of transition: ε-moves \qquad

\qquad
Machine can move from state A to state B \qquad without reading input
\qquad
\qquad
\qquad

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA) \qquad
- One transition per input per state
- No ε-moves
\qquad
- Nondeterministic Finite Automata (NFA)
- Can have multiple transitions for one input in a given state
- Can have ε-moves
- Finite automata have finite memory
\qquad
\qquad
- Need only to encode the current state

Execution of Finite Automata

- A DFA can take only one path through the state graph
- Completely determined by input
- NFAs can choose
- Whether to make ε-moves
- Which of multiple transitions for a single input to take

Acceptance of NFAs

- An NFA can get into multiple states \qquad

- Input: $\quad 1 \quad 0 \quad 1$
- Rule: NFA accepts if it can get in a final state \qquad
\qquad

NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of \qquad languages (regular languages)
- They have the same expressive power
- DFAs are easier to implement
- There are no choices to consider
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

NFA vs. DFA (2)

- For a given language the NFA can be simpler than the DFA

NFA

DFA

- DFA can be exponentially larger than NFA

Regular Expressions to Finite Automata

- High-level sketch

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA \qquad
Notation: NFA for rexp A
- For ε

\qquad
\qquad

- For input a

a

\qquad
\qquad
\qquad

Regular Expressions to NFA (2)

- For AB \qquad
\qquad
- For A \| B

\qquad
\qquad
\qquad
\qquad

Regular Expressions to NFA (3)

- For A*

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example of RegExp -> NFA conversion

- Consider the regular expression \qquad
$(1 \mid 0)^{* 1}$
- The NFA is

NFA to DFA: The Trick

- Simulate the NFA \qquad
- Each state of DFA
= a non-empty subset of states of the NFA \qquad
- Start state
$=$ the set of NFA states reachable through ε-moves from NFA start state
- Add a transition $S \rightarrow{ }^{a} S^{\prime}$ to DFA iff
- S' is the set of NFA states reachable from the states in S after seeing the input a
- considering ε-moves as well

NFA \rightarrow DFA Example \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

NFA \rightarrow DFA: Remark

- An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many non-empty subsets are there? - 2^{N} - 1 = finitely many

Implementation

- A DFA can be implemented by a 2D table T \qquad
- One dimension is "states"
- Other dimension is "input symbols"
- For every transition $S_{i} \rightarrow^{a} S_{k}$ define $T[i, a]=k$
- DFA "execution"
- If in state S_{i} and input a, read $T[i, a]=k$ and skip \qquad to state S_{k}
- Very efficient \qquad
\qquad

Table Implementation of a DFA \qquad

\qquad
\qquad
\qquad

	0	1
S	T	U
T	T	U
U	T	U

\qquad
\qquad

Implementation (Cont.)

- NFA \rightarrow DFA conversion is at the heart of \qquad tools such as flex or ocamllex
- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations

PA1: Lexical Analysis

- Correctness is job \#1. \qquad
- And job \#2 and \#3!
- Tips on building large systems: \qquad
- Keep it simple
- Design systems that can be tested \qquad
- Don't optimize prematurely
- It is easier to modify a working system than to \qquad get a system working

Homework

\qquad

- Thursday: Chapter 2.4-2.4.1
- 13 CD - 15 CD on the web \qquad
- Friday: PA1 due
- Next Tuesday: Chapters 2.3-2.3.2
\qquad
- Optional Wikipedia article

