Lexical Analysis

Finite Automata

(Part 1 of 2)

Cunning Plan

- Informal Sketch of Lexical Analysis
 - Identifies tokens from input string
 - lexer : (char list) \rightarrow (token list)
- Issues in Lexical Analysis
 - Lookahead
 - Ambiguity
- Specifying Lexers
 - Regular Expressions
 - Examples

One-Slide Summary

- <u>Lexical analysis</u> turns a stream of characters into a stream of tokens.
- Regular expressions are a way to specify sets of strings. We use them to describe tokens.

_			
_			
_			
_			
_			
_			
_			
_			
_			
-			
-			

Lexical Analysis

• What do we want to do? Example:

if (i == j) z = 0; else

- The input is just a sequence of characters: \tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;
- Goal: Partition input string into substrings
 And classify them according to their role

What's a Token?

- Output of lexical analysis is a list of tokens
- A token is a syntactic category
 - In English:

noun, verb, adjective, ...

- In a programming language: Identifier, Integer, Keyword, Whitespace, ...
- Parser relies on the token distinctions:
 - e.g., identifiers are treated differently than keywords

4	٢		۹	۰
		ı		,

Tokens

- Tokens correspond to sets of strings.
- Identifier: strings of letters or digits, starting with a letter
- Integer: a non-empty string of digits
- Keyword: "else" or "if" or "begin" or ...
- Whitespace: a non-empty sequence of blanks, newlines, and tabs
- OpenPar: a left-parenthesis

Lexical Analyzer: Implementation

- An implementation must do two things:
- 1. Recognize substrings corresponding to tokens
- 2. Return the value or lexeme of the token
 - The lexeme is the substring

Example

• Recall:

 $tif (i == j)\n\t = 0;\n\t = 1;$

- Token-lexeme pairs returned by the lexer:
 - (Whitespace, "\t")
 - (Keyword, "if")
 - (OpenPar, "(")
 - (Identifier, "i")
 - (Relation, "==")
 - (Identifier, "j")
 - ..

Lexical Analyzer: Implementation

- The lexer usually *discards* "uninteresting" tokens that don't contribute to parsing.
- Examples: Whitespace, Comments
- Question: What happens if we remove all whitespace and all comments *prior* to lexing?

Lookahead

- Two important points:
 - 1. The goal is to partition the string. This is implemented by reading left-to-right, recognizing one token at a time
 - 2. "Lookahead" may be required to decide where one token ends and the next token begins
 - Even our simple example has lookahead issues

i vs. if = vs. ==

Next We Need

- A way to describe the lexemes of each token
- A way to resolve ambiguities
 - Is if two variables i and f?
 - Is == two equal signs = =?

#40

Regular Languages

- There are several formalisms for specifying tokens
- Regular languages are the most popular
 - Simple and useful theory
 - Easy to understand
 - Efficient implementations

Languages

Def. Let Σ be a set of characters. A <u>language over Σ </u> is a set of strings of characters drawn from Σ

(Σ is called the <u>alphabet</u>)

Examples of Languages

- Alphabet = English characters
- Alphabet = ASCII
- Language = English sentences

- Language = C programs
- Not every string on English characters is an English sentence
- Note: ASCII character set is different from English character set

#15		
#122		

Notation

- · Languages are sets of strings
- Need some notation for specifying which sets we want
- For lexical analysis we care about *regular* languages, which can be described using *regular expressions*.

Regular Expressions and Regular Languages

- Each regular expression is a notation for a regular language (a set of words)
 - You'll see the exact notation in a minute!
- If A is a regular expression then we write L(A) to refer to the language denoted by A

Atomic Regular Expressions

- Single character: 'c' $L(\text{`c'}) = \{\text{ "c" }\} \quad \text{(for any } c \in \Sigma \text{)}$
- Concatenation: AB (where A and B are reg. exp.) $L(AB) = \{ ab \mid a \in L(A) \text{ and } b \in L(B) \}$
- Example: L('i' 'f') = { "if" } (we will abbreviate 'i' 'f' as 'if')

6

Compound Regular Expressions

• Union

```
L(A \mid B) = \{ s \mid s \in L(A) \text{ or } s \in L(B) \}
```

• Examples:

```
'if' | 'then' | 'else' = { "if", "then", "else"}
'0' | '1' | ... | '9' = { "0", "1", ..., "9" }
(note the ... are just an abbreviation)
```

• Another example:

```
('0' | '1') ('0' | '1') = { "00", "01", "10", "11" }
```

More Compound Regular Expressions

- So far we do not have a notation for infinite languages
- Iteration: A*

```
L(A^*) = \{ \text{"" } \} \cup L(A) \cup L(AA) \cup L(AAA) \cup ...
```

• Examples:

```
'0'* = { "", "0", "00", "000", ...}
'1' '0'* = { strings starting with 1, followed by 0's }
```

• Epsilon: ε

$$L(\varepsilon) = \{ "" \}$$

Example: Keyword

- Keyword: "else" or "if" or "begin" or ...

```
'else' | 'if' | 'begin' | ...
```

(Recall: 'else' abbreviates 'e' 'l' 's' 'e')

l

•			7	į
		ı	7	
	1	,		

Example: Integers

Integer: a non-empty string of digits

```
digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' 
number = digit digit*
```

Abbreviation: $A^+ = A A^*$

Example: Identifier

Identifier: strings of letters or digits, starting with a letter

letter = 'A' | ... | 'Z' | 'a' | ... | 'z' identifier = letter (letter | digit) *

Is (letter* | digit*) the same?

Example: Whitespace

Whitespace: a non-empty sequence of blanks, newlines, and tabs

(' ' | '\t' | '\n')+

(Can you spot a small mistake?)

...

		۲		
	١	١	4	Į
١		٦		١

Example: Phone Numbers

- Regular expressions are all around you!
- Consider (434) 924-1021

```
\Sigma = { 0, 1, 2, 3, ..., 9, (, ), - }

area = digit<sup>3</sup>

exchange = digit<sup>4</sup>

phone = digit<sup>4</sup>

number = '(' area ')' exchange '-' phone
```

Example: Email Addresses

• Consider weimer@cs.virginia.edu

```
\Sigma = letters \cup { ., @ }
name = letter<sup>+</sup>
address = name '@' name ('.' name)*
```

Summary

- Regular expressions describe many useful languages
- Next: Given a string s and a rexp R, is

$$s \in L(R)$$
?

- But a yes/no answer is not enough!
- Instead: partition the input into lexemes
- We will adapt regular expressions to this goal

Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions

 $RegExp \Rightarrow NFA \Rightarrow DFA \Rightarrow Tables$

Regular Expressions => Lexical Spec. (1)

- 1. Select a set of tokens
 - Number, Keyword, Identifier, ...
- 2. Write a R.E. for the lexemes of each token
 - Number = digit*
 - Keyword = 'if' | 'else' | ...
 - Identifier = letter (letter | digit)*
 - OpenPar = '('
 - ...

Regular Expressions => Lexical Spec. (2)

3. Construct R, matching all lexemes for all tokens

 $R = Keyword \mid Identifier \mid Number \mid ...$ = $R_1 \mid R_2 \mid R_3 \mid ...$

Fact: If $s \in L(R)$ then s is a lexeme

- Furthermore $s \in L(R_i)$ for some "j"
- This "j" determines the token that is reported

_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				

Regular Expressions => Lexical Spec. (3)

4. Let the input be $x_1...x_n$

 $(x_1 \dots x_n)$ are characters in the language alphabet Σ)

• For $1 \le i \le n$ check

$$x_1...x_i \in L(R)$$
?

5. It must be that

 $x_1...x_i \in L(R_i)$ for some i and j

6. Remove $x_1...x_i$ from input and go to step (4.)

Lexing Example

R = Whitespace | Integer | Identifier | '+'

- Parse "f +3 +g"
 - "f" matches R, more precisely Identifier
 - "+" matches R, more precisely '+'
 - .
 - The token-lexeme pairs are (Identifier, "f"), ('+', "+"), (Integer, "3") (Whitespace, " "), ('+', "+"), (Identifier, "g")
- We would like to drop the Whitespace tokens
 - after matching Whitespace, continue matching

Ambiguities (1)

- There are *ambiguities* in the algorithm
- · Example:

R = Whitespace | Integer | Identifier | '+'

- Parse "foo+3"
 - "f" matches R, more precisely Identifier
 - But also "fo" matches R, and "foo", but not "foo+"
- How much input is used? What if
 - $x_1...x_i \in L(R)$ and also $x_1...x_K \in L(R)$
 - "Maximal munch" rule: <u>Pick the longest possible</u> substring that matches R

_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
-			
-			
_			
_			

More Ambiguities

R = Whitespace | 'new' | Integer | Identifier

- Parse "new foo"
 - "new" matches R, more precisely 'new'
 - but also Identifier, which one do we pick?
- In general, if $x_1...x_i \in L(R_j)$ and $x_1...x_i \in L(R_k)$
 - Rule: use rule listed first (j if j < k)
- We must list 'new' before Identifier

Error Handling

R = Whitespace | Integer | Identifier | '+'

- Parse "=56"
 - No prefix matches R: not "=", nor "=5", nor "=56"
- Problem: Can't just get stuck ...
- Solution:
 - Add a rule matching all "bad" strings; and put it last
- Lexer tools allow the writing of:

 $R = R_1 \mid ... \mid R_n \mid Error$

- Token Error matches if nothing else matches

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)

#36

Finite Automata

- Regular expressions = specification
- Finite automata = implementation
- · A finite automaton consists of
 - An input alphabet Σ
 - A set of states \$
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions state \rightarrow^{input} state

Finite Automata

• Transition

 $s_1 \rightarrow^a s_2$

• Is read

In state s_1 on input "a" go to state s_2

- If end of input (or no transition possible)
 - If in accepting state \Rightarrow accept
 - Otherwise ⇒ reject

Finite Automata State Graphs

• A state

• The start state

• An accepting state

• A transition

A Simple Example

• A finite automaton that accepts only "1"

 A finite automaton <u>accepts</u> a string if we can follow transitions labeled with the characters in the string from the start to some accepting state

Another Simple Example

- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet $\Sigma = \{0,1\}$

Check that "1110" is accepted but "110..." is not

And Another Example

- Alphabet $\Sigma = \{0,1\}$
- What language does this recognize?

And Another Example

• Alphabet still $\Sigma = \{0, 1\}$

- The operation of the automaton is not completely defined by the input
 - On input "11" the automaton could be in either state

Epsilon Moves

• Another kind of transition: ϵ -moves

• Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ϵ -moves
- · Finite automata have finite memory
 - Need only to encode the current state

#45

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - Whether to make $\epsilon\text{-moves}$
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

• An NFA can get into multiple states

• Input: 1 0 1

• Rule: NFA accepts if it can get in a final state

NFA vs. DFA (1)

- NFAs and DFAs recognize the *same* set of languages (regular languages)
 - They have the same expressive power
- DFAs are easier to implement
 - There are no choices to consider

NFA vs. DFA (2)

• For a given language the NFA can be simpler than the DFA

NFA DI O O O

• DFA can be *exponentially* larger than NFA

Regular Expressions to Finite Automata

• High-level sketch

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp A

• For ϵ

• For input a

Regular Expressions to NFA (2)

• For A | B

Regular Expressions to NFA (3)

• For A*

Example of RegExp -> NFA conversion

- Consider the regular expression $(1 \mid 0)*1$
- The NFA is

NFA to DFA: The Trick

- Simulate the NFA
- · Each state of DFA
 - = a non-empty subset of states of the NFA
- Start state
 - = the set of NFA states reachable through $\epsilon\text{-moves}$ from NFA start state
- \bullet Add a transition S \rightarrow^a S' to DFA iff
 - S' is the set of NFA states reachable from the states in S after seeing the input a
 - \bullet considering $\epsilon\text{-moves}$ as well

NFA \rightarrow DFA Example $\begin{array}{c} \varepsilon \\ A & \varepsilon \\ B & \varepsilon \\ D & F \\ \hline C & B \\ \hline C & D \\ \hline C & E \\ \hline C & D \\ \hline C & E \\ \hline C & D \\ \hline C & E \\ \hline C & D \\ \hline C & E \\ \hline C & D \\ \hline C & E \\ \hline C & D \\ \hline C & E \\ \hline C & D \\ \hline C & E \\ \hline C & D \\ \hline C & E \\ \hline C & D \\ \hline C & E \\ \hline C & D \\ \hline C & E \\ \hline C & D \\ \hline C & E \\ \hline C & D \\ \hline C & E \\ \hline C & D \\ \hline C & E \\ \hline C & D \\ \hline C & E \\ \hline C & D \\ \hline C & E \\ \hline C & D \\ C & D \\ \hline C & D \\ C & D \\ \hline C & D \\ C$

NFA \rightarrow DFA: Remark

- An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many non-empty subsets are there?
 - 2^N 1 = finitely many

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbols"
 - For every transition $S_i \rightarrow^a S_k$ define T[i,a] = k
- DFA "execution"
 - If in state S_i and input a, read T[i,a] = k and skip to state S_k
 - Very efficient

Table Implementation of a DFA

	0	1
S	Т	U
Т	Т	U
U	Т	U

•			
•			
•			
•			
•			
•			
•			
•			
•			

Implementation (Cont.)

- NFA \rightarrow DFA conversion is at the heart of tools such as flex or ocamllex
- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations

PA1: Lexical Analysis

- Correctness is job #1.
 - And job #2 and #3!
- Tips on building large systems:
 - Keep it simple
 - Design systems that can be tested
 - Don't optimize prematurely
 - It is easier to modify a working system than to get a system working

Homework

- Thursday: Chapter 2.4 2.4.1
 13 CD 15 CD on the web
- Friday: PA1 due
- Next Tuesday: Chapters 2.3 2.3.2
 - Optional Wikipedia article