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LR ParsingLR Parsing

Table ConstructionTable Construction

#2

In One Slide

• An LR(1) parsing table can be constructed 
automatically from a CFG. An LR(1) item is a 
pair made up of a production and a 
lookahead token; it represents a possible 
parser context. After we extend LR(1) items 
by closing them they become LR(1) DFA 
states. Grammars can have shift/reduce or 
reduce/reduce conflicts. You can fix most 
conflicts with precedence and associativity
declarations. LALR(1) tables are formed from 
LR(1) tables by merging states with similar 
cores. 

#3

Outline

• Review of bottom-up parsing

• Computing the parsing DFA

– Closures, LR(1) Items, States

– Transitions

• Using parser generators

– Handling Conflicts
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#4

Bottom-up Parsing (Review)

• A bottom-up parser rewrites the input string 
to the start symbol 

• The state of the parser is described as 

αααα ◮ γγγγ

– αααα is a stack of terminals and non-terminals

– γγγγ is the string of terminals not yet examined

• Initially: ◮ x1x2 . . . xn

#5

Shift and Reduce Actions (Review)

• Recall the CFG: E →→→→ int | E + (E)

• A bottom-up parser uses two kinds of actions:

• Shift pushes a terminal from input on the stack

E + (◮◮◮◮ int )  ⇒⇒⇒⇒ E + (int ◮◮◮◮ )

• Reduce pops 0 or more symbols off of the stack 
(production RHS) and pushes a non-terminal on 
the stack (production LHS)

E + (E + ( E ) ◮◮◮◮ )  ⇒⇒⇒⇒ E +(E ◮◮◮◮ )

#6

Key Issue: 
When to Shift or Reduce?

• Idea: use a finite automaton (DFA) to decide 
when to shift or reduce

– The input is the stack

– The language consists of terminals and non-terminals

• We run the DFA on the stack and we examine the 
resulting state X and the token tok after ◮

– If X has a transition labeled tok then shift

– If X is labeled with “A →→→→ ββββ on tok” then reduce
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#7

LR(1) Parsing. An Example 
int

E → int
on $, +

accept 
on $

E → int
on ), +

E → E + (E)
on $, +

E → E + (E)
on ), +

(+

E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

◮ int + (int) + (int)$   shift

int ◮ + (int) + (int)$   E → int

E ◮ + (int) + (int)$    shift(x3)

E + (int ◮ ) + (int)$    E → int

E + (E ◮ ) + (int)$    shift

E + (E) ◮ + (int)$ E → E+(E)

E ◮ + (int)$ shift (x3)

E + (int ◮ )$            E → int

E + (E ◮ )$              shift

E + (E) ◮ $              E → E+(E)

E ◮ $                      accept

int

E

)

#8

End of review

#9

Key Issue: How is the DFA 
Constructed?

• The stack describes the context of the parse

– What non-terminal we are looking for

– What production rhs we are looking for

– What we have seen so far from the rhs
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#10

Parsing Contexts

• Consider the state:

– The stack is             E    +   ( ◮ int )  +  (     int )

• Context:

– We are looking for an E → E + ( • E )
• Have have seen E + ( from the right-hand side 

– We are also looking for E → • int or E→ • E + ( E )
• Have seen nothing from the right-hand side

• One DFA state describes several contexts 

E

int++int int( )()

Red dot = 
where we are.

#11

LR(1) Items

• An LR(1) item is a pair:

X →→→→ αααα••••ββββ, a
– X →→→→ αβαβαβαβ is a production

– a is a terminal (the lookahead terminal)

– LR(1) means 1 lookahead terminal

• [X → α•β, a] describes a context of the parser  
– We are trying to find an X followed by an a, and 

– We have αααα already on top of the stack

– Thus we need to see next a prefix derived from ββββa

#12

Note

• The symbol ◮ was used before to separate 

the stack from the rest of input
– αααα ◮◮◮◮ γγγγ, where αααα is the stack and γγγγ is the 

remaining string of terminals

• In LR(1) items •••• is used to mark a prefix of a 
production rhs:

X →→→→ αααα••••ββββ, a

– Here β might contain non-terminals as well

• In both case the stack is on the left
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#13

Convention

• We add to our grammar a fresh new start 
symbol S and a production S → E

– Where E is the old start symbol

– No need to do this if E had only one production

• The initial parsing context contains:

S →→→→ •••• E, $

– Trying to find an S as a string derived from E$

– The stack is empty

#14

LR(1) Items (Cont.)

• In context containing

E → E + • ( E ), +

– If ( follows then we can perform a shift to 
context containing

E → E + (• E ), +

• In context containing

E → E + ( E ) •, +

– We can perform a reduction with E → E + ( E )

– But only if a + follows

#15

LR(1) Items (Cont.)

• Consider a context with the item

E →→→→ E + (•••• E ) , +

• We expect next a string derived from E ) +

• There are two productions for E
E → int and  E → E + ( E)

• We describe this by extending the context  
with two more items:

E →→→→ •••• int, )

E →→→→ •••• E + ( E ) , )
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#16

The Closure Operation

• The operation of extending the context with 
items is called the closure operation

Closure(Items) =

repeat

for each [X →→→→ αααα••••Yββββ, a] in Items

for each production Y →→→→ γγγγ

for each b ∈∈∈∈ First(ββββa)

add [Y →→→→ ••••γγγγ, b] to Items

until Items is unchanged

#17

Constructing the Parsing DFA (1) 

• Construct the start context: 

Closure({S → •E, $}) = S →→→→ ••••E, $
E →→→→ ••••E+(E), $
E →→→→ ••••int, $
E →→→→ ••••E+(E), +
E →→→→ ••••int, +

S →→→→ ••••E, $
E →→→→ ••••E+(E), $/+
E →→→→ ••••int, $/+

• We abbreviate as:

#18

Constructing the Parsing DFA (2)

• An LR(1) DFA state is a closed set of LR(1) 
items
– This means that we performed Closure

• The start state contains [S →→→→ ••••E, $]

• A state that contains [X →→→→ αααα••••, b] is labeled 
with “reduce with X →→→→ αααα on b”

• And now the transitions …
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#19

The DFA Transitions

• A state “State” that contains [X →→→→ αααα••••yββββ, b]
has a transition labeled y to a state that 
contains the items “Transition(State, y)”

– y can be a terminal or a non-terminal

Transition(State, y) = 

Items ←←←← ∅∅∅∅

for each [X →→→→ αααα••••yββββ, b] ∈∈∈∈ State 

add [X →→→→ ααααy••••ββββ, b] to Items

return Closure(Items)

#20

LR(1) DFA Construction Example

E → E+• (E), $/+

E → int
on $, +

accept 
on $

E → E+(•E), $/+
E → •E+(E), )/+
E → •int, )/+

E → int•, )/+ E → int
on ), +

E → E+(E•), $/+
E → E•+(E), )/+

and so on…

S → •E, $
E → •E+(E), $/+
E → •int, $/+

0

3

4

56

E → int•, $/+
1

S → E•, $
E → E•+(E), $/+

2

int

E +
(

E

int

#21

LR Parsing Tables. Notes

• Parsing tables (= the DFA) can be 
constructed automatically for a CFG

– “The tables which cannot be constructed are 
constructed automatically in response to a CFG 
input. You asked for a miracle, Theo. I give you 
the L-R-1.” – Hans Gruber, Die Hard

• But we still need to understand the 
construction to work with parser generators

– e.g., they report errors in terms of sets of items

• What kind of errors can we expect?
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#22

Shift/Reduce Conflicts

• If a DFA state contains both

[X →→→→ αααα••••aββββ, b] and  [Y →→→→ γγγγ••••, a]

• Then on input “a” we could either

– Shift into state [X →→→→ ααααa••••ββββ, b], or

– Reduce with Y →→→→ γγγγ

• This is called a shift-reduce conflict

#23

Shift/Reduce Conflicts

• Typically due to ambiguities in the grammar

• Classic example: the dangling else
S →→→→ if E then S  |  if E then S else S  |  OTHER

• Will have DFA state containing
[S →→→→ if E then S••••, else]

[S →→→→ if E then S•••• else S, x]

• If else follows then we can shift or reduce

• Default (bison, CUP, etc.) is to shift

– Default behavior is as needed in this case

#24

More Shift/Reduce Conflicts

• Consider the ambiguous grammar

E →→→→ E + E | E * E | int

• We will have the states containing

[E →→→→ E * •••• E,  +] [E →→→→ E * E••••,    +]

[E →→→→ •••• E + E,  +]   ⇒⇒⇒⇒E [E →→→→ E •••• + E,  +]

… …

• Again we have a shift/reduce on input +

– We need to reduce (* binds more tightly than +)

– Solution: declare the precedence of * and +
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#25

More Shift/Reduce Conflicts

• In bison declare precedence and associativity:            
%left +%left +%left +%left +

%left *%left *%left *%left * // high precedence// high precedence// high precedence// high precedence

• Precedence of a rule = that of its last terminal
– See bison manual for ways to override this default

• Resolve shift/reduce conflict with a shift if:
– no precedence declared for either rule or terminal

– input terminal has higher precedence than the rule

– the precedences are the same and right associative

#26

Using Precedence 
to Solve S/R Conflicts

• Back to our example:

[E →→→→ E * •••• E,  +] [E →→→→ E * E••••,    +]

[E →→→→ •••• E + E,  +]   ⇒⇒⇒⇒E [E →→→→ E •••• + E,  +]

… …

• Will choose reduce on input + because 
precedence of rule E → E * E is higher 
than of terminal +

#27

Using Precedence 
to Solve S/R Conflicts

• Same grammar as before

E →→→→ E + E | E * E | int

• We will also have the states

[E →→→→ E + •••• E, +]   [E →→→→ E + E••••, +]

[E →→→→ •••• E + E, +]    ⇒⇒⇒⇒E [E →→→→ E •••• + E, +]

… …

• Now we also have a shift/reduce on input +
– We choose reduce because E →→→→ E + E and + have 
the same precedence and + is left-associative
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#28

Using Precedence to Solve S/R 
Conflicts

• Back to our dangling else example
[S →→→→ if E then S••••,             else]

[S →→→→ if E then S•••• else S,   x]

• Can eliminate conflict by declaring else with 
higher precedence than then
– Or just rely on the default shift action

• But this starts to look like “hacking the parser”

• Avoid overuse of precedence declarations or 
you’ll end with unexpected parse trees

– The kiss of death …

#29

Reduce/Reduce Conflicts

• If a DFA state contains both

[X →→→→ αααα••••, a] and  [Y →→→→ ββββ••••, a]

– Then on input “a” we don’t know which 
production to reduce

• This is called a reduce/reduce conflict

#30

Reduce/Reduce Conflicts

• Usually due to gross ambiguity in the 
grammar

• Example: a sequence of identifiers
S →→→→ εεεε |  id  |  id S

• There are two parse trees for the string id
S →→→→ id

S →→→→ id S →→→→ id   

• How does this confuse the parser?
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#31

More on Reduce/Reduce Conflicts

• Consider the states        [S →→→→ id ••••,     $]

[S’ →→→→ •••• S,     $]           [S →→→→ id •••• S,  
$]

[S →→→→ ••••,         $]        ⇒⇒⇒⇒id [S →→→→ ••••,         
$]

[S →→→→ •••• id,     $]         [S →→→→ •••• id,     $]

[S →→→→ •••• id S,  $]      [S →→→→ •••• id S,  
$]

• Reduce/reduce conflict on input $

S’ →→→→ S →→→→ id

#32

Using Parser Generators
• Parser generators construct the parsing DFA 
given a CFG

– Use precedence declarations and default 
conventions to resolve conflicts

– The parser algorithm is the same for all 
grammars (and is provided as a library function)

• But most parser generators do not construct 
the DFA as described before

– Why might that be?

#33

Using Parser Generators
• Parser generators construct the parsing DFA 
given a CFG

– Use precedence declarations and default 
conventions to resolve conflicts

– The parser algorithm is the same for all 
grammars (and is provided as a library function)

• But most parser generators do not construct 
the DFA as described before

– Because the LR(1) parsing DFA has 1000s of 
states even for a simple language
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#34

LR(1) Parsing Tables are Big

• But many states are similar, e.g.

and

• Idea: merge the DFA states whose items 
differ only in the lookahead tokens

– We say that such states have the same core

• We obtain

E → int
on $, +

E → int•, $/+ E → int•, )/+ E → int
on ), +

51

E → int
on $, +, )

E → int•, $/+/)

1’

#35

The Core of a Set of LR Items

• Definition: The core of a set of LR items is 
the set of first components

– Without the lookahead terminals

• Example: the core of 

{ [X →→→→ αααα••••ββββ, b], [Y →→→→ γγγγ••••δδδδ, d]}

is

{X →→→→ αααα••••ββββ, Y →→→→ γγγγ••••δδδδ}

#36

LALR States

• Consider for example the LR(1) states

{[X →→→→ αααα••••, a], [Y →→→→ ββββ••••, c]}

{[X →→→→ αααα••••, b], [Y →→→→ ββββ••••, d]}

• They have the same core and can be merged

• And the merged state contains:

{[X →→→→ αααα••••, a/b], [Y →→→→ ββββ••••, c/d]}

• These are called LALR(1) states 

– Stands for LookAhead LR

– Typically 10x fewer LALR(1) states than LR(1)
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#37

LALR(1) DFA

• Repeat until all states have distinct core

– Choose two distinct states with same core

– Merge the states by creating a new one with the 
union of all the items

– Point edges from predecessors to new state

– New state points to all the previous successors

A

ED

CB

F

A

BE

D

C

F

#38

Example LALR(1) to LR(1)

int

E → int
on $, +

E → int
on ), +

E → E + (E)
on $, +

E → E + (E)
on ), +

(+

E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

int

E

)

accept 
on $

int

E → int
on $, +, )

E → E + (E)
on $, +, )

(

E
int

0 1,5

2 3,8 4,9

6,107,11

+

+

)

E

accept 
on $

#39

The LALR Parser 
Can Have Conflicts

• Consider for example the LR(1) states

{[X →→→→ αααα••••, a], [Y →→→→ ββββ••••, b]}

{[X →→→→ αααα••••, b], [Y →→→→ ββββ••••, a]}

• And the merged LALR(1) state

{[X →→→→ αααα••••, a/b], [Y →→→→ ββββ••••, a/b]}

• Has a new reduce-reduce conflict

• In practice such cases are rare
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#40

LALR vs. LR Parsing

• LALR languages are not natural

– They are an efficiency hack on LR languages

• Any “reasonable” programming language 
has a LALR(1) grammar

• LALR(1) has become a standard for 
programming languages and for parser 
generators

#41

A Hierarchy of Grammar Classes

From Andrew Appel, 
“Modern Compiler 
Implementation in Java”

#42

Notes on Parsing

• Parsing

– A solid foundation: context-free grammars

– A simple parser: LL(1)

– A more powerful parser: LR(1)

– An efficiency hack: LALR(1)

– LALR(1) parser generators

• Now we move on to semantic analysis
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#43

Supplement to LR Parsing

Strange Reduce/Reduce Conflicts 
Due to LALR Conversion

(from the bison manual)

#44

Strange Reduce/Reduce Conflicts

• Consider the grammar
S → P R ,                 NL → N  |  N , NL

P → T  |  NL : T       R → T  | N : T

N → id                    T → id

• P    - parameters specification

• R    - result specification

• N   - a parameter or result name 

• T    - a type name

• NL - a list of names

#45

Strange Reduce/Reduce Conflicts

• In P an id is a

– N when followed by , or :

– T when followed by id

• In R an id is a

– N when followed by :

– T when followed by ,

• This is an LR(1) grammar.

• But it is not LALR(1). Why?

– For obscure reasons
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#46

A Few LR(1) States
P → • T            id

P → • NL : T     id

NL → • N           :

NL → • N , NL   :

N → • id            :

N → • id            ,

T → • id           id

1

R → • T             ,

R → • N : T       ,

T → • id            ,

N → • id           :

2

T → id  • id

N → id • :

N → id • ,

id

3

T → id  • ,

N → id • :
id

4

T → id  • id/,

N → id • :/,
LALR merge

LALR reduce/reduce 
conflict on “,”

#47

What Happened?

• Two distinct states were confused because 
they have the same core

• Fix: add dummy productions to distinguish 
the two confused states

• E.g., add

R → id bogus

– bogus is a terminal not used by the lexer

– This production will never be used during parsing

– But it distinguishes R from P

#48

A Few LR(1) States After Fix
P → • T            id

P → • NL : T     id

NL → • N           :

NL → • N , NL   :

N → • id            :

N → • id            ,

T → • id           id

R → . T             ,

R → . N : T       ,

R → . id bogus  ,

T → . id            ,

N → . id           :

T → id  • id

N → id • :

N → id • ,

T → id  • ,

N → id • :

R → id • bogus ,

id

id

1

2

3

4

Different cores ⇒ no LALR merging
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#49

Homework

• Today: WA2 Due

• Tuesday: Chapter 3.1 – 3.6

– Optional Wikipedia Article

• Next Friday: PA3 due

– Parsing!

• Tuesday Feb 27 – Midterm 1 in Class


