In One Slide

» An LR(1) parsing table can be constructed
automatically from a CFG. An LR(1) item is a
pair made up of a production and a
lookahead token; it represents a possible
parser context. After we extend LR(1) items
by closing them they become LR(1) DFA
states. Grammars can have shift/reduce or
reduce/reduce conflicts. You can fix most
conflicts with precedence and associativity
declarations. LALR(1) tables are formed from
LR(1) tables by merging states with similar
cores.

Outline

» Review of bottom-up parsing

» Computing the parsing DFA
- Closures, LR(1) Items, States
- Transitions

« Using parser generators
- Handling Conflicts

Bottom-up Parsing (Review)

» A bottom-up parser rewrites the input string
to the start symbol

» The state of the parser is described as
ary
- ais a stack of terminals and non-terminals
- v is the string of terminals not yet examined

o Initially: » x;x; . . . X

n

Shift and Reduce Actions (Review)

» Recall the CFG: E — int | E + (E)
» A bottom-up parser uses two kinds of actions:

« Shift pushes a terminal from input on the stack
E+(»int) = E+ (int»)

» Reduce pops 0 or more symbols off of the stack
(production RHS) and pushes a non-terminal on
the stack (production LHS)

E+(E+(E)») =E+(E»)

Key Issue:
When to Shift or Reduce?

« Idea: use a finite automaton (DFA) to decide
when to shift or reduce
- The input is the stack
- The language consists of terminals and non-terminals

* We run the DFA on the stack and we examine the
resulting state X and the token tok after »

- If X has a transition labeled tok then shift
- If X is labeled with “A — B on tok” then reduce

LR(1) Parsing. An Example

» int + (int) + (int)$ shift
int » + (int) + (int)$ E — int
E» + (int) + (int)S shift(x3)
E+(int»)+ (int)$ E — int
E+(E»)+ (int)s shift

E+ (E)» + (int)§ E — E+(E)

E» + (int)$ shift (x3)
E+ (int »)$ E - int
E+(E»)S shift
E+((E)»S E — E+(E)
E»$S accept

W0—~—-e-e-@

on),+

#7

End of review

Key Issue: How is the DFA
Constructed?

» The stack describes the context of the parse
- What non-terminal we are looking for
- What production rhs we are looking for
- What we have seen so far from the rhs

#9

Parsing Contexts

E
« Consider the state: /
inf + (int)+ (int)
|
- The stack is E + (»int)+ (int
o Context:

- We are looking foran E — E + (e E) Red dot =

« Have have seen E + (from the right-hand side
- We are also looking for E — e intorE — e E + (E)
« Have seen nothing from the right-hand side
« One DFA state describes several contexts

where we are.

LR(1) Items
e An LR(1) item is a pair:

X — aef, a
- X — of is a production
- ais a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal

o [X — o, a] describes a context of the parser
- We are trying to find an X followed by an a, and
- We have a already on top of the stack
- Thus we need to see next a prefix derived from Ba

Note

» The symbol » was used before to separate
the stack from the rest of input
- a» v, where a is the stack and y is the
remaining string of terminals

e In LR(1) items e is used to mark a prefix of a
production rhs:

X — aef, a
- Here B might contain non-terminals as well
« In both case the stack is on the left

Convention

» We add to our grammar a fresh new start
symbol S and a production S — E

- Where E is the old start symbol
- No need to do this if E had only one production

» The initial parsing context contains:
S—eE, S
- Trying to find an S as a string derived from ES
- The stack is empty

LR(1) Items (Cont.)

« In context containing
E—-E+e(E), +

- If (follows then we can perform a shift to
context containing

E—-E+(eE), +
* In context containing
E—SE+(E)e, +
- We can perform a reduction withE - E + (E)
- But only if a + follows

LR(1) Items (Cont.)

» Consider a context with the item
E—-E+(eE), +
» We expect next a string derived from E) +

» There are two productions for E
E—int and E—E+ (E)

» We describe this by extending the context
with two more items:

E— eint,)
E—eE+(E),)

The Closure Operation

» The operation of extending the context with
items is called the closure operation

Closure(ltems) =
repeat
for each [X — aeYp, a] in Items
for each production Y — y
for each b € First(pa)
add [Y — ey, b] to Items
until Items is unchanged

Constructing the Parsing DFA (1)

e Construct the start context:

Closure({S — eE, $}) = S > eE, $
E — oE+(E), $
E - eint, $
E — eE+(E), +
« We abbreviate as: E — eint, +
S 5 eE, $
E — oE+(E), $/+
E — eint, $/+

Constructing the Parsing DFA (2)
* An LR(1) DFA state is a closed set of LR(1)

items

- This means that we performed Closure

o The start state contains [S — eE, $]

« A state that contains [X — ae, b] is labeled
with “reduce with X — o on b”

e And now the transitions ...

The DFA Transitions

A state “State” that contains [X — aeyf, b]
has a transition labeled y to a state that
contains the items “Transition(State, y)”

- y can be a terminal or a non-terminal

Transition(State, y) =
Items < 0
for each [X — aeyp, b] € State

add [X — ayep, b] to Items
return Closure(ltems)

LR(1) DFA Construction Example

° y € $ o/'_ ELn
N E < inte, $/+

int on$.«
Eoein. 8
\e
S —Ee $ (
E — Ee+(E), $/+ E — E+(eE), $/+[4]
accept

E E — oE+(E),)/+
on$,//’////////// E — eint,)/+
@ E — E+(Ee), $/+ inf

E = Ee® eyt

on), +
and so on...

20 |

LR Parsing Tables. Notes

» Parsing tables (= the DFA) can be
constructed automatically for a CFG

- “The tables which cannot be constructed are
constructed automatically in response to a CFG
input. You asked for a miracle, Theo. | give you
the L-R-1.” - Hans Gruber, Die Hard

e But we still need to understand the
construction to work with parser generators
- e.g., they report errors in terms of sets of items
» What kind of errors can we expect?

Shift/Reduce Conflicts

« If a DFA state contains both
[X — aeaB, b] and [Y — ye, a]

» Then on input “a” we could either
- Shift into state [X — caep, b], or
- Reduce withY —» ¢

e This is called a shift-reduce conflict

Shift/Reduce Conflicts

» Typically due to ambiguities in the grammar
« Classic example: the dangling else
S—ifEthenS | ifEthenSelseS | OTHER
« Will have DFA state containing
[S — if E then Se, else]
[S — if E then Se else S, X]
« If else follows then we can shift or reduce
« Default (bison, CUP, etc.) is to shift
- Default behavior is as needed in this case

More Shift/Reduce Conflicts

 Consider the ambiguous grammar
E—-E+E|E*E]| int
» We will have the states containing
[E-E*eE, +] [E—E*Ee, +]
[E—>eE+E, +] =E[E—>Ee+E, +]

» Again we have a shift/reduce on input +
- We need to reduce (* binds more tightly than +)
- Solution: declare the precedence of * and +

More Shift/Reduce Conflicts

« In bison declare precedence and associativity:
%left +
%left * // high precedence

» Precedence of a rule = that of its last terminal
- See bison manual for ways to override this default

 Resolve shift/reduce conflict with a shift if:
- no precedence declared for either rule or terminal
- input terminal has higher precedence than the rule
- the precedences are the same and right associative

Using Precedence
to Solve S/R Conflicts

» Back to our example:
[E—->E*eE, +] [E—E*Ee, +]
[E—-eE+E, +] =»fF [E—SEe+E, +]

» Will choose reduce on input + because
precedence of rule E — E * E is higher
than of terminal +

Using Precedence
to Solve S/R Conflicts

» Same grammar as before
E—-E+E|E*E | int
» We will also have the states
[E—SE+eE, +] [E— E +Ee, +]
[E—eE+E, +] =F [E— Ee+E, +]

» Now we also have a shift/reduce on input +

- We choose reduce because E — E + E and + have
the same precedence and + is left-associative

Using Precedence to Solve S/R
Conflicts

» Back to our dangling else example

[S — if E then Se, else]

[S — if E then Se else S, x]
Can eliminate conflict by declaring else with
higher precedence than then
- Or just rely on the default shift action
But this starts to look like “hacking the parser”
Avoid overuse of precedence declarations or
you’ll end with unexpected parse trees
- The kiss of death ...

Reduce/Reduce Conflicts

« If a DFA state contains both
[X = ae, a] and [Y — e, a]
- Then on input “a” we don’t know which
production to reduce

 This is called a reduce/reduce conflict

Reduce/Reduce Conflicts

« Usually due to gross ambiguity in the
grammar

» Example: a sequence of identifiers
S—e | id | idS

» There are two parse trees for the string id
S— id
S— idS— id

» How does this confuse the parser?

10

More on Reduce/Reduce Conflicts

« Consider the states [S—ide, $]
[SS—eS, $] [S—ideS,
$]
[S—o, $] =id [S—oe,
$]
[S—eid, $] [S —eid, $]
[S—>eidS, $] [S—>eidS,
$]

 Reduce/reduce conflict on input $

Using Parser Generators

» Parser generators construct the parsing DFA
given a CFG

- Use precedence declarations and default
conventions to resolve conflicts

- The parser algorithm is the same for all
grammars (and is provided as a library function)
e But most parser generators do not construct
the DFA as described before
- Why might that be?

Using Parser Generators

» Parser generators construct the parsing DFA
given a CFG
- Use precedence declarations and default
conventions to resolve conflicts
- The parser algorithm is the same for all
grammars (and is provided as a library function)
e But most parser generators do not construct
the DFA as described before

- Because the LR(1) parsing DFA has 1000s of
states even for a simple language

11

LR(1) Parsing Tables are Big

» But many states are similar, e.g.

R E int " .
Evinte /4] 0"V angd LE—inte)/ fﬁ) int

« ldea: merge the DFA states whose items
differ only in the lookahead tokens
- We say that such states have the same core

e We obtain r
E — inte, $/+/)] £ 410,

The Core of a Set of LR Items

e Definition: The core of a set of LR items is
the set of first components
- Without the lookahead terminals

» Example: the core of
{ [X = aeB, b], [Y — ye5, d]}
is
{X = aeB, Y — ye8}

LALR States

 Consider for example the LR(1) states
{[X = ae, a], [Y — Be, c]}
{[X = ae, b], [Y — Be, d]}
» They have the same core and can be merged
» And the merged state contains:
{[X = ae, a/b], [Y — Be, c/d]}
» These are called LALR(1) states

- Stands for LookAhead LR
- Typically 10x fewer LALR(1) states than LR(1)

12

LALR(1) DFA

» Repeat until all states have distinct core
- Choose two distinct states with same core
- Merge the states by creating a new one with the
union of all the items
- Point edges from predecessors to new state
- New state points to all the previous successors

GGBG
© ®

Example LALR(1) to LR(1)

The LALR Parser
Can Have Conflicts
 Consider for example the LR(1) states
{[X = ae, al, [Y — Be, b]}
{[X = ae, b], [Y — Be, al}
» And the merged LALR(1) state
{[X = ae, a/b], [Y — Be, a/b]}
» Has a new reduce-reduce conflict

« In practice such cases are rare

13

LALR vs. LR Parsing

» LALR languages are not natural
- They are an efficiency hack on LR languages

» Any “reasonable” programming language
has a LALR(1) grammar

» LALR(1) has become a standard for
programming languages and for parser
generators

A Hierarchy of Grammar Classes

From Andrew Appel,
“Modern Compiler
Implementation in Java”

Notes on Parsing

« Parsing
- A solid foundation: context-free grammars
- A simple parser: LL(1)
- A more powerful parser: LR(1)
- An efficiency hack: LALR(1)
- LALR(1) parser generators

» Now we move on to semantic analysis

14

Supplement to LR Parsing

Strange Reduce/Reduce Conflicts
Due to LALR Conversion

(from the bison manual)

Strange Reduce/Reduce Conflicts

 Consider the grammar

S—PR, NL—N | N,NL
P—T | NL:T R—T |IN:T
N — id T—id

o P - parameters specification

« R - result specification

N - a parameter or result name
« T -atype name

« NL - a list of nhames

Strange Reduce/Reduce Conflicts

eInPanidisa

- N when followed by , or :

- T when followed by id
eInRanidisa

- N when followed by :

- T when followed by ,
 This is an LR(1) grammar.
» But it is not LALR(1). Why?

- For obscure reasons

15

A Few LR(1) States

PoeT id ||

PoeNL:T id T ide id J LALR reduce/reduce
NL 5 o N . /d, N> ide conflict on " /"
NL—>eN,NL : N-> ide

N> eid

N eid TS ide id,

T eid id LALR merge, No ide "

RoeT g JToide]
R>eN:T ,/Naido :

T—oeid
N> eid

What Happened?

» Two distinct states were confused because
they have the same core

« Fix: add dummy productions to distinguish
the two confused states

« E.g., add

R — id bogus

- bogus is a terminal not used by the lexer
- This production will never be used during parsing
- But it distinguishes R from P

A Few LR(1) States After Fix
PoeT id][]
PeNL:T id T ide id]]
NL > eN | id N> ide
NL —>eN,NL : /’Naido
N eid :
N-eid , Different cores = no LALR merging
Toeid id
Ro> T] Toide |
Ro>.N:T i j N ide :
R —>. id bogus , % R —id e bogus ,
To.id
N - .id

16

Homework

» Today: WA2 Due
» Tuesday: Chapter 3.1 - 3.6
- Optional Wikipedia Article
o Next Friday: PA3 due
- Parsing!
» Tuesday Feb 27 - Midterm 1 in Class

17

