

In One Slide

- An LR(1) parsing table can be constructed automatically from a CFG. An LR(1) item is a pair made up of a production and a lookahead token; it represents a possible parser context. After we extend LR(1) items by closing them they become LR(1) DFA states. Grammars can have shift/reduce or reduce/reduce conflicts. You can fix most conflicts with precedence and associativity declarations. LALR(1) tables are formed from LR(1) tables by merging states with similar cores.

Outline

- Review of bottom-up parsing \qquad
\qquad
- Computing the parsing DFA
- Closures, LR(1) Items, States \qquad
- Transitions
\qquad
- Using parser generators
- Handling Conflicts \qquad
\qquad

Bottom-up Parsing (Review)

- A bottom-up parser rewrites the input string to the start symbol
- The state of the parser is described as

$$
\alpha \triangleright \gamma
$$

- α is a stack of terminals and non-terminals
- γ is the string of terminals not yet examined \qquad
- Initially: $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}$ \qquad
\qquad

Shift and Reduce Actions (Review)

\qquad

- Recall the CFG: $\mathrm{E} \rightarrow$ int | $\mathrm{E}+(\mathrm{E})$ \qquad
- A bottom-up parser uses two kinds of actions:
- Shift pushes a terminal from input on the stack

$$
E+(\triangleright \text { int }) \Rightarrow E+(\text { int } \triangleright)
$$

- Reduce pops 0 or more symbols off of the stack (production RHS) and pushes a non-terminal on the stack (production LHS)

$$
E+(E+(E) \triangleright) \Rightarrow E+(E \triangleright)
$$

Key Issue:
 When to Shift or Reduce?

- Idea: use a finite automaton (DFA) to decide \qquad when to shift or reduce
- The input is the stack \qquad
The language consists of terminals and non-terminals
- We run the DFA on the stack and we examine the resulting state X and the token tok after
- If X has a transition labeled tok then shift
- If X is labeled with " $A \rightarrow \beta$ on tok" then reduce
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
End of review \qquad
\qquad
\qquad
\qquad
\qquad

Key Issue: How is the DFA Constructed?

- The stack describes the context of the parse
- What non-terminal we are looking for
- What production rhs we are looking for
- What we have seen so far from the rhs
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Parsing Contexts

- Consider the state:

- The stack is $E \quad+(\triangleright$ int $)+($ int $)$
- Context:
- We are looking for an $\mathrm{E} \rightarrow \mathrm{E}+$ ($\bullet \mathrm{E}$)

Red dot = where we are

- Have have seen $E+$ (from the right-hand side

We are also looking for $E \rightarrow \bullet$ int or $E \rightarrow \bullet E+(E)$

- Have seen nothing from the right-hand side
- One DFA state describes several contexts

LR(1) Items

- An LR(1) item is a pair:

$$
X \rightarrow \alpha \odot \beta, a
$$

$X \rightarrow \alpha \beta$ is a production

- a is a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal
- $[X \rightarrow \alpha \bullet \beta, a]$ describes a context of the parser
- We are trying to find an X followed by an a, and \qquad
We have α already on top of the stack
Thus we need to see next a prefix derived from β a

Note

- The symbol \downarrow was used before to separate the stack from the rest of input
$\alpha \triangleright \gamma$, where α is the stack and γ is the
remaining string of terminals
- In LR(1) items • is used to mark a prefix of a production rhs:

$$
X \rightarrow \alpha \bullet \beta, a
$$

- Here β might contain non-terminals as well
- In both case the stack is on the left

Convention

- We add to our grammar a fresh new start
\qquad symbol S and a production $\mathrm{S} \rightarrow \mathrm{E}$
- Where E is the old start symbol
- No need to do this if E had only one production
- The initial parsing context contains:

$$
S \rightarrow \bullet E, \$
$$

- Trying to find an S as a string derived from E \$ \qquad
- The stack is empty
\qquad

LR(1) Items (Cont.)

- In context containing \qquad
$E \rightarrow E+\bullet(E),+$
- If (follows then we can perform a shift to context containing

$$
\mathrm{E} \rightarrow \mathrm{E}+(\bullet \mathrm{E}),+
$$

- In context containing

$$
\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E}) \bullet,+
$$

- We can perform a reduction with $\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$
- But only if a + follows

LR(1) Items (Cont.)

\qquad

- Consider a context with the item \qquad

$$
E \rightarrow E+(\bullet E),+
$$

- We expect next a string derived from E) +
- There are two productions for E
\qquad

$$
\mathrm{E} \rightarrow \text { int } \text { and } \mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})
$$

- We describe this by extending the context \qquad with two more items:

$$
\begin{aligned}
& E \rightarrow \bullet \text { int, } \\
& E \rightarrow \bullet E+(E),)
\end{aligned}
$$

The Closure Operation

- The operation of extending the context with items is called the closure operation

Closure(Items) $=$
repeat
for each [$X \rightarrow \alpha \odot Y \beta, a]$ in Items for each production $Y \rightarrow \gamma$
for each $b \in \operatorname{First}(\beta a)$
add [$\mathrm{Y} \rightarrow \odot \gamma, \mathrm{b}$] to Items
until Items is unchanged
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Constructing the Parsing DFA (1)

- Construct the start context: \qquad
Closure $(\{S \rightarrow \bullet E, \$\})=\quad S \rightarrow \bullet E, \$$ $E \rightarrow \bullet E+(E), \$$ $E \rightarrow$ oint, \$
$E \rightarrow \bullet E+(E),+$
$E \rightarrow$-int, +
- We abbreviate as:
\qquad
\qquad
\qquad
$S \rightarrow \bullet E, \$$
$E \rightarrow \bullet E+(E), \$ /+$
$E \rightarrow$ oint, $\$ /+$ \qquad
\qquad

Constructing the Parsing DFA (2)

- An LR(1) DFA state is a closed set of LR(1) \qquad items
- This means that we performed Closure
- The start state contains [S $\rightarrow \bullet$ E, \$] \qquad
- A state that contains [X $\rightarrow \alpha \bullet, \mathrm{b}$] is labeled \qquad with "reduce with $\mathrm{X} \rightarrow \alpha$ on b "
- And now the transitions ...

The DFA Transitions

- A state "State" that contains [X $\rightarrow \alpha \otimes y \beta$, b] has a transition labeled y to a state that contains the items "Transition(State, y)" \qquad - y can be a terminal or a non-terminal

Transition(State, $\mathbf{y})=$
Items $\leftarrow \emptyset$
for each $[X \rightarrow \alpha \bullet y \beta, b] \in$ State add $[\mathrm{X} \rightarrow \alpha \mathrm{y} \bullet \beta, \mathrm{b}$] to Items return Closure(Items)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

LR Parsing Tables. Notes

- Parsing tables (= the DFA) can be \qquad constructed automatically for a CFG
- "The tables which cannot be constructed are constructed automatically in response to a CFG input. You asked for a miracle, Theo. I give you \qquad the L-R-1." - Hans Gruber, Die Hard
- But we still need to understand the construction to work with parser generators
- e.g., they report errors in terms of sets of items \qquad
- What kind of errors can we expect?

Shift/Reduce Conflicts

- If a DFA state contains both $\left[\mathrm{X} \rightarrow \alpha \bullet a \beta\right.$, b] and $\left[\mathrm{Y} \rightarrow \gamma_{\bullet}, \mathrm{a}\right]$
- Then on input "a" we could either \qquad
- Shift into state [$\mathrm{X} \rightarrow \alpha \mathrm{a} \bullet \beta$, b], or
- Reduce with $\mathrm{Y} \rightarrow \gamma$
- This is called a shift-reduce conflict \qquad

Shift/Reduce Conflicts

- Typically due to ambiguities in the grammar \qquad
- Classic example: the dangling else
$S \rightarrow$ if E then S | if E then S else S | OTHER
- Will have DFA state containing

$$
\left[S \rightarrow \text { if } E \text { then } S_{\bullet}, \quad \text { else }\right]
$$

[$S \rightarrow$ if E then S॰ else $S, \quad x$] \qquad

- If else follows then we can shift or reduce
- Default (bison, CUP, etc.) is to shift \qquad
- Default behavior is as needed in this case

More Shift/Reduce Conflicts

- Consider the ambiguous grammar \qquad
$E \rightarrow E+E|E * E|$ int
- We will have the states containing
\qquad
$[\mathrm{E} \rightarrow \mathrm{E} * \bullet \mathrm{E},+] \quad[\mathrm{E} \rightarrow \mathrm{E}$ * $\mathrm{E} \bullet$, +]
$[\mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{E},+] \Rightarrow{ }^{\mathrm{E}}[\mathrm{E} \rightarrow \mathrm{E} \bullet+\mathrm{E},+]$
- Again we have a shift/reduce on input +
- We need to reduce (* binds more tightly than +)
- Solution: declare the precedence of * and +
\qquad

More Shift/Reduce Conflicts

- In bison declare precedence and associativity: \%1eft +
\%left * // high precedence
- Precedence of a rule = that of its last terminal - See bison manual for ways to override this default
- Resolve shift/reduce conflict with a shift if:
- no precedence declared for either rule or terminal - input terminal has higher precedence than the rule the precedences are the same and right associative
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Using Precedence
 to Solve S/R Conflicts

- Back to our example:

$$
\begin{aligned}
& {[\mathrm{E} \rightarrow \mathrm{E} \bullet \mathrm{E},+] \quad[\mathrm{E} \rightarrow \mathrm{E} \text { * } \mathrm{E} \bullet, \quad+]} \\
& {[\mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{E},+] \Rightarrow^{\mathrm{E}} \quad[\mathrm{E} \rightarrow \mathrm{E} \bullet+\mathrm{E},+]}
\end{aligned}
$$

- Will choose reduce on input + because precedence of rule $E \rightarrow E$ * E is higher than of terminal +

Using Precedence
 to Solve S/R Conflicts

- Same grammar as before

$$
E \rightarrow E+E|E * E| \text { int }
$$

- We will also have the states

$$
\begin{aligned}
& {[E \rightarrow E+\bullet E,+]} \\
& {\left[\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}_{\bullet},+\right]} \\
& {[E \rightarrow \bullet E+E,+] \quad \Rightarrow^{E} \quad[E \rightarrow E \bullet+E,+]}
\end{aligned}
$$

- Now we also have a shift/reduce on input +
- We choose reduce because $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$ and + have the same precedence and + is left-associative

Using Precedence to Solve S/R Conflicts

- Back to our dangling else example

$$
\left[S \rightarrow \text { if } E \text { then } S_{\bullet}, \quad \text { else }\right]
$$

[$S \rightarrow$ if E then S॰ else S, x] \qquad

- Can eliminate conflict by declaring else with
higher precedence than then \qquad
Or just rely on the default shift action
- But this starts to look like "hacking the parser" \qquad
- Avoid overuse of precedence declarations or you'll end with unexpected parse trees \qquad
The kiss of death ...

Reduce/Reduce Conflicts

- If a DFA state contains both

$$
[\mathrm{X} \rightarrow \alpha \bullet, \mathrm{a}] \text { and }[\mathrm{Y} \rightarrow \beta \bullet, \mathrm{a}]
$$

- Then on input "a" we don't know which production to reduce
- This is called a reduce/reduce conflict \qquad
\qquad
\qquad

Reduce/Reduce Conflicts

- Usually due to gross ambiguity in the \qquad grammar
- Example: a sequence of identifiers \qquad
$S \rightarrow \varepsilon \mid$ id \| id S
- There are two parse trees for the string id
$S \rightarrow$ id
$S \rightarrow$ id $S \rightarrow$ id
- How does this confuse the parser?

More on Reduce/Reduce Conflicts

\qquad

- Consider the states
$\left[S^{\prime} \rightarrow \bullet S, \quad \$\right]$ \$]
$[S \rightarrow \bullet, \quad \$] \quad \Rightarrow^{\text {id }} \quad[S \rightarrow \bullet$, \$]
$[S \rightarrow \bullet$ id, $\$]$
[$\mathrm{S} \rightarrow \bullet$ id $\mathrm{S}, \$]$
\$]
- Reduce/reduce conflict on input \$

Using Parser Generators

- Parser generators construct the parsing DFA given a CFG
- Use precedence declarations and default conventions to resolve conflicts
- The parser algorithm is the same for all grammars (and is provided as a library function)
- But most parser generators do not construct the DFA as described before
- Why might that be?

Using Parser Generators

- Parser generators construct the parsing DFA given a CFG
- Use precedence declarations and default conventions to resolve conflicts
- The parser algorithm is the same for all grammars (and is provided as a library function)
- But most parser generators do not construct the DFA as described before
- Because the LR(1) parsing DFA has 1000s of states even for a simple language
\qquad

LR(1) Parsing Tables are Big

- But many states are similar, e.g.
- Idea: merge the DFA states whose items differ only in the lookahead tokens
- We say that such states have the same core
- We obtain $\begin{aligned} & 1 \sqrt{1} \\ &E \rightarrow \text { into, } \$ /+/) \\ &\left.\begin{array}{ll}E \rightarrow \text { int } \\ \text { on } \$,+,\end{array}\right)\end{aligned}$

The Core of a Set of LR Items

- Definition: The core of a set of LR items is the set of first components
- Without the lookahead terminals
- Example: the core of

$$
\{[X \rightarrow \alpha \bullet \beta, b],[Y \rightarrow \gamma \diamond \delta, d]\}
$$

\qquad
is

$$
\{X \rightarrow \alpha \bullet \beta, Y \rightarrow \gamma \diamond \delta\}
$$

\qquad
\qquad

LALR States

- Consider for example the LR(1) states
$\left\{\left[X \rightarrow \alpha_{0}, a\right],\left[Y \rightarrow \beta_{\bullet}, c\right]\right\}$
$\{[X \rightarrow \alpha \bullet, b],[Y \rightarrow \beta \bullet, d]\}$
- They have the same core and can be merged
- And the merged state contains:

$$
\left\{\left[X \rightarrow \alpha_{\bullet}, a / b\right],[Y \rightarrow \beta \bullet, c / d]\right\}
$$

- These are called LALR(1) states
- Stands for LookAhead LR
- Typically 10x fewer LALR(1) states than LR(1)
\qquad
\qquad 435

LALR(1) DFA

Repeat until all states have distinct core
\qquad

- Choose two distinct states with same core
- Merge the states by creating a new one with the union of all the items
- Point edges from predecessors to new state
- New state points to all the previous successors
(A) - (B) \longrightarrow (C)
(D)—(E)—(
(A) (C)
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The LALR Parser
 Can Have Conflicts

- Consider for example the $\operatorname{LR}(1)$ states \qquad

$$
\begin{aligned}
& \left\{\left[X \rightarrow \alpha_{\bullet}, a\right],[Y \rightarrow \beta \bullet, b]\right\} \\
& \left\{\left[X \rightarrow \alpha_{\bullet}, b\right],\left[Y \rightarrow \beta_{\bullet}, a\right]\right\}
\end{aligned}
$$

- And the merged $\operatorname{LALR}(1)$ state \qquad

$$
\{[X \rightarrow \alpha \bullet, a / b],[Y \rightarrow \beta \bullet, a / b]\}
$$

- Has a new reduce-reduce conflict
- In practice such cases are rare
\qquad
\qquad
\qquad

LALR vs. LR Parsing

- LALR languages are not natural
\qquad
- They are an efficiency hack on LR languages
- Any "reasonable" programming language \qquad has a LALR(1) grammar
- LALR(1) has become a standard for programming languages and for parser generators

A Hierarchy of Grammar Classes

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes on Parsing

\qquad

- Parsing
- A solid foundation: context-free grammars
- A simple parser: LL(1) \qquad
- A more powerful parser: LR(1)
- An efficiency hack: LALR(1)
- LALR(1) parser generators
- Now we move on to semantic analysis
\qquad
\qquad
\qquad
\qquad

Supplement to LR Parsing

Strange Reduce/Reduce Conflicts Due to LALR Conversion (from the bison manual)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Strange Reduce/Reduce Conflicts

\qquad

- Consider the grammar \qquad
$S \rightarrow P R, \quad N L \rightarrow N \mid N, N L$
$\mathrm{P} \rightarrow \mathrm{T}|\mathrm{NL}: \mathrm{T} \quad \mathrm{R} \rightarrow \mathrm{T}| \mathrm{N}: \mathrm{T}$
$\mathrm{N} \rightarrow$ id $\quad \mathrm{T} \rightarrow$ id
- P - parameters specification
- R - result specification \qquad
- N - a parameter or result name
- T - a type name \qquad
- NL - a list of names
\qquad

Strange Reduce/Reduce Conflicts

\qquad

- In P an id is a \qquad
- N when followed by, or :

T when followed by id
\qquad

- In R an id is a
- N when followed by :

T when followed by ,

- This is an $\operatorname{LR}(1)$ grammar.
- But it is not $\operatorname{LALR}(1)$. Why? \qquad
- For obscure reasons

A Few LR(1) States

What Happened?

- Two distinct states were confused because \qquad they have the same core
- Fix: add dummy productions to distinguish the two confused states
- E.g., add

$$
\mathrm{R} \rightarrow \text { id bogus }
$$

\qquad

- bogus is a terminal not used by the lexer
- This production will never be used during parsing \qquad But it distinguishes R from P

A Few LR(1) States After Fix

\qquad

Homework
- Today: WA2 Due
- Tuesday: Chapter 3.1-3.6
- Optional Wikipedia Article
- Next Friday: PA3 due
- Parsing!
- Tuesday Feb 27 - Midterm 1 in Class

