Error Deleting, File or Folder

https:/ /horizon.ouac.on.ca

P
P The ‘Mailing Adcress' you entered is ot in the |
3 expacted fonmat.

Suggested Format: 18 Redweod Ave
Current Formar: 18 Redwood Ave

Q Cannot delete FisFicker: There is not enough free disk space.

Delete one or more fies to free disk space, and then try agin

If you wsh to use the suggested version click "0K"
otherwize cl ck “Lancel” 10 Use your ariginal wersion.

(caned) £ oKk)

NO! - Bad Userill

E You've been warned 3 times that this file does not exist.

f I Mow you've made us catch this worthless exception and we're upset,

Do nok do this again.

One-Slide Summary

» Real-world programs must have error-
handling code. Errors can be handled where
they are detected or the error can be
propagated to a caller.

« Passing special error return codes is itself
error-prone.

» Exceptions are a formal and automated way
of reporting and handling errors. Exceptions
can be implemented efficiently and
described formally.

Language System Structure
» We looked at each stage

[l

in turn

iy
I » A new language feature

affects many stages

» We will add exceptions

Runtime System

Lecture Summary
» Why exceptions ?
« Syntax and informal semantics
» Semantic analysis (i.e. type checking rules)
 Operational semantics

» Code generation

» Runtime system support

Exceptional Motivation

» “Classroom” programs are written with optimistic
assumptions

» Real-world programs must consider “exceptional”
situations:

- Resource exhaustion (disk full, out of memory, network
packet collision, ...)

- Invalid input
- Errors in the program (null pointer dereference)

« It is usual for code to contain 1-5% error handling
code (figures for modern Java open source code)
- With 3-46% of the program text transitively reachable

Approaches To Error Handling

Two ways of dealing with errors:

1. Handle them where you detect them
« e.g., null pointer dereference — stop execution

2. Let the caller handle the errors:
e The caller has more contextual information
e.g. an error when opening a file:
a) In the context of opening /etc/passwd
b) In the context of opening a log file
o But we must tell the caller about the error!

Error Return Codes

» The callee can signal the error by returning a
special return value or error code:
- Must not be one of the valid inputs
- Must be agreed upon beforehand (i.e., in API)

» The caller promises to check the error return
and either:
- Correct the error, or
- Pass it on to its own caller

#7

Error Return Codes

e It is sometimes hard to select return codes

- What is a good error code for:
« divide(num: Double, denom: Double) : Double { ... }

« How many of you always check errors for:
- malloc(int) ?
- open(char *) ?
- close(int) ?
- time(struct time_t *) ?
« Easy to forget to check error return codes

Example:

Automated Grade Assignment
float getGrade(int sid) { return dbget(gradesdb, sid); }

void setGrade(int sid, float grade) { dbset(gradesdb, sid,
grade); }

void extraCredit(int sid) {
setGrade(sid, 0.33 + getGrade(sid));

}

void grade_inflator() {
while(gpa() < 3.0) { extraCredit(random()); }
}

» What errors are we ignoring here?

#9

Example: Automated Grade

ASS]gnment A lot of extra
float getGrade(int sid) { code
float res; int err = dbget(gradesdb, sid, &res);
if(err < 0) { return -1.0;3 £
return res;

Some functions
change their type

3

int extraCredit(int si
int err; flo
if(g < 0.0) { return 15
err = setGrade(sid,
return (err < 0);

Error codes are
sometimes arbitrary

Exceptions

» Exceptions are a language mechanism
designed to allow:
- Deferral of error handling to a caller

- Without (explicit) error codes

- And without (explicit) error return code checking

Adding Exceptions to Cool

» We extend the language of expressions:
e:=throwe | tryecatchx: T=¢€’

« (Informal) semantics of throw e
- Signals an exception

- Interrupts the current evaluation and searches
for an exception handler up the activation tree

- The value of e is an exception parameter and
can be used to communicate details about the
exception

Adding Exceptions to Cool

(Informal) semantics of try e catch x : T = e,
1. e is evaluated first
2. If e’s evaluation terminates normally with v
then v is the result of the entire expression
Else (e’s evaluation terminates exceptionally)

If the exception parameter is of type < T then
Evaluate e, with x bound to the exception parameter
The (normal or exceptional) result of ev
aluating e, becomes the result of the entire expression
Else
The entire expression terminates exceptionally

Example:

Automated Grade Assignment
float getGrade(int sid) { return dbget(gradesdb, sid); }

void setGrade(int sid, float grade) {
if(grade < 0.0 || grade > 4.0) { throw (new NaG); }
dbset(gradesdb, sid, grade); }

void extraCredit(int sid) {
setGrade(sid, 0.33 + getGrade(sid)) }

void grade_inflator() {
while(gpa < 3.0) {
try extraCredit(random())
catch x : Object = print “Nice try! Don’t give up.\n”; }

3

Example Notes

 Only error handling code remains
 But no error propagation code
- The compiler handles the error propagation
- No way to forget about it
- And also much more efficient (we’ll see)
» Two kinds of evaluation outcomes:
- Normal return (with a return value)

- Exceptional “return” (with an exception
parameter)

- No way to get confused which is which

Overview
v'"Why exceptions ?
v'Syntax and informal semantics
» Semantic analysis (i.e. type checking rules)
 Operational semantics
» Code generation

» Runtime system support

Typing Exceptions

» We must extend the Cool typing judgment
OOMCte:T
- Type T refers to the normal return!

o We’'ll start with the rule for try:
- Parameter “x” is bound in the catch expression
- try is like a conditional
O,M,Cte:T, O[T/x], M\,CHe’:T,
O,M,Chktryecatchx: T=¢e :T,UT,

Typing Exceptions

What is the type of “throw e” ?
The type of an expression:

- Is a description of the possible return values, and

- Is used to decide in what contexts we can use the
expression

» “throw” does not return to its immediate
context but directly to the exception handler!
» The same “throw e” is valid in any context:
if throw e then (throw e) + 1 else (throw e).foo()
« As if “throw e” has any type!

Typing Exceptions

O,M,Cle:T,
O,M,Ct+throwe: T,

» As long as “e” is well typed, “throw e” is
well typed with any type needed in the
context

« This is convenient because we want to be
able to signal errors from any context

Overview
v'"Why exceptions ?
v'Syntax and informal semantics
v'Semantic analysis (i.e. type checking rules)
 Operational semantics
» Code generation

» Runtime system support

Operational Semantics of
Exceptions
« Several ways to model the behavior of
exceptions
A generalized value is
- Either a normal termination value, or
- An exception with a parameter value
g ::= Norm(v) | Exc(v)
» Thus given a generalized value we can:
- Tell if it is normal or exceptional return, and

- Extract the return value or the exception
parameter

Operational Semantics of
Exceptions (1)

» The existing rules are modified to use

Norm(v) :
so, E, S+ e, : Norm(Int(n,)), S,
so, E, S; F e, : Norm(Int(n,)), S,

so, E, S+ e; + e, : Norm(Int(n; + n,)), S,

E(id) = I,
S(lg) = Vv

so, E, Sk id : Norm(v), S

so, E, S+ self : Norm(so), S

22|

Operational Semantics of
Exceptions (2)
» “throw” returns exceptionally:

so,E,Ste:v,S;
so, E, S throw e : Exc(v), S

e The rule above is not well formed! Why?

Operational Semantics of
Exceptions (3)
» “throw e” returns exceptionally:
so, E, St e : Norm(v), S;
so, E, S throw e : Exc(v), S,

» What if the evaluation of e itself throws an
exception?
o E.g. “throw (1 + (throw 2))” is like “throw 2”
« Formally:

so, E, St e: Exc(v), S;
so, E, S throw e : Exc(v), S

Operational Semantics of
Exceptions (4)
« All existing rules are changed to propagate
the exception:
so, E, St e, : Exc(v), S,
so, E,Ske, +e,: Exc(v), S,

« Note: the evaluation of e, is aborted

so, E, S+ e, : Norm(Int(n,)), S,
so, E, S; ke, : Exc(v), S,
so, E,Ske; +e,: Exc(v), S,

Operational Semantics of
Exceptions (5)
» The rules for “try” expressions:
- Multiple rules (just like for a conditional)

so, E, Sk e : Norm(v), S;
so, E,Sktryecatchx : T= e’ : Norm(v), S,

« What if e terminates exceptionally?

* We must check whether it terminates with an
exception parameter of type T or not

Operational Semantics for
Exceptions (6)

« If e does not throw the expected exception
so, E, Sk e : Exc(v), S,
v = X(...)
not (X <T)
so, E, Sk tryecatchx : T = e’ : Exc(v), S;

« If e does throw the expected exception
so, E, Sk e : Exc(v), S,
v = X(...)
X<T
lhew = Newloc(S;)
50, E[l en/X] , Si[V/l el F € 1 G, S,
so, E,Sktryecatchx: T=¢e’:g,S,

Operational Semantics of
Exceptions. Notes

» Our semantics is precise
» But is not very clean

- It has two or more versions of each original rule
« It is not a good recipe for implementation

- It models exceptions as “compiler-inserted
propagation of error return codes”

- There are much better ways of implementing
exceptions
» There are other semantics that are cleaner
and model better implementations

Overview
v'"Why exceptions ?
v'Syntax and informal semantics
v'Semantic analysis (i.e. type checking rules)
v'Operational semantics

» Code generation

» Runtime system support

Code Generation for Exceptions

One method is suggested by the operational

semantics

« Simple to implement

» But not very good

- We pay a cost at each call/return (i.e. often)

- Even though exceptions are rare (i.e. exceptional)

A good engineering principle:

- Don’t pay often for something that you use rarely!
« What is Amdahl’s Law?

- Optimize the common case!

10

Long Jumps

« A long jump is a non-local goto:

- In one shot you can jump back to a function in the caller
chain (bypassing many intermediate frames)

- A long jump can “return” from many frames at once

» Long jumps are a commonly used implementation
scheme for exceptions
- Take a compilers class for details

« Disadvantage:
- (Minor) performance penalty at each try

#31]
Implementing Exceptions with
Tables (1)
» We do not want to pay for exceptions when
executing a “try”
- Only when executing a “throw”
cgen(try e catch e’) =
cgen(e) : Code for the try block
goto end_try
L_catch:
cgen(e’) ; Code for the catch block
end_try:
cgenz'.rhrow) =
Jjr runtime_throw : <- this is the trick!
#32]

Implementing Exceptions with
Tables (2)

» The normal execution proceeds at full speed

e When a throw is executed we use a runtime
function that finds the right catch block

» For this to be possible the compiler produces
a table saying for each catch block to which
instructions it corresponds

11

Implementing Exceptions with
Tables. Notes

 runtime_throw looks at the table and figures
which catch handler to invoke

» Advantage:
- No cost, except if an exception is thrown
» Disadvantage:
- Tables take space (even 30% of binary size)
- But at least they can be placed out of the way

« Java Virtual Machine uses this scheme

try ... finally ...

» Another exception-related construct:
try e, finally e,
- After the evaluation of e, terminates (either
normally or exceptionally) it evaluates e,
- The whole expression then terminates like e,

» Used for cleanup code:
try
f = fopen(“treasure.directions”, “w”);
... compute ... fprintf(f, “Go %d paces to the west”, paces); ...
finally
fclose(f)

Try-Finally Semantics

» Typing rule:
O,M,Cle :T, O,M,Chke,:T,
O,M,Cktrye,finallye,: T,
» Operational semantics:
so, E, Sk e, : Norm(v), S,
so, E,S;+Fe, 19,5,
so, E, Sk try e, finallye,: g, S,

so, E, S+ e, : Exc(v,), S,
so, E, S; ke, : Norm(v,), S,
so, E, St try e, finally e, : Exc(v,), S,

12

Psycho Corner Case

» Operational Semantics

so, E, S+ e, : Exc(v,), S,
so, E, S; ke, : Exc(v,), S,
so, E, Sk try e, finally e, : 222, S,

« Difficulty in understanding try-finally is one
reason why Java programmers tend to make
at least 200 exception handling mistakes per
million lines of code

14.20.2 Execution of try-catch-finally

A tlr"y statement with a finally block is executed by first executing the try block. Then there is
a choice:

If execution of the try block completes normally, then the finally block is executed, and then
there is a choice:
If the finally block completes normally, then the try statement completes normally.
If the finally block completes abruptly for reason S, then the try statement completes abruptly for
reason S.
If execution of the try block completes abruptly because of a throw of a value V, then there
is a choice:

- If the run-time type of V is assignable to the parameter of any catch clause of the try statement, then
the first (leftmost) such catch clause is selected. The value V'is assigned to the parameter of the
selected catch clause, and the Block of that catch clause is executed. Then there is a choice:

«If the catch block completes normally, then the finally block is executed. Then there is a choice:
1f the finally block completes normally, then the try statement completes normally.
- If the finally block completes abruptly for any reason, then the try statement completes abruptly for the same reason.
« If the catch block completes abruptly for reason R, then the finally block is executed. Then there is a choice:
If the finally block completes normally, then the try statement completes abruptly for reason R.
If the finally block completes abruptly for reason S, then the try statement completes abruptly for reason § (and reason R is

If the run-time ty[pe of V is not assignable to the parameter of any catch clause of the try statement,
then the finally block is executed. Then there is a choice:
« If the finally block completes normally, then the try statement completes abruptly because of a throw of the
+ I the finally block completes abruptly for reason S, then the try statement completes abruptly for reason § (and
the throw of value V is discarded and forgotten).
If execution of the try block completes abruptly for any other reason R, then the finally block
is executed. Then there is a choice:
- If the finally block completes normally, then the try statement completes abruptly for reason R.

If the finally block completes abruptly for reason S, then the try statement completes abruptly for
reason S (and reason R is discarded).

#38]

Avoiding Code Duplication for
try ... finally

» The Java Virtual Machine designers wanted
to avoid this code duplication

« So they invented a new notion of subroutine
- Executes within the stack frame of a method
- Has access to and can modify local variables
- One of the few true innovations in the JVM

13

JVML Subroutines Are
Complicated

» Subroutines are the most difficult part of the
JVML

» And account for the several bugs and
inconsistencies in the bytecode verifier

» Complicate the formal proof of correctness:
- 14 or 26 proof invariants due to subroutines
- 50 of 120 lemmas due to subroutines
- 70 of 150 pages of proof due to subroutines

Are JVML Subroutines
Worth the Trouble ?

« Subroutines save space?
- About 200 subroutines in 650,000 lines of Java
(mostly in JDK)
- No subroutines calling other subroutines

- Subroutines save 2427 bytes of 8.7 Mbytes
(0.02%) !

» Changing the name of the language from
Java back to Oak would save 13 times more
space !

Exceptions. Conclusion
» Exceptions are a very useful construct

» A good programming language solution to
an important software engineering problem

» But exceptions are complicated:
- Hard to implement
- Complicate the optimizer

- Very hard to debug the implementation
(exceptions are exceptionally rare in code)

14

Homework

» WA7 due today
» For Tuesday - Read Graham paper on gprof
o Midterm 2 - Thursday April 12 (7 days)

- Covers Lectures 12 - 21 and all reading, WA’s and

PA’s done during that time

15

