
1

#1

CCuredCCured

TypeType--Safe Retrofitting of C ProgramsSafe Retrofitting of C Programs

[Necula, [Necula, McPeakMcPeak, Weimer, Condit, , Weimer, Condit, HarrenHarren]]

#2

One-Slide Summary

• CCured enforces memory safety and type
safety in legacy C programs. CCured

analyzes how you use pointers and either

proves the usage safe statically or inserts

run-time checks.

• Along the way we’ll see cameo appearances

by just about every CS 415 topic.

#3

Lecture Outline

• Type and Memory Safety

• CCured Motivation

• SAFE Pointers

• SEQuence Pointers

• WILD Pointers

• Experimental Results

• Analysis

2

#4

Why Now, Brown Cow?

• Type Systems [Type Safety]

• Language Security [Memory Safety]

• Static and Dynamic Types [Run-Time Type Info]

• Runtime Organization [Pointer Layout]

• Subtyping [Convertibility]

• Garbage Collection [Tag Bits]

• Dataflow Analysis [Pointer-Kind Inference]

• Object-Oriented Programming [OOP in C]

• Aspect-Oriented Programming [Checks Everywhere]

• Libraries [Library Compatibility]

• Debuggers and Profilers [Purify and Valgrind]

#5

Two Kinds of Safety

• Type safety is a property of a programming
language that prevents certain errors (type
errors) that result from attempts to perform
an operation on a value of the wrong type.
– Type safety prevents: “hello” + 3

– Not Type safe: 3 + (int)“hello”
• Some languages allow unsafe casts between types.

• Memory safety: if a value of type T1 is read
from address A, then the most recent store
to A had type T2 with T2 � T1

– Store a Dog in memory, read an Animal later

#6

We Need Them Both

• You cannot have true Type Safety without

Memory Safety

– Why? Hint: an unsafe cast defeats type safety

3

#7

We Need Them Both

• You cannot have true Type Safety without

Memory Safety

– Why?

• Example:

– table * t = new table(); char buf[10];

– buf[10] = buf[11] = buf[12] = buf[13] = 55;

– t->countLegs();

Buffer

overrun!

#8

Memory Safety

• Essential component of a security
infrastructure

– Prevents interference

– ≥50% of reported attacks are due to buffer
overruns

• Software engineering advantages

– Memory bugs are hard to find (why?)

– Memory safety ensures component isolation

– Required for soundness of many program
analyses (why? hint: aliasing)

– Does not even need an explicit specification

#9

C and Memory Safety

• C was designed for flexibility and efficiency

– Many operators can be used unsafely

– Memory safety is sacrificed!

• In practice, many C programs use those

operators safely

– Only a small portion of the pointers and

operators are responsible for the unsafe behavior

4

#10

CCured Idea
1. Devise a sound type system and a type inference

algorithm that handles most C programs
• Combination of static and dynamic types

2. Insert run-time checks (e.g. array-bounds
checks and dynamic type checking) in those
places where safety cannot be verified statically

This way we sacrifice performance instead of safety
– Makes sense for more and more applications every day

– Hardware progress improves performance but not
safety

#11

CCured Goals

• Compatibility: support existing C code

– Source-to-source transformation

– Handle GCC/MSVC source, Makefiles

– All that is needed is a recompilation: make CC=ccured

• Efficiency: 0-50% overhead rather than 1000%

– Other research: 10x, Purify: 20x, BoundsChecker: 150x

• More effective and more efficient than Purify

– Because it leverages existing type information in source

– Use for production code not just during testing

#12

Diseases We
Want to Cure
• Focus on pointer usage

• Dereferencing a non-pointer (or NULL)
– Invoking a non-function

– Complicated by casts and union types

• Dereferencing outside of object bounds
– Buffer overruns

– Complicated by pointer arithmetic

– Not always caught by Purify

• Freeing non-pointers, using freed memory

Is it
lupus?

It’s
never
lupus!

5

#13

Example Pointer Usage in C
• Consider an implementation of a hash table
structstructstructstruct list {void list {void list {void list {void * data* data* data* data; ; ; ; structstructstructstruct list list list list * next* next* next* next} } } } * * * * * hash* hash* hash* hash;;;;

…

YesNoYesArith allowed

NoNoYesCast allowed

#14

SAFE Pointer Invariants and

Representation
T * safe

– Can be 0 or a pointer to storage containing a T

– All aliases agree on the type of the referenced storage

– Must do null-check before dereference

– Inexpensive to store and to use

– Prototypical example: FILE *

p

statically typed home area

T

#15

Quiz

• How many pointers in an average C program

are SAFE according to the previous

definition?

• Answer: between 40-95% of the declared

pointers

6

#16

Typing Rules for SAFE Pointers

T * safe � T1 * safe means that a pointer of the

first kind is convertible to a pointer of

second kind

0 : T * safe

(T1 * safe) e : T1 * safe

e : T * safe T * safe ���� T1 * safe

* e : T

e : T * safe

* e1 = e2 : T

e1 : T * safe e2 : T

#17

Convertibility of Pointers

• The convertibility relation is based on the
physical layout of types (flatten structures
and arrays)

• Examples:
struct { int x, y; int *p;} * ���� int *

struct { int x;

struct { int y; int *p;} s;

} *

���� struct { int x, y; } *

It’s like
an upcast
in OOP

#18

SEQ Pointer Invariants and

Representation
T * seq

– Can be 0

– Can be involved in pointer arithmetic

– Null check and bounds check before use

– Carries the bounds of a home area consisting of a
sequence of T’s

– All SAFE or SEQ aliases agree on the type of the
referenced area

base p end

statically typed home area

TT … T…

7

#19

Typing Rules for

SEQUENCE Pointers

• Before dereferencing a SEQ pointer it must be

converted to SAFE (with a bounds check and with

dropping the base and the end fields)

(T1 * seq) e : T1 * seq

e : T * seq T * seq ���� T1 * seq

e + e’ : T * seq

e : T * seq e’ : int

(T * safe) e : T * safe

e : T * seq

#20

Forward SEQUENCE Pointers

• Often a sequence pointer is only advanced
– We call it a Forward Sequence (FSEQ)

– Needs to carry only the end and needs only an upper
bound check

• Pointer arithmetic must be checked to advance

• A SEQ is converted to FSEQ via a lower-bound check
and dropping the lower-bound field

p end

T T…

#21

Quiz

• How many forward-thinking Cylon characters

are in a typical Battlestar episode?

• Answer: “Six” or “Eight”

8

#22

Quiz

• How many forward sequence and sequence

pointers are in a typical C program?

• Answer: about 25% FSEQ, 1% SEQ

#23

The WILD West

• So far we have not faced the really ugly pointers
– Those that are cast to incompatible types

• We call them WILD pointers

• For these we cannot count on the static type!
– We must keep run-time type tags (cf. Python, Ruby)

• Operations allowed:
– read/write

– assign an integer

– pointer arithmetic

– cast to other WILD pointers

#24

WILD Pointer Invariants and

Representation
T * wild

– Can be a non-pointer (any integer)

– Carries the bounds of a dynamic home area (containing
only integers and dynamic pointers)

– Has only WILD pointer aliases

– Must do a non-pointer and a bounds check

– Must maintain the tags when writing (1 bit per word)

dynamically typed home area

base p

end tag bits

Just like
in garbage
collection!

9

#25

WILD Complications
• What if we have a SAFE alias for a WILD ?

T * safe s;T * safe s;T * safe s;T * safe s;
T * wild w = s;T * wild w = s;T * wild w = s;T * wild w = s; // w is an alias for s// w is an alias for s// w is an alias for s// w is an alias for s

(T(T*(T*(T’ * * * * wild)wwild)wwild)wwild)w = = = = random_stuff_of_type_Trandom_stuff_of_type_Trandom_stuff_of_type_Trandom_stuff_of_type_T’;;;;

• For Safety: WILD pointers can only alias other
WILD pointers!

s

T

wbase

#26

WILD Complications

• What if we have a WILD pointer to a SAFE ptr?

• The type system cannot ensure that all writes
through the WILD pointer will write a compatible
SAFE pointer

• For Safety: WILD pointers must point to areas
containing only WILD pointers!

p

T * safe

qbasebase

#27

WILD Pointers are Highly

Contagious
• A WILD pointer will force other pointers to

be WILD as well:

– All pointers to which it is assigned

– All pointers from which it is assigned

– All pointers that it points to

• We need ways to reduce the number of WILD

pointers

– Better understanding of casts

10

#28

Handling Downcasts
• 10-20% of the pointers are void*

• Cast from void* to T* is unsafe!
– This is a special case of a downcast

– Downcasts are frequent in C programs (50-90% of bad
casts)

• We introduce pointers that carry run-time type
info
– Each downcast is checked at run-time (like in Java)

p rtti(T)

T

• Invariant: T is a subtype of T1

T1 * RTTI p;

#29

Programming OO-Style in C

struct Figure { double (*area)(struct Figure *); }
struct Circle { double (*area)(struct Figure *);

double radius; }

double circle_area(struct Figure* fig) {

struct Circle *circ = (struct Circle*)fig;

return PI * circ->radius * circ->radius;
}

…; struct Figure * fig; … fig->area(fig) …

• With RTTI pointers we can program

safely in a object oriented style (e.g.

dynamic dispatch):

• Other places where RTTI helps

– Heterogeneous data structures

– Polymorphic code and data structures

RTTI

RTTI

RTTI

RTTI

#30

Pointer-Kind Inference

• For every pointer in the program

– Try to infer the fastest sound representation

• We construct a whole-program data flow

graph

– We collect constraints about pointer kinds

– Then linear-time constraint solving

• Analysis can be modularized if the interfaces

are annotated with pointer kind

• Extremely simple, fast and predictable

11

#31

Example: SAFE/SEQ

int *a = ... ;

int *b = a ;

int *c = b ;

print(*c) ;

b = b + 1 ;

arithmetic: b must be FSEQ

so a is FSEQ too

but c can be SAFE

bounds check here

#32

Example: WILD

int foo(int **p)

{

int *q = (int *)p;

return *q;

}

pointer to a pointer

cast to incompatible type:

both p and q are WILD

(so is the caller's argument!)

#33

Experience Using CCured
• CCured handles all of C:

– vararg, function pointers, union types, GCC
extensions

• CCured works on low-level code
– Apache modules, Linux device drivers

• CCured scales to large programs

– sendmail, openssl, ssh, bind (>= 100K lines)

– ACE infrastructure (>= 1M lines)

• CCured often requires manual intervention

– must change between 1/100 to 1/300 lines of
code

12

#34

Experimental Results

Slowdown of CCured and Purify vs. C
(low numbers = good)

• 0-80% slowdown

• 60-100% of pointers are statically known to be type safe

• Found bugs in SPEC95 benchmarks

tspbhligocompressijpeg

429450512830Purify

1.11.51.81.11.21.6CCured

#35

The GOOD, the UGLY, and

the BAD

• Standard techniques from type theory can be

used to understand the “type safety” of

existing C programs

• CCured works automatically in most cases

• Most pointers are SAFE and some are

SEQUENCE

• The slowdown is minimal in many cases

– The uglier your program the slower it will be

#36

The GOOD, the UGLY, and

the BAD
• Occasional significant slowdown

– Typically due to either large number of WILD or

SEQUENCE pointers

• Increased memory footprint

– Larger code size

– Some pointers take 64-bits and some even 96-bits

• CCured is confused by custom-memory allocators

– Forced to treat them WILD

– Or to trust the allocator (as in the experiments)

13

#37

The GOOD, the UGLY, and

the BAD
• Incompatibilities with some libraries

– Due to different layout of data structures

– Solved by writing wrappers

• Some programs require changes

– Those that store addresses of locals in the heap

– Those that cast pointers to integers and then back

• Some (non-portable) programs are terminally-ill

– Self-modifying programs

– Those that depend on the size of pointers

– Those that intentionally skip from one field to another

– …

#38

Future Work

• Allow the programmer to define new pointer kinds
– Derived from the existing ones

– Maybe even brand new ones ?

• Open the door to type-safe interoperability with C
– Type-safe Java native methods

– Type-safe inline C in C# programs

Check it out at

http://hal.cs.berkeley.edu/ccured/

#39

Homework

• PA5 Due Friday April 27 (tomorrow)

• Final Examination

– Block 4

– Thursday May 10

– 1400-1700

– MEC 214

