WE DoNT UNDERSTAND
MHAT LY CANSES
EYENTS TO HAPPEN ., /
SN g

HISTORY 1S THE FICTION
WE INVENT TO PERSUADE
OURSELNES THAT BVENTS
E KNOWARLE AMD THAT

LIFE WS ORDER
00
-

P

MW O,
IVE GOT (T,

HEY DAD, 1L
EUESS AN
MUMBER YOUTRE
THINKING OF !
G0 AHERD, PICL

= \}
92,37%,051 7

THATS WHY EVENTS ARE
ALWAYS RE\NTERPRETED
WHEN VALES CTHANGE .
WE NEED MNEW VERSIONS
OF HISTORY TO ALLOW FOR
OUR. CURRENT PREWMCES,

T WHAT
AEE SOL)
WRITING 7

A REVISIONIST
ATTO BIOGRAPY .

WAIT A WRUTE!
YoURE ST

RID OF WE,

Double Header

e Two Lectures
- Model Checking
- Software Model Checking
- SLAM and BLAST

e “Flying Boxes”

- It is traditional to describe this stuff (especially SLAM and
BLAST) with high-gloss animation.

e Some Key Players:
- Model Checking: Ed Clarke, Ken McMillan, Amir Pnueli
- SLAM: Tom Ball, Sriram Rajamani
- BLAST: Ranjit Jhala, Rupak Majumdar, Tom Henzinger

#2

Who are we again?

 We're going to find critical bugs in important
bits of software
- using PL techniques!

e You will be enthusiastic about this
- and thus want to learn the gritty details

S0 WE'LL CALL

| NEED CONTENXT. S0 WE HAVE TWO IT ALL BEGAN FOUR
THIS AP, THEN— , THE 10,000-FOOT g4 | AFPLICATIONS THAT=—= BILLION YEARS AGD
WAIT WAIT NO. NO. PULL Y | ON A PLANET CALLED
1\ TOO LOW-LEVEL. A REALLY HIGH- |5 bae ¥ Clicn enouch,
NS Sl fg=h, LEVEL VIEW, T
"a N LY u [
0 r |

http:/ fwwn.bugbash.net, #3

Take-Home Message

e Model checking is the exhaustive exploration
of the state space of a system, typically to
see if an error state is reachable. It produces
concrete counter-examples.

e The state explosion problem refers to the
large number of states in the model.

« Temporal logic allows you to specify
properties with concepts like “eventually”
and “always”.

#4

Overarching Plan

* Model Checking (Today)

Transition Systems (Models)
Temporal Properties

LTL and CTL

(Explicit State) Model Checking
Symbolic Model Checking

» Counterexample Guided Abstraction Refinement
- Safety Properties
Predicate Abstraction (“c2bp”)
Software Model Checking (“bebop”)
(
(

Counterexample Feasibility newton”, “hw 5”)
Abstraction Refinement

weakest pre, thrm prvr)

#5

Spoiler Space

e This stuff really works!
- This is not ESC or PCC or Denotational Semantics
e Symbolic Model Checking is a massive success
in the model-checking field

- | know people who think Ken McMillan walks on
water in a “ha-ha-ha only serious” way

e SLAM took the PL world by storm

- Spawned multiple copycat projects

- Incorporated into Windows DDK as “static driver
verifier”

#6

Topic:
(Generic) Model Checking

e There are complete courses in model
checking; | will skim.

- Model Checking by Edmund C. Clarke, Orna
Grumberg, and Doron A. Peled, MIT press

- Symbolic Model Checking by Ken McMillan

#7

e Model c
e Model c
e Model c
e Model c

Model Checking

necking is an automated technique
necking verifies transition systems
necking verifies temporal properties

necking can be also used for

falsification by generating counter-examples
» Model Checker: A program that checks if a

(transition) system satisfies a (temporal)
property

#8

Verification vs. Falsification

An automated verification tool
- can report that the system is verified (with a proof)
- or that the system was not verified (with ??7?)

When the system was not verified it would be
helpful to explain why

- Model checkers can output an error counter-example: a
concrete execution scenario that demonstrates the error

Can view a model checker as a falsification tool
- The main goal is to find bugs

OK, so what can we verify or falsify?

#9

Temporal Properties

o Temporal Property: A property with time-related
operators such as “invariant” or “eventually”

e Invariant(p): is true in a state if property p is true in
every state on all execution paths starting at that
state

- The Invariant operator has different names in different
temporal logics:
e G, AG, O (“goal” or “box” or “forall”)

o Eventually(p): is true in a state if property p is true
at some state on every execution path starting from
that state

- F, AF, $ (“diamond” or “future” or “exists”)

#10

An Example Concurrent Program

A simple concurrent mutual ~ t0¢ whtle True do

exclusion program 11: wait (turn = 0);
Two processes execute // critical section
asynchronously 12: turn := 1;
There is a shared variable 13: end while;

turn

Two processes use the || // concurrently with

shared variable to ensure
that they are not in the _
critical section at the same ~ 20: while True do

time 21: wait(turn = 1) ;
Can be viewed as a // critical section
“fundamental” program: 22: turn := 0;

any bigger concurrent one 23: end while

would include this one

#11

Reachable States
of the Example Program

[Next: formalize }

this intuition ...

of all the variables:
turn and the two program
counters for two processes

-

#12

Transition Systems

e In model checking the system being analyzed is
represented as a labeled transition system
T = (S) I’ R? L)
Also called a Kripke Structure
- S = Set of states // standard FSM
- 1 0S = Set of initial states // standard FSM
R OS xS = Transition relation // standard FSM

L: S - P(AP) = Labeling function // this is new!
o AP: Set of atomic propositions (e.g., “x=5"cAP)
- Atomic propositions capture basic properties

- For software, atomic props depend on variable values

- The labeling function labels each state with the set of
propositions true in that state

#13

Properties of the Program

o Example: “In all the reachable states
(configurations) of the system, the two
processes are never in the critical section at

the same time”
- Equivalently, we can say that
e Invariant(— (pc1=12 I pc2=22))
o Also: “Eventually the first process enters the

critical section”
e Eventually(pc1=12)

e “pc1=12", “pc2=22" are atomic properties

#14

Temporal Logics

There are four basic temporal operators:
X p = Next p, p holds in the next state

G p = Globally p, p holds in every state, p is
an invariant

F p = Future p, p will hold in a future state,
p holds eventually

p U g =p Until g, assertion p will hold until g
holds

Precise meaning of these temporal operators
are defined on execution paths

#15

Execution Paths

A path in a transition system is an infinite sequence
of states

(Sgs S5 S, ---), SUCh that Vi=0. (s, s..,) [J R
A path (s,, s;, S,, ...) is an execution path if s, [|
Given a path x = (s, S, S,, .--)
- X, denotes the ith state s
- x'denotes the it suffix (s,, S..;, Si.p «--)

In some temporal logics one can quantify the paths
starting from a state using path quantifiers

- A : for all paths
- E : there exists a path

#16

Linear Time Logic (LTL)

e LTL properties are constructed from atomic
propositions in AP; logical operators [J, [], =; and
temporal operators X, G, F, U.

e The semantics of LTL properties is defined on paths:

Given a path x:

XFEp iff L(x,, p) // atomic prop
XEXPp iff X'Ep // next

XEFp iff di=0.xXEp // future

XEGD iff Vi=0.xXEp // globally
xEpUq iff 4di20.xFqandVj<i.xxEp // until

#17

Satisfying Linear Time Logic

e Given a transition system T = (S, I, R, L) and
an LTL property p, T satisfies p if all paths
starting from all initial states | satisfy p

e Example LTL formulas:

- Invariant(~ (pc1=12 [pc2=22)):
G(- (pc1=12 0 pc2=22))
- Eventually(pc1=12):
F(pc1=12)

#18

Computation Tree Logic (CTL)

e In CTL temporal properties use path quantifiers
- A : for all paths
- E : there exists a path

e The semantics of CTL properties is defined on
states:

Given a path x
S Fp iff L(s, p)

s, FEXp iff dJapath (s, s, S,, ...). S;EP
s, FAXp iff Vpaths(sy, s s, ...). S;EP
s, FEGp iff dapath(s,, s, s,, ...). Vi20.s. Ep
s, FAGp iff Vpaths(s,s,s,, ...). Vi20.s.Fp

#19

Linear vs. Branching Time

e LTL is a linear time logic

- When determining if a path satisfies an LTL formula we
are only concerned with a single path

e CTL is a branching time logic

- When determining if a state satisfies a CTL formula we
are concerned with multiple paths

- In CTL the computation is not viewed as a single path but
as a computation tree which contains all the paths

- The computation tree is obtained by unrolling the
transition relation

e The expressive powers of CTL and LTL are
incomparable (LTL € CTL*, CTL € CTL¥)

- Basic temporal properties can be expressed in both logics
- Not in this lecture, sorry! (Take a class on Modal Logics)
#20

Remember the Example

onepahsaring e LINEAN VS. Branching Time

(turn=0,pc1=10,pc2=20)

Li Ti A computation tree
View (turn=0,pc1=10,pc2=20)

(F-GU-EU- UG-G

#22

LTL Satisfiability Examples

()p does not hold @ holds

On this path: F p holds, G p does not hold, p does not hold,
X p does not hold, X (X p) holds, X (X (X p)) does not hold

On this path: F p holds, G p holds, p holds,
X p holds, X (X p) holds, X (X (X p))) holds

#23

() p does not hold

@ b holds CTL Examples

At state s:
EF p, EX (EX p),
AF (= p), - p holds

AF p, AG p,
AG (- p), EXp,
EG p, p does not hold

S

At state s:

EF p, AF p,

EX (EX p),

EX p, EG p, p holds

AG p, AG (=p),
AF (= p) does not hold

At state s:

EF p, AF p,

AG p, EG p,

Ex p, AX p, p holds

EG (- p), EF (=p),
does not hold

#24

Model Checking Complexity

e Given a transition system T = (S, |, R, L) and a CTL
formula f
- One can check if a state of the transition system satisfies
the temporal logic formula f in O(|f| x (|S| + |R|)) time
e Given a transition system T = (S, |, R, L) and an LTL
formula f
- One can check if the transition system satisfies the
temporal logic formula f in O(2!'"! x (|S| + |R])) time

e Model checking procedures can generate counter-
examples without increasing the complexity of
verification (= “for free”)

#25

Which is slower?

State Space Explosion

 The complexity of model checking increases
linearly with respect to the size of the
transition system (|S| + |R|)

 However, the size of the transition system (|
S| + |R]|) is exponential in the number of
variables and number of concurrent processes

e This exponential increase in the state space is
called the state space explosion

- Dealing with it is one of the major challenges in
model checking research

#27

Explicit-State Model Checking

e One can show the complexity results using
depth first search algorithms
- The transition system is a directed graph

- CTL model checking is multiple depth first
searches (one for each temporal operator)

- LTL model checking is one nested depth first
search (i.e., two interleaved depth-first-searches)

- Such algorithms are called explicit-state model
checking algorithms (details on next slides)

#28

Temporal Properties = Fixpoints

States that satisfy AG(p) are all the states which are
not in EF(—=p) (= the states that can reach —p)

Compute EF(-p) as the fixpoint of Func: 2° - 2°

Given Z C S, / This is called the

] inverse image of Z
- Func(Z) = =p O reach-in-one-step(Z)
- or Func(Z) = -p O EX(Z)
Actually, EF(-p) is the least-fixpoint of Func

- smallest set Z such that Z = Func(Z)

- to compute the least fixpoint, start the iteration from Z=
[1, and apply the Func until you reach a fixpoint

- This can be computed (unlike most other fixpoints)

#29

Pictoral Backward Fixpoint

Inverse Image of -p = EX(=p)

Initial ’
states \y

im:ti.a! states that viola’Fe AG(p) states that can reach -p = EF(-p)
= initial states that satisfy EF(-p) - states that violate AG(p)

This fixpoint computation can be used for:

. . £a : _ ... and a similar forward
verification of EF(—p) iﬁxpoint handles the otherj
o or falsification of AG(p) €ases

#30

Symbolic Model Checking

« Symbolic Model Checking represent state sets and
the transition relation as Boolean logic formulas

- Fixpoint computations manipulate sets of states rather
than individual states

- Recall: we needed to compute EX(Z), but Z C S
 Forward and backward fixpoints can be computed by
iteratively manipulating these formulas
- Forward, inverse image: Existential variable elimination

- Conjunction (intersection), disjunction (union) and
negation (set difference), and equivalence check

e Use an efficient data structure for manipulation of
Boolean logic formulas

- Binary Decision Diagrams (BDDs)

#31

Binary Decision Diagrams (BDDs)

o Efficient representation for boolean functions
(a set can be viewed as a function)

e Disjunction, conjunction complexity: at most
quadratic

e Negation complexity: constant

e Equivalence checking complexity: constant or
linear

e Image computation complexity: can be
exponential

#32

Symbolic Model Checking
Using BDDs

o SMV (Symbolic Model Verifier) was the first CTL
model checker to use a BDD representation

e It has been successfully used in verification

- of hardware specifications, software specifications,
protocols, etc.

e SMV verifies finite state systems

- It supports both synchronous and asynchronous
composition

- It can handle boolean and enumerated variables

- It can handle bounded integer variables using a binary
encoding of the integer variables
e It is not very efficient in handling integer variables although this
can be fixed

#33

Where’s the Beef

e To produce the explicit counter-example, use the
“onion-ring method”
- A counter-example is a valid execution path

- For each Image Ring (= set of states), find a state and
link it with the concrete transition relation R

- Since each Ring is “reached in one step from previous
ring” (e.g., Ring#3 = EX(Ring#4)) this works

- Each state z comes with L(z) so you know what is true at
each point (= what the values of variables are)

#34

Building Up To:
Software Model Checking via
Counter-Example Guided

Abstraction Refinement

e There are easily two dozen
SLAM/BLAST/MAGIC papers; | will skim.

#35

Key Terms

« CEGAR = Counterexample guided abstraction
refinement. A successful software model-
checking approach. Sometimes called
“Iterative Abstraction Refinement”.

e SLAM = The first CEGAR project/tool.
Developed at MSR.

e Lazy Abstraction = A CEGAR optimization used
in the BLAST tool from Berkeley.

e Other terms: c2bp, bebop, newton,
npackets++, MAGIC, flying boxes, etc.

#36

50 ... what is Counterexample
Guided Abstraction Refinement?

- Theorem Proving?

- Dataflow Analysis?
- Model Checking?

#37

Verification by Theorem Proving

Trempee U 1. Loop Invariants
tock(); 2. Logical formula
old = new;

g = g->next; 3. Check Validity

2: if (g != NULL) {

3: g->data = new;

unlock () ;
new ++; . .
| Invariant:
4: } while (new != old); <:| lock A new = old
5: wunlock () \/

return;

} = lock A new Z old

#38

Verification by Theorem Proving

Example () {

b el 1. Loop Invariants
lock () ; 2. Logical formula
old = new; oo
g = g->next; 3. Check Validity
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4: } while(new != old); - Loop Invariants
J8 vmEEs () - Multithreaded Programs
return; . . .
\ + Behaviors encoded in logic

+ Decision Procedures

Precise [ESC, PCC]
#39

Verification by Program Analysis

Example () {

T G 1. Dataflow Facts
lock () ; @ ° 2. Constraint System
old = new; .
5 = Gesmewiy — 3. Solve constraints
2: if (g != NULL){
3: g->data = new;
unlock () ;
new ++;
} . . .
s 1 wisde (mewm l= old) : - Imprecision due to fixed facts
5: unlock (); @ + Abstraction
return;

} + Type/Flow Analyses
Scalable [CQUAL, ESP, M(C]

#40

Verification by Model Checking

Example () {

b el 1. (Finite State) Program
Lock () ; 2. State Transition Graph
old = new; L
g = g->next; 3. Reachability
2: if (g != NULL) {
3: g->data = new;
unlock () ;
;e T - Pgm — Finite state model
4: } while(new != old); - State explosion
5 unlock (); + State Exploration
return;
} + Counterexamples

Precise [SPIN, SMV, Bandera, JPF]
#41

One Ring To Rule Them All?

L i
E - = "

Combining Strengths

Theorem Proving Program Analysis
- Need loop invariants - Imprecise
(will find automatically) (will be precise)
+ Behaviors encoded in logic S LAM + Abstraction
(used to refine abstraction) (will shrink the state space
+ Theorem provers we must explore)
(used to compute successors,
refine abstraction)

Model Checking

- Finite-state model, state explosion

(will find small good model)

+ State Space Exploration

(used to get a path sensitive analysis)

+ Counterexamples

(used to find relevant facts, refine abstraction)

#43

Homework

e Read Lazy Abstraction
e Optionally read TAR

#44

