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Model CheckingModel Checking
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Double Header

• Two LecturesTwo Lectures
– Model Checking
– Software Model Checking
– SLAM and BLAST

• “Flying Boxes”
– It is traditional to describe this stuff (especially SLAM and 

BLAST) with high-gloss animation.  

• Some Key Players:
– Model Checking: Ed Clarke, Ken McMillan, Amir Pnueli
– SLAM: Tom Ball, Sriram Rajamani
– BLAST: Ranjit Jhala, Rupak Majumdar, Tom Henzinger
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Who are we again?
• We're going to find critical bugs in important 

bits of software
– using PL techniques!

• You will be enthusiastic about this 
– and thus want to learn the gritty details
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Take-Home Message

• Model checking is the exhaustive exploration 
of the state space of a system, typically to 
see if an error state is reachable. It produces 
concrete counter-examples. 

• The state explosion problem refers to the 
large number of states in the model. 

• Temporal logic allows you to specify 
properties with concepts like “eventually” 
and “always”. 
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Overarching Plan

• Model CheckingModel Checking (Today)(Today)
– Transition Systems (Models)
– Temporal Properties
– LTL and CTL
– (Explicit State) Model Checking
– Symbolic Model Checking

• Counterexample Guided Abstraction RefinementCounterexample Guided Abstraction Refinement
– Safety Properties
– Predicate Abstraction (“c2bp”)

– Software Model Checking (“bebop”)

– Counterexample Feasibility (“newton”, “hw 5”)

– Abstraction Refinement (weakest pre, thrm prvr)
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Spoiler Space

• This stuff really works!
– This is not ESC or PCC or Denotational Semantics

• Symbolic Model Checking is a massive success 
in the model-checking field
– I know people who think Ken McMillan walks on 

water in a “ha-ha-ha only serious” way
• SLAM took the PL world by storm

– Spawned multiple copycat projects
– Incorporated into Windows DDK as “static driver 

verifier”
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Topic:
(Generic) Model CheckingModel Checking

• There are complete courses in model 
checking; I will skim.
– Model Checking by Edmund C. Clarke, Orna 

Grumberg, and Doron A. Peled, MIT press
– Symbolic Model Checking by Ken McMillan
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Model Checking

• Model checking is an automated technique
• Model checking verifies transition systems 
• Model checking verifies temporal properties
• Model checking can be also used for 

falsification by generating counter-examples 
• Model Checker: A program that checks if a 

(transition) system satisfies a (temporal) 
property
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Verification vs. Falsification

• An automated verification tool
– can report that the system is verified (with a proof)
– or that the system was not verified (with ???)

• When the system was not verified it would be 
helpful to explain why 
– Model checkers can output an error counter-example: a 

concrete execution scenario that demonstrates the error

• Can view a model checker as a falsification tool
– The main goal is to find bugs

• OK, so what can we verify or falsify? 
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Temporal Properties

• Temporal Property: A property with time-related 
operators such as “invariant” or “eventually”

• Invariant(p): is true in a state if property p is true in 
every state on all execution paths starting at that 
state
– The Invariant operator has different names in different 

temporal logics:
• G, AG, ¤ (“goal” or “box” or “forall”)

• Eventually(p): is true in a state if property p is true 
at some state on every execution path starting from 
that state

• F, AF, } (“diamond” or “future” or “exists”)
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An Example Concurrent Program

• A simple concurrent mutual 
exclusion program

• Two processes execute 
asynchronously

• There is a shared variable 
turn

• Two processes use the 
shared variable to ensure 
that they are not in the 
critical section at the same 
time 

• Can be viewed as a 
“fundamental” program: 
any bigger concurrent one 
would include this one

10: while True do 
11:    wait(turn = 0);
   // critical section// critical section
12:    turn := 1;
13:  end while;

|| // concurrently with// concurrently with

20: while True do 
21:   wait(turn = 1);
    // critical section// critical section
22:   turn := 0;
23: end while
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Reachable States 
of the Example Program

t=0
10,20

t=0
10,21

t=0
11,20

t=0
11,21

t=0
12,20

t=0
12,21

t=1
10,20

t=1
11,20

t=1
10,21

t=1
10,22

t=1
11,21

t=1
11,22

Each state is a valuation 
of all the variables:  

turn and the two program 
counters for two processes

Next: formalize
this intuition …
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Transition Systems
• In model checking the system being analyzed is 

represented as a labeled transition system
T = (S, I, R, L)

– Also called a Kripke Structure
– S = Set of states // standard FSM
– I ⊆ S = Set of initial states // standard FSM
– R ⊆ S × S = Transition relation // standard FSM
– L: S → P(AP) = Labeling function // this is new!

• AP: Set of atomic propositions (e.g., “x=5”2AP)
– Atomic propositions capture basic properties 
– For software, atomic props depend on variable values
– The labeling function labels each state with the set of 

propositions true in that state
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Properties of the Program
• Example: “In all the reachable states 

(configurations) of the system, the two 
processes are never in the critical section at 
the same time”
– Equivalently, we can say that 

• Invariant(¬(pc1=12 ∧ pc2=22))

• Also: “Eventually the first process enters the 
critical section”

• Eventually(pc1=12)

• “pc1=12”, “pc2=22” are atomic properties
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Temporal Logics

• There are four basic temporal operators:
• X p = Next p, p holds in the next state
• G p = Globally p, p holds in every state, p is 

an invariant
• F p = Future p, p will hold in a future state, 

p holds eventually
• p U q = p Until q, assertion p will hold until q 

holds
• Precise meaning of these temporal operators 

are defined on execution paths
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Execution Paths

• A path in a transition system is an infinite sequence 
of states

(s0, s1, s2, ...), such that 8i≥0. (si, si+1) ∈ R
• A path (s0, s1, s2, ...) is an execution path if s0 ∈ I
• Given a path x = (s0, s1, s2, ...) 

– xi denotes the ith state si 
–    xi

 denotes the ith suffix (si, si+1, si+2, ...) 

• In some temporal logics one can quantify the paths 
starting from a state using path quantifiers
– A : for all paths
– E : there exists a path
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Linear Time Logic (LTL)
• LTL properties are constructed from atomic 

propositions in AP; logical operators ∧, ∨, ¬; and 
temporal operators X, G, F, U.

• The semantics of LTL properties is defined on paths:
Given a path x:

x ² p  iff  L(x0, p)  // atomic prop

x ² X p iff x1 ² p // next

x ² F p iff 9i≥0. xi ² p // future

x ² G p iff 8i≥0. xi ² p // globally

x ² p U q iff 9i≥0. xi ² q and 8j<i. xj ² p // until
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Satisfying Linear Time Logic

• Given a transition system T = (S, I, R, L) and 
an LTL property p, T satisfies p if all paths 
starting from all initial states I satisfy p

• Example LTL formulas:
– Invariant(¬(pc1=12 ∧ pc2=22)): 

G(¬(pc1=12 ∧ pc2=22))

– Eventually(pc1=12):
F(pc1=12) 
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Computation Tree Logic (CTL)
• In CTL temporal properties use path quantifiers

– A : for all paths
– E : there exists a path

• The semantics of CTL properties is defined on 
states:

Given a path x
s  ² p  iff  L(s, p)  

s0 ² EX p iff 9 a path (s0, s1, s2, ...). s1 ² p
s0 ² AX p iff 8 paths (s0, s1, s2, ...). s1 ² p

s0 ² EG p  iff 9 a path (s0, s1, s2, ...). 8i≥0. si ² p

s0 ² AG p  iff 8 paths (s0, s1, s2, ...). 8i≥0. si ² p
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Linear vs. Branching Time

• LTL is a linear time logic
– When determining if a path satisfies an LTL formula we 

are only concerned with a single path
• CTL is a branching time logic

– When determining if a state satisfies a CTL formula we 
are concerned with multiple paths

– In CTL the computation is not viewed as a single path but 
as a computation tree which contains all the paths

– The computation tree is obtained by unrolling the 
transition relation

• The expressive powers of CTL and LTL are 
incomparable (LTL µ CTL*, CTL µ CTL*)
– Basic temporal properties can be expressed in both logics 
– Not in this lecture, sorry! (Take a class on Modal Logics)
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Remember the Example

t=0
10,20

t=0
10,21

t=0
11,20

t=0
11,21

t=0
12,20

t=0
12,21

t=1
10,20

t=1
11,20

t=1
10,21

t=1
10,22

t=1
11,21

t=1
11,22

This is a 
labeled 

transition 
system.
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Linear vs. Branching Time

t=0
10,20

t=0
10,21

t=0
11,20

t=0
11,21

t=0
12,20

One path starting at state
(turn=0,pc1=10,pc2=20)

t=0
10,20

t=0
10,21

t=0
11,21

t=0
12,21

t=0
10,21

t=0
11,21

t=1
10,21

.

.

.

t=0
10,21

t=0
11,21

.

.

.

.

.

.

.

.

.

A computation tree 
starting  at  state 
(turn=0,pc1=10,pc2=20)

t=1
10,20

t=0
12,21

.

.

.

.

.

.

Branching Time 
View

Linear Time 
View
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LTL Satisfiability Examples

p does not hold p holds

On this path: F p holds, G p does not hold, p does not hold, 
X p does not hold, X (X p) holds, X (X (X p)) does not hold

On this path: F p holds, G p holds, p holds,
X p holds, X (X p) holds, X (X (X p))) holds

. . .

. . .
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CTL Examples
p does not hold

p holds

.

.

.

.

.

.

.

.

.

.

.

.

At state s:
EF p, EX (EX p), 
AF (¬p), ¬p holds

AF p, AG p, 
AG (¬p), EX p, 
EG p, p does not hold 

s

.

.

.

.

.

.

.

.

.

s

At state s:
EF p, AF p, 
EX (EX p),
EX p, EG p, p holds

AG p,  AG (¬p),  
AF (¬p) does not hold 

.

.

.

.

.

.

.

.

.

s

At state s:
EF p, AF p, 
AG p, EG p,
Ex p, AX p, p holds

EG (¬ p),  EF (¬p),  
does not hold 

.

.

.

.

.

.
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Model Checking Complexity

• Given a transition system T = (S, I, R, L) and a CTL 
formula f 
– One can check if a state of the transition system satisfies 

the temporal logic formula f in O(|f| × (|S| + |R|)) time

• Given a transition system T = (S, I, R, L)  and an LTL 
formula f 
– One can check if the transition system satisfies the 

temporal logic formula f in O(2|f| × (|S| + |R|)) time

• Model checking procedures can generate counter-
examples without increasing the complexity of 
verification (= “for free”)
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Which is slower?
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State Space Explosion

• The complexity of model checking increases 
linearly with respect to the size of the 
transition system (|S| + |R|)

• However, the size of the transition system (|
S| + |R|) is exponential in the number of 
variables and number of concurrent processes

• This exponential increase in the state space is 
called the state space explosion
– Dealing with it is one of the major challenges in 

model checking research



#28

Explicit-State Model Checking

• One can show the complexity results using 
depth first search algorithms
– The transition system is a directed graph
– CTL model checking is multiple depth first 

searches (one for each temporal operator)
– LTL model checking is one nested depth first 

search (i.e., two interleaved depth-first-searches)
– Such algorithms are called explicit-state model 

checking algorithms (details on next slides)
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Temporal Properties ≡ Fixpoints 
• States that satisfy AG(p) are all the states which are 

not in EF(¬p) (= the states that can reach ¬p)

• Compute EF(¬p) as the fixpoint of Func: 2S → 2S

• Given Z µ S,
– Func(Z) = ¬p ∪ reach-in-one-step(Z)

– or Func(Z) = ¬p ∪ EX(Z)

• Actually, EF(¬p) is the least-fixpoint of Func
– smallest set Z such that Z = Func(Z)
– to compute the least fixpoint, start the iteration from Z=

∅, and apply the Func until you reach a fixpoint

– This can be computed (unlike most other fixpoints)

This is called the
inverse image of Z



#30

Pictoral Backward Fixpoint

•  •  ••  •  • ¬¬ppInitial
states

initial states that violate AG(p)
= initial states that satisfy EF(¬p) 

states that can reach ¬p = EF(¬p) 
= states that violate AG(p)

Inverse Image of ¬p = EX(¬p) 

This fixpoint computation can be used for: 

• verification of EF(¬p) 

• or falsification of AG(p)

… and a similar forward 
fixpoint handles the other 

cases
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Symbolic Model Checking

• Symbolic Model Checking represent state sets and 
the transition relation as Boolean logic formulas 
– Fixpoint computations manipulate sets of states rather 

than individual states
– Recall: we needed to compute EX(Z), but Z µ S

• Forward and backward fixpoints can be computed by 
iteratively manipulating these formulas
– Forward, inverse image: Existential variable elimination
– Conjunction (intersection), disjunction (union) and 

negation (set difference), and equivalence check
• Use an efficient data structure for manipulation of  

Boolean logic formulas
– Binary Decision Diagrams (BDDs)
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Binary Decision Diagrams (BDDs)

• Efficient representation for boolean functions 
(a set can be viewed as a function)

• Disjunction, conjunction complexity: at most 
quadratic

• Negation complexity: constant
• Equivalence checking complexity: constant or 

linear
• Image computation complexity: can be 

exponential
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Symbolic Model Checking 
Using BDDs

• SMV (Symbolic Model Verifier) was the first CTL 
model checker to use a BDD representation

• It has been successfully used in verification 
– of hardware specifications, software specifications, 

protocols, etc.

• SMV verifies finite state systems
– It supports both synchronous and asynchronous 

composition
– It can handle boolean and enumerated variables
– It can handle bounded integer variables using a binary 

encoding of the integer variables
• It is not very efficient in handling integer variables although this 

can be fixed
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Where’s the Beef
• To produce the explicit counter-example, use the 

“onion-ring method”
– A counter-example is a valid execution path
– For each Image Ring (= set of states), find a state and 

link it with the concrete transition relation R
– Since each Ring is “reached in one step from previous 

ring” (e.g., Ring#3 = EX(Ring#4)) this works
– Each state z comes with L(z) so you know what is true at 

each point (= what the values of variables are)

•  •  ••  •  • ¬¬ppInitial
states

1

2

3
4
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Building Up To:
SoftwareSoftware Model Checking via Model Checking via

Counter-Example Guided Counter-Example Guided 
Abstraction RefinementAbstraction Refinement

• There are easily two dozen 
SLAM/BLAST/MAGIC papers; I will skim.
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Key Terms

• CEGAR = Counterexample guided abstraction 
refinement. A successful software model-
checking approach. Sometimes called 
“Iterative Abstraction Refinement”.

• SLAM = The first CEGAR project/tool. 
Developed at MSR.

• Lazy Abstraction = A CEGAR optimization used 
in the BLAST tool from Berkeley. 

• Other terms: c2bp, bebop, newton, 
npackets++, MAGIC, flying boxes, etc.
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So … what is Counterexample 
Guided Abstraction Refinement?
– Theorem Proving?
– Dataflow Analysis?
– Model Checking?
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Verification by Theorem Proving

1. Loop Invariants
2. Logical formula
3. Check Validity  

Invariant:   
     lock Æ new = old

       Ç 
 : lock Æ new ≠ old

Example ( ) {
1: do{
      lock();
      old = new;

q = q->next;
2:    if (q != NULL){
3:    q->data = new;

   unlock();
         new ++;
      }
4: } while(new != old);
5:  unlock ();
    return;
}
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Verification by Theorem Proving

1. Loop Invariants
2. Logical formula
3. Check Validity  

- Loop Invariants
- Multithreaded Programs 
+ Behaviors encoded in logic
+ Decision Procedures
-  

Example ( ) {
1: do{
      lock();
      old = new;

q = q->next;
2:    if (q != NULL){
3:    q->data = new;

   unlock();
         new ++;
      }
4: } while(new != old);
5:  unlock ();
    return;
}
           

Precise [ESC, PCC] 
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Verification by Program Analysis

1. Dataflow Facts
2. Constraint System
3. Solve constraints 

Example ( ) {
1: do{
      lock();
      old = new;

q = q->next;
2:    if (q != NULL){
3:    q->data = new;

   unlock();
         new ++;
      }
4: } while(new != old);
5:  unlock ();
    return;
}
           

-  Imprecision due to fixed facts

+ Abstraction

+ Type/Flow Analyses

Scalable [CQUAL, ESP, MC] 
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Verification by Model Checking

1. (Finite State) Program
2. State Transition Graph
3. Reachability  

Example ( ) {
1: do{
      lock();
      old = new;

q = q->next;
2:    if (q != NULL){
3:    q->data = new;

   unlock();
         new ++;
      }
4: } while(new != old);
5:  unlock ();
    return;
}
           

-  Pgm ! Finite state model
- State explosion 
+ State Exploration
+ Counterexamples

Precise [SPIN, SMV, Bandera, JPF ] 
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One Ring To Rule Them All?
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Combining Strengths
Theorem Proving

- Need loop invariants
(will find automatically)
+ Behaviors encoded in logic
(used to refine abstraction)
+ Theorem provers
(used to compute  successors, 

refine abstraction)

Program Analysis

-  Imprecise
(will be precise)
+ Abstraction
(will shrink the state space 

we must explore)

Model Checking
-  Finite-state model, state explosion
(will find small good model)
+ State Space Exploration
(used to get a path sensitive analysis)
+ Counterexamples
(used to find relevant facts, refine abstraction)

SLAMSLAM
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Homework

• Read Lazy Abstraction
• Optionally read TAR


