

Today’s Cunning Plan

- Review, Truth, and Provability
- Large-Step Opsem Commentary
- Small-Step Contextual Semantics
- Reductions, Redexes, and Contexts
- Applications and Recent Research

Summary - Semantics

- A formal semantics is a system for assigning meanings to programs.
- For now, programs are IMP commands and expressions
- In operational semantics the meaning of a program is "what it evaluates to"
- Any opsem system gives rules of inference that tell you how to evaluate programs

Summary - Judgments

- Rules of inference allow you to derive judgments ("something that is knowable") like

$$
<e, \sigma>\Downarrow n
$$

- In state σ, expression e evaluates to n

$$
<c, \sigma>\Downarrow \sigma^{\prime}
$$

- After evaluating command c in state σ the new state will be σ '
- State σ maps variables to values ($\sigma: L \rightarrow Z$)
- Inferences equivalent up to variable renaming:

$$
<c, \sigma>\Downarrow \sigma^{\prime}===<c^{\prime}, \sigma_{7}>\Downarrow \sigma_{8}
$$

Notation: Rules of Inference

- We express the evaluation rules as rules of inference for our judgment
- called the derivation rules for the judgment
- also called the evaluation rules (for operational semantics)
- In general, we have one rule for each language construct:

$$
\frac{\left.<e_{1}, \sigma\right\rangle \Downarrow n_{1} \quad<e_{2}, \sigma>\Downarrow n_{2}}{\left\langle e_{1}+e_{2}, \sigma>\Downarrow n_{1}+n_{2}\right.} \quad \begin{aligned}
& \text { This is the only } \\
& \text { rule for } e_{1}+e_{2}
\end{aligned}
$$

Rules of Inference

Hypothesis $_{1} \ldots$ Hypothesis $_{\mathrm{N}}$

Conclusion

$$
\frac{\Gamma \vdash \mathrm{b}: \text { bool } \quad \Gamma \vdash \mathrm{e} 1: \tau \quad \Gamma \vdash \mathrm{e} 2: \tau}{\Gamma \vdash \text { if } \mathrm{b} \text { then e1 else e2 }: \tau}
$$

- For any given proof system, a finite number of rules of inference (or schema) are listed somewhere
- Rule instances should be easily checked
- What is the definition of "NP"?

Derivation

$$
\frac{\frac{\Gamma(x)=\text { int }}{\Gamma \vdash x: \text { int }} \text { var } \frac{\Gamma \vdash 3: \text { int }}{\Gamma \vdash x>3: \text { bool }} \text { int } \frac{\Gamma(x)=\text { int }}{\Gamma \vdash x: \text { int }} \text { var } \frac{\frac{\Gamma(x)=\text { int }}{\Gamma \vdash x: \text { int }}}{\Gamma \vdash x}}{\Gamma \vdash \text { while } x>3 \text { do } x:=x-1 \text { done }} \mathrm{w}
$$

- Tree-structured (conclusion at bottom)
- May include multiple sorts of rules-ofinference
- Could be constructed, typically are not
- Typically verified in polynomial time

Evaluation Rules (for Aexp)

$$
\overline{\langle n, \sigma\rangle \Downarrow n} \quad\langle x, \sigma\rangle \Downarrow \sigma(x)
$$

$$
\frac{\left\langle e_{1}, \sigma\right\rangle \Downarrow n_{1} \quad\left\langle e_{2}, \sigma\right\rangle \Downarrow n_{2}}{\left\langle e_{1}+e_{2}, \sigma\right\rangle \Downarrow n_{1} \text { plus } n_{2}} \frac{\left\langle e_{1}, \sigma\right\rangle \Downarrow n_{1}}{\left.\left\langle e_{1}-e_{2}, \sigma\right\rangle \Downarrow e_{2}, \sigma\right\rangle \Downarrow n_{2}} \frac{\operatorname{minus} n_{2}}{\left\langle n_{2}\right.}
$$

$$
\frac{\left\langle e_{1}, \sigma\right\rangle \Downarrow n_{1} \quad\left\langle e_{2}, \sigma\right\rangle \Downarrow n_{2}}{\left\langle e_{1} * e_{2}, \sigma\right\rangle \Downarrow n_{1} \text { times } n_{2}}
$$

- This is called structural operational semantics
- rules defined based on the structure of the expression
- These rules do not impose an order of evaluation!

Evaluation Rules (for Beep)

<true, σ > \Downarrow true
$<$ false, σ > \downarrow false

$$
\begin{gathered}
\left\langle e_{1}, \sigma\right\rangle \Downarrow n_{1}\left\langle e_{2}, \sigma\right\rangle \Downarrow n_{2} \\
\left\langle e_{1} \leq e_{2}, \sigma\right\rangle \Downarrow n_{1} \leq n_{2} \\
\left\langle e_{1}, \sigma\right\rangle \Downarrow n_{1}\left\langle e_{2}, \sigma\right\rangle \Downarrow n_{2} \\
\left\langle e_{1}=e_{2}, \sigma\right\rangle \Downarrow n_{1}=n_{2}
\end{gathered}
$$

$\left\langle b_{1}, \sigma\right\rangle \Downarrow$ false $\left\langle b_{1} \wedge b_{2}, \sigma\right\rangle \Downarrow$ false
$\left\langle b_{2}, \sigma\right\rangle \Downarrow$ false
$\left\langle b_{1} \wedge b_{2}, \sigma\right\rangle \Downarrow$ false
$\left\langle b_{1}, \sigma\right\rangle \Downarrow$ true $\left\langle b_{2}, \sigma\right\rangle \Downarrow$ true (show: candidate \vee rule) $\left\langle b_{1} \wedge b_{2}, \sigma\right\rangle \Downarrow$ true

How to Read the Rules?

- Forward (top-down) = inference rules
- if we know that the hypothesis judgments hold then we can infer that the conclusion judgment also holds
- If we know that $<\mathrm{e}_{1}, \sigma>\Downarrow 5$ and $<e_{2}, \sigma>\Downarrow 7$, then we can infer that

$$
<e_{1}+e_{2}, \sigma>\Downarrow 12
$$

How to Read the Rules?

- Backward (bottom-up) = evaluation rules
- Suppose we want to evaluate $e_{1}+e_{2}$, i.e., find n s.t. $\mathrm{e}_{1}+\mathrm{e}_{2} \Downarrow \mathrm{n}$ is derivable using the previous rules
- By inspection of the rules we notice that the last step in the derivation of $e_{1}+e_{2} \Downarrow n$ must be the addition rule
- the other rules have conclusions that would not match $e_{1}+e_{2} \Downarrow n$
- this is called reasoning by inversion on the derivation rules

Evaluation By Inversion

- Thus we must find n_{1} and n_{2} such that $\mathrm{e}_{1} \Downarrow \mathrm{n}_{1}$ and $\mathrm{e}_{2} \Downarrow \mathrm{n}_{2}$ are derivable
- This is done recursively
- If there is exactly one rule for each kind of expression we say that the rules are syntaxdirected
- At each step at most one rule applies
- This allows a simple evaluation procedure as above (recursive tree-walk)
- True for our Aexp but not Bexp. Why?

Evaluation of Commands

- The evaluation of a Com may have side effects but has no direct result
- What is the result of evaluating a command ?
- The "result" of a Com is a new state:

$$
<c, \sigma>\Downarrow \sigma^{\prime}
$$

- But the evaluation of Com might not terminate! Danger Will Robinson! (huh?)

Com Evaluation Rules 1

$\langle s k i p, \sigma>\Downarrow \sigma$

$$
\frac{\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma^{\prime} \quad\left\langle c_{2}, \sigma^{\prime}\right\rangle \Downarrow \sigma^{\prime \prime}}{\left\langle c_{1} ; c_{2}, \sigma\right\rangle \Downarrow \sigma^{\prime \prime}}
$$

$\langle b, \sigma\rangle \Downarrow$ true $\quad\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma^{\prime}$
<if b then c_{1} else $c_{2}, \sigma>\Downarrow \sigma^{\prime}$
$\langle b, \sigma\rangle \Downarrow$ false $\quad\left\langle c_{2}, \sigma\right\rangle \Downarrow \sigma^{\prime}$
<if b then c_{1} else $c_{2}, \sigma>\Downarrow \sigma^{\prime}$

Com Evaluation Rules 2

<e, σ > \downarrow n	D
<x :=e, $\sigma>\Downarrow \sigma[\mathrm{x}:=\mathrm{n}]$	$\sigma[x:=n](y)=\sigma(y)$

- Let's do while together

Com Evaluation Rules 3

$$
\begin{gathered}
\text { <e, } \sigma>\Downarrow n \\
\text { <x }:=e, \sigma>\Downarrow \sigma[x:=n] \\
\quad \begin{array}{ll}
\text { Def: } & \sigma[x:=n](x)=n \\
\sigma[x:=n](y)=\sigma(y)
\end{array} \\
\hline \text { b, } \sigma \Downarrow \text { false }
\end{gathered}
$$

$<$ while b do c, $\sigma>\Downarrow \sigma$
$<\mathrm{b}, \sigma>\Downarrow$ true $<\mathrm{c}$; while b do $\mathrm{c}, \sigma>\Downarrow{ }^{\prime}$, $<$ while b do c, $\sigma>\Downarrow \sigma^{\prime}$

Summary - Rules

- Rules of inference list the hypotheses necessary to arrive at a conclusion

- A derivation involves interlocking (wellformed) instances of rules of inference

$$
\frac{\left\langle 4, \sigma_{3}\right\rangle \Downarrow 4 \quad\left\langle 2, \sigma_{3}\right\rangle \Downarrow 2}{\left.\frac{\left\langle 4 \star 2, \sigma_{3}\right\rangle \Downarrow 8}{\left\langle(4 \star 2)-6, \sigma_{3}\right\rangle \Downarrow 2}<6, \sigma_{3}\right\rangle \Downarrow 6}
$$

Operational Semantics

Provability

- Given an opsem system, <e, $\sigma>\Downarrow n$ is provable if there exists a well-formed derivation with <e, $\sigma>\Downarrow_{\mathrm{n}}$ as its conclusion
- "well-formed" = "every step in the derivation is a valid instance of one of the rules of inference for this opsem system"
- " \vdash <e, $\sigma>\Downarrow \mathrm{n} "=$ "it is provable that $<\mathrm{e}, \sigma>\Downarrow \mathrm{n}$ "
- We would like truth and provability to be closely related

Truth?

- "A Vorlon said understanding is a threeedged sword. Your side, their side and the truth."
- Sheridan, Into The Fire
- We will not formally define "truth" yet
- Instead we appeal to your intuition
$-<2+2, \sigma>\Downarrow 4 \quad--$ should be true
$-<2+2, \sigma>\Downarrow 5 \quad--s h o u l d$ be false

Completeness

- A proof system (like our operational semantics) is complete if every true judgment is provable.
- If we replaced the subtract rule with:

$$
\frac{\left\langle e_{1}, \sigma\right\rangle \Downarrow n \quad\left\langle e_{2}, \sigma\right\rangle \Downarrow 0}{\left\langle e_{1}-e_{2}, \sigma\right\rangle \Downarrow n}
$$

AN INCOMPLETE GUIDE
TO ITS USE AND AbUSE

- Our opsem would be incomplete:
$<4-2, \sigma\rangle \Downarrow 2 \quad$-- true but not provable

Consistency

- A proof system is consistent (or sound) if every provable judgment is true.
- If we replaced the subtract rule with:

$$
\frac{\left\langle e_{1}, \sigma\right\rangle \Downarrow n_{1} \quad\left\langle e_{2}, \sigma\right\rangle \Downarrow n_{2}}{\left\langle e_{1}-e_{2}, \sigma\right\rangle \Downarrow n_{1}+3}
$$

- Our opsem would be inconsistent (or unsound):
- <6-1, $\sigma>\Downarrow 9 \quad$-- false but provable
"A foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers and divines." -- Ralph Waldo Emerson, Essays. First Series. Self-Reliance.

Desired Traits

- Typically a system (of operational semantics) is always complete (unless you forget a rule)
- If you are not careful, however, your system may be unsound
- Usually that is very bad
- A paper with an unsound type system is usually rejected
- Papers often prove (sketch) that a system is sound
- Recent research (e.g., Engler, ESP) into useful but unsound systems exists, however
- In this class your work should be complete and consistent (e.g., on homework problems)

Dr. Peter Venkman: I'm a little fuzzy on the whole "good/bad" thing here.
What do you mean, "bad"?
Dr. Egon Spengler: Try to imagine all life as you know it stopping instantaneously and every molecule in your body exploding at the speed of light.

With That In Mind

- We now return to opsem for IMP
$\frac{<e, \sigma>\Downarrow n}{<x:=e, ~ \sigma>\Downarrow \sigma[x:=n]}$

$\quad<b, \sigma>\Downarrow$ false | Def:$\sigma[x:=n](x)=n$
 $\sigma[x:=n](y)=\sigma(y)$ |
| :--- |

$<$ while b do $\mathrm{c}, \sigma>\Downarrow \sigma$
$<\mathrm{b}, \sigma>\Downarrow$ true $<\mathrm{c}$; while b do c, $\sigma>\Downarrow \sigma^{\prime}$ $<$ while b do c, $\sigma>\Downarrow \sigma^{\prime}$

Command Evaluation Notes

- The order of evaluation is important
- c_{1} is evaluated before c_{2} in $\mathrm{c}_{1} ; \mathrm{c}_{2}$
- c_{2} is not evaluated in "if true then c_{1} else c_{2} "
- c is not evaluated in "while false do c"
- b is evaluated first in "if b then c_{1} else c_{2} "
- this is explicit in the evaluation rules
- Conditional constructs (e.g., $b_{1} \vee b_{2}$) have multiple evaluation rules
- but only one can be applied at one time

Command Evaluation Trials

- The evaluation rules are not syntaxdirected
- See the rules for while, \wedge
- The evaluation might not terminate
- Recall: the evaluation rules suggest an interpreter
- Natural-style semantics has two big disadvantages (continued ...)

Disadvantages of Natural-Style Operational Semantics

- It is hard to talk about commands whose evaluation does not terminate
- i.e., when there is no σ^{\prime} such that $<c, \sigma>\Downarrow \sigma^{\prime}$
- But that is true also of ill-formed or erroneous commands (in a richer language)!
- It does not give us a way to talk about intermediate states
- Thus we cannot say that on a parallel machine the execution of two commands is interleaved (= no modeling threads)

Semantics Solution

- Small-step semantics addresses these problems
- Execution is modeled as a (possible infinite) sequence of states
- Not quite as easy as large-step natural semantics, though
- Contextual semantics is a small-step semantics where the atomic execution step is a rewrite of the program

Contextual Semantics

- We will define a relation $\langle c, \sigma\rangle \rightarrow\left\langle c^{\prime}, \sigma^{\prime}\right\rangle$
- c' is obtained from c via an atomic rewrite step
- Evaluation terminates when the program has been rewritten to a terminal program
- one from which we cannot make further progress
- For IMP the terminal command is "skip"
- As long as the command is not "skip" we can make further progress
- some commands never reduce to skip (e.g., "while true do skip")

Contextual Derivations

- In small-step contextual semantics, derivations are not tree-structured
- A contextual semantics derivation is a sequence (or list) of atomic rewrites:
$<x+(7-3), \sigma>\rightarrow\langle x+(4), \sigma>\rightarrow<5+4, \sigma>\rightarrow<9, \sigma>$
$\sigma(x)=5$

What is an Atomic Reduction?

- What is an atomic reduction step?
- Granularity is a choice of the semantics designer
- How to select the next reduction step, when several are possible?
- This is the order of evaluation issue

Redexes

- A redex is a syntactic expression or command that can be reduced (transformed) in one atomic step
- Redexes are defined via a grammar:

$$
r::=x
$$

$$
(x \in L)
$$

$\mid n_{1}+n_{2}$
| $\mathrm{x}:=\mathrm{n}$
| skip; c
| if true then c_{1} else c_{2}
| if false then C_{1} else C_{2}
| while b do c

- For brevity, we mix exp and command redexes
- Note that $(1+3)+2$ is not a redex, but $1+3$ is

Local Reduction Rules for IMP

- One for each redex: <r, $\sigma>\rightarrow\left\langle e, \sigma^{\prime}\right\rangle$
- means that in state σ, the redex r can be replaced in one step with the expression e
$<\mathrm{x}, \sigma>\rightarrow<\sigma(\mathrm{x}), \sigma>$
$<\mathrm{n}_{1}+\mathrm{n}_{2}, \sigma>\rightarrow \mathrm{n}, \sigma>$
where $\mathrm{n}=\mathrm{n}_{1}$ plus n_{2}
$\left\langle\mathrm{n}_{1}=\mathrm{n}_{2}, \sigma>\rightarrow\right.$ true, $\sigma>$ if $\mathrm{n}_{1}=\mathrm{n}_{2}$
<x := n, $\sigma>\rightarrow$ <skip, $\sigma[\mathrm{x}:=\mathrm{n}]>$
<skip; c, $\sigma>\rightarrow<\mathrm{c}, \sigma>$
<if true then c_{1} else $\mathrm{c}_{2}, \sigma>\rightarrow\left\langle\mathrm{c}_{1}, \sigma>\right.$
<if false then C_{1} else $\left.\mathrm{C}_{2}, \sigma\right\rangle \rightarrow\left\langle\mathrm{C}_{2}, \sigma\right\rangle$
$<$ while b do c, $\sigma>\rightarrow$
<if b then c; while b do c else skip, σ >

Not happy? I'll explain with pictures soon!

The Global Reduction Rule

- General idea of contextual semantics
- Decompose the current expression into the redex-to-reduce-next and the remaining program
- The remaining program is called a context
- Reduce the redex " r " to some other expression "e"
- The resulting (reduced) expression consists of "e" with the original context

As A Picture (1)

(Context)

$x:=2+2$...

Step 1: Find The Redex

As A Picture (2)

(Context)

```
x:= 2+2 (redex)
```


Step 1: Find The Redex

Step 2: Reduce The Redex

As A Picture (3)

Step 1: Find The Redex
Step 2: Reduce The Redex

As A Picture (4)

(Context)

...
$x:=4$

Step 1: Find The Redex
Step 2: Reduce The Redex
Step 3: Replace It In The Context

Contextual Analysis

- We use H to range over contexts
- We write $\mathrm{H}[r]$ for the expression obtained by placing redex r in context H
- Now we can define a small step

If $\left\langle r, \sigma>\rightarrow\left\langle e, \sigma\right.\right.$, ${ }^{\prime}$
then <H[r], $\sigma>\rightarrow \mathrm{H}[\mathrm{e}], \sigma^{\prime}>$

Contexts

- A context is like an expression (or command) with a marker • in the place where the redex goes
- Examples:
- To evaluate " $(1+3)+2$ " we use the redex $1+3$ and the context "• +2 "
- To evaluate "if $x>2$ then c_{1} else c_{2} " we use the redex x and the context "if $\bullet>2$ then c_{1} else c_{2} "

Context Terminology

- A context is also called an "expression with a hole"
- The marker • is sometimes called a hole
- $\mathrm{H}[\mathrm{r}]$ is the expression obtained from H by replacing • with the redex r

```
"Avoid context and specifics; generalize and keep repeating the generalization." -- Jack Schwartz
```


Contextual Semantics Example

- $x:=1 ; x:=x+1$ with initial state $[x:=0]$

$<$ Comm, State>	Redex \bullet	Context
$<\mathrm{x}:=1 ; \mathrm{x}:=\mathrm{x}+1,[\mathrm{x}:=0]>$	$\mathrm{x}:=1$	$\bullet ; \mathrm{x}:=\mathrm{x}+1$
<skip; $\mathrm{x}:=\mathrm{x}+1,[\mathrm{x}:=1]>$	skip; $\mathrm{x}:=\mathrm{x}+1$	\bullet
$<\mathrm{x}:=\mathrm{x}+1,[\mathrm{x}:=1]>$	x	$\mathrm{x}:=\bullet+1$

What happens next?

Contextual Semantics Example

- $x:=1 ; x:=x+1$ with initial state $[x:=0]$

<Comm, State>	Redex \bullet	Context
$<x:=1 ; x:=x+1,[x:=0]>$	$x:=1$	$\bullet ; x:=x+1$
<skip; $x:=x+1,[x:=1]>$	skip; $x:=x+1$	\bullet
$<x:=x+1,[x:=1]>$	x	$x:=\bullet+1$
$<x:=1+1,[x:=1]>$	$1+1$	$x:=\bullet$
$<x:=2,[x:=1]>$	$x:=2$	\bullet
<skip, $[x:=2]>$		

More On Contexts

- Contexts are defined by a grammar:

$$
\begin{aligned}
H::=\bullet & \mid n+H \\
& \mid H+e \\
& \mid x:=H \\
& \mid \text { if } H \text { then } c_{1} \text { else } c_{2} \\
& \mid H ; c
\end{aligned}
$$

- A context has exactly one • marker
- A redex is never a value

What's In A Context?

- Contexts specify precisely how to find the next redex
- Consider $\mathrm{e}_{1}+\mathrm{e}_{2}$ and its decomposition as $\mathrm{H}[r]$
- If e_{1} is n_{1} and e_{2} is n_{2} then $H=\bullet$ and $r=n_{1}+n_{2}$
- If e_{1} is n_{1} and e_{2} is not n_{2} then $H=n_{1}+H_{2}$ and $e_{2}=$ $\mathrm{H}_{2}[r]$
- If e_{1} is not n_{1} then $\mathrm{H}=\mathrm{H}_{1}+\mathrm{e}_{2}$ and $\mathrm{e}_{1}=\mathrm{H}_{1}[r]$
- In the last two cases the decomposition is done recursively
- Check that in each case the solution is unique

Unique Next Redex:

 Proof By Handwaving Examples- e.g. $\mathrm{c}={ }^{\prime} \mathrm{c}_{1} ; \mathrm{c}_{2}$ " - either
- $\mathrm{c}_{1}=$ skip and then $\mathrm{c}=\mathrm{H}\left[\right.$ skip; $\left.\mathrm{c}_{2}\right]$ with $\mathrm{H}=\bullet$
- or $\mathrm{c}_{1} \neq$ skip and then $\mathrm{c}_{1}=\mathrm{H}[r]$; so $\mathrm{c}=\mathrm{H}^{\prime}[r]$ with $H^{\prime}=\mathrm{H} ; \mathrm{c}_{2}$
- e.g. $c=$ "if b then c_{1} else c_{2} "
- either $b=$ true or $b=$ false and then $c=H[r]$ with H = •
- or b is not a value and $\mathrm{b}=\mathrm{H}[\mathrm{r}]$; so $\mathrm{c}=\mathrm{H}^{\prime}[\mathrm{r}]$ with $H^{\prime}=$ if H then c_{1} else c_{2}

Context Decomposition

- Decomposition theorem:

If c is not "skip" then there exist unique H and r such that c is $H[r]$

- "Exist" means progress
- "Unique" means determinism

Short-Circuit Evaluation

- What if we want to express short-circuit evaluation of \wedge ?
- Define the following contexts, redexes and local reduction rules

$$
\begin{aligned}
& \mathrm{H}::=\ldots \mid \mathrm{H} \wedge \mathrm{~b}_{2} \\
& \mathrm{r}::=\ldots \mid \text { true } \wedge \mathrm{b} \mid \text { false } \wedge b \\
& <\text { true } \wedge b, \sigma>\rightarrow<b, \sigma> \\
& \text { <false } \wedge b, \sigma>\rightarrow \text { <false, } \sigma>
\end{aligned}
$$

- the local reduction kicks in before b_{2} is evaluated

Contextual Semantics Summary

- Can view • as representing the program counter
- The advancement rules for • are non-trivial
- At each step the entire command is decomposed
- This makes contextual semantics inefficient to implement directly
- The major advantage of contextual semantics: it allows a mix of local and global reduction rules
- For IMP we have only local reduction rules: only the redex is reduced
- Sometimes it is useful to work on the context too
- We'll do that when we study memory allocation, etc.

Reading Real-World Examples

- Cobbe and Felleisen, POPL 2005
- Small-step contextual opsem for Java
- Their rule for object field access:

$$
\begin{gathered}
P \vdash\langle\mathrm{E}[\text { [obj.fd],S } \mathcal{S}\rangle\langle\mathrm{E}[\mathcal{F}(f d)], \mathcal{S}\rangle \\
\text { where } \mathcal{F}=\text { fields }(\mathcal{S}(o b j)) \text { and } f d \in \operatorname{dom}(\mathcal{F}) \\
\mathrm{P} \vdash<\mathrm{E}[\mathrm{obj} . \mathrm{fd}], \mathrm{S}>\rightarrow\langle\mathrm{E}[\mathrm{~F}(\mathrm{fd})], \mathrm{S}> \\
\text { where } \mathrm{F}=\text { fields }(\mathrm{S}(\mathrm{obj})) \text { and } \mathrm{fd} \in \operatorname{dom}(\mathrm{~F})
\end{gathered}
$$

- They use "E" for context, we use "H"
- They use " δ " for state, we use " σ "

Lost In Translation

- $\mathrm{P} \vdash<\mathrm{H}[\mathrm{obj} . \mathrm{fd}], \sigma>\rightarrow \mathrm{H}[\mathrm{F}(\mathrm{fd})], \sigma>$
- Where $\mathrm{F}=\mathrm{fields}(\sigma(\mathrm{obj}))$ and $\mathrm{fd} \in \operatorname{dom}(\mathrm{F})$
- They have "P \vdash ", but that just means "it can be proved in our system given P"
- <H[obj.fd], $\sigma>\rightarrow$ <H[F(fd)], $\sigma>$
- Where F=fields($\sigma(\mathrm{obj})$) and $\mathrm{fd} \in \operatorname{dom}(\mathrm{F})$

Lost In Translation 2

- <H[obj.fd], $\sigma>\rightarrow<\mathrm{H}[\mathrm{F}(\mathrm{fd})], \sigma>$
- Where F=fields($\sigma(\mathrm{obj})$) and $\mathrm{fd} \in \operatorname{dom}(F)$
- They model objects (like obj), but we do not (yet) - let's just make fd a variable:
- <H[fd], $\sigma>\rightarrow$ < $[\mathrm{F}(\mathrm{fd})], \sigma>$
- Where $F=\sigma$ and $\mathrm{fd} \in \mathrm{L}$
- Which is just our variable-lookup rule:
- <H[fd], $\sigma>\rightarrow \mathrm{H}[\sigma(\mathrm{fd})], \sigma>\quad$ (when $\mathrm{fd} \in \mathrm{L})$

"Sleep On It"

"The Semantics Pillow"

$$
\text { 2. } \frac{e_{0} \longrightarrow e_{0}^{\prime}}{e_{0}+e_{1} \longrightarrow e_{0}^{\prime}+e_{1}}
$$

"Learn while you sleep!"

Homework

- Homework 2 Out Today
- Due Next Week
- Read Winskel Chapter 3
- Want an extra opsem review?
- Natural deduction article
- Plotkin Chapter 2
- Optional Philosophy of Science article

