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Simple Domain Theory
• Consider programs in an eager, 

deterministic language with one variable 
called “x”
– All these restrictions are just to simplify the 

examples

• A state σ is just the value of x

– Thus we can use Z instead of Σ

• The semantics of a command give the 
value of final x as a function of input x
                         C« c ¬ :  Z ! Z?



  

Examples - Revisited

• Take C«while true do skip¬
– Unwinding equation reduces to W(x) = W(x)
– Any function satisfies the unwinding equation
– Desired solution is W(x) = ?

• Take C«while x ≠ 0 do x := x – 2¬
– Unwinding equation: 
    W(x) = if x ≠ 0 then W(x – 2) else x
– Solutions (for all values n, m 2 Z?): 

     W(x) = if x ¸ 0 then 
                  if x even then 0 else n
                else m
– Desired solution: W(x) = if x ¸ 0 Æ x even then 0 else ?



  

An Ordering of Solutions 

• The desired solution is the one in which all the 
arbitrariness is replaced with non-termination
– The arbitrary values in a solution are not uniquely 

determined by the semantics of the code

• We introduce an ordering of semantic functions 

• Let f, g 2 Z ! Z?

• Define f v g  as

        8x 2 Z. f(x) = ? or f(x) = g(x) 
– A “smaller” function terminates at most as often, 

and when it terminates it produces the same result 



  

Alternative Views of 
Function Ordering

• A semantic function f 2 Z ! Z? can be 
written as Sf µ Z £ Z as follows:

            Sf = { (x, y) | x 2 Z, f(x) = y ≠ ? }  

– set of “terminating” values for the function

• If f v g then
–  Sf µ Sg (and vice-versa)

– We say that g refines f
– We say that f approximates g
– We say that g provides more information than f



  

The “Best” Solution

• Consider again C«while x ≠ 0 do x := x – 2¬
– Unwinding equation: 
    W(x) = if x ≠ 0 then W(x – 2) else x

• Not all solutions are comparable:
W(x) = if x ¸ 0 then if x even then 0 else 1 else 2
W(x) = if x ¸ 0 then if x even then 0 else ? else 3
W(x) = if x ¸ 0 then if x even then 0 else ? else ?  
   (last one is least and best)

• Is there always a least solution?
• How do we find it?
• If only we had a general framework for answering 

these questions …



  

Fixed-Point Equations
• Consider the general unwinding equation for while

while b do c ≡ if b then c; while b do c else skip

• We define a context C (command with a hole)
              C = if b then c; ² else skip
              while b do c ≡ C[while b do c]

– The grammar for C does not contain “while b do c”

• We can find such a (recursive) context for any 
looping construct
– Consider: fact n = if n = 0 then 1 else n * fact (n – 1)
– C(n) = if n = 0 then 1 else n * ² (n – 1)
– fact = C [ fact ]



  

Fixed-Point Equations

• The meaning of a context is a semantic functional 
    F : (Z ! Z?) ! (Z ! Z?) such that

 F «C[w]¬ = F «w¬

• For “while”: C = if b then c; ² else skip 
          F w x = if «b¬ x then w («c¬ x) else x

– F depends only on «c¬ and «b¬

• We can rewrite the unwinding equation for while
– W(x) = if «b¬ x then W(«c¬ x) else x 

– or, W x = F W x for all x, 
– or, W = F W (by function equality)



  

Fixed-Point Equations

• The meaning of “while” is a solution for W = F W
• Such a W is called a fixed point of F 
• We want the least fixed point 

– We need a general way to find least fixed points

• Whether such a least fixed point exists depends on 
the properties of function F
– Counterexample: F w x = if w x = ? then 0 else ?
– Assume W is a fixed point
– F W x = W x = if W x = ? then 0 else ?
– Pick an x, then if W x = ? then W x = 0 else W x = ?
– Contradiction. This F has no fixed point! 



  

Can We Solve This?

• Good news: the functions F that correspond 
to contexts in our language have least fixed 
points!

• The only way F w x uses w is by invoking it
• If any such invocation diverges, then F w x 

diverges!
• It turns out: F is monotonic, continuous

– Not shown here!



  

New Notation: λ

•  λx. e
– an anonymous function with body e and argument x 

• Example: double(x) = x+x

double = λx. x+x

• Example: allFalse(x) = false

allFalse = λx. false

• Example: multiply(x,y) = x*y

multiply = λx. λy. x*y



  

The Fixed-Point Theorem
• If F is a semantic function corresponding to a 

context in our language
– F is monotonic and continuous (we assert)
– For any fixed-point G of F and k 2 N
            Fk(λx.? ) v G
– The least of all fixed points is
           tk Fk(λx.?)

• Proof (not detailed in the lecture):
1. By mathematical induction on k.  
    Base: F0(λx.? ) = λx.? v G
    Inductive: Fk+1(λx.? ) = F(Fk(λx.? )) v F(G) = G

–  Suffices to show that tk Fk(λx.? ) is a fixed-point

              F(tk Fk(λx.? )) = tk Fk+1(λx.? ) = tk Fk(λx.? )



  

WHILE Semantics
• We can use the fixed-point theorem to write the 

denotational semantics of while:
     «while b do c¬ = tk Fk (λx.?)
             where F f x = if «b¬ x then f («c¬ x) else x
• Example: «while true do skip¬ = λx.?
• Example: «while x ≠ 0 then x := x – 1¬ 

– F  (λx.?) x = if x = 0 then x else  ?  
– F2 (λx.?) x = if x = 0 then x else if x–1 = 0 then x–1 else ? 
                  = if 1 ¸ x ¸ 0 then 0 else  ? 
– F3 (λx.?) x = if 2 ¸ x ¸ 0 then 0 else  ? 
– LFPF = if x ¸ 0 then 0 else ?

• Not easy to find the closed form for general LFPs!



  

Discussion

• We can write the denotational semantics but 
we cannot always compute it.
– Otherwise, we could decide the halting problem

– H is halting for input 0 iff «H¬ 0 ≠ ?

• We have derived this for programs with one 
variable
– Generalize to multiple variables, even to 

variables ranging over richer data types, even 
higher-order functions: domain theory



  

Can You Remember?
You just survived the hardest lectures in 615. 
It’s all downhill from here.



  

Recall: Learning Goals

• DS is compositional
• When should I use DS? 
• In DS, meaning is a “math object”
• DS uses ? (“bottom”) to mean non-

termination
• DS uses fixed points and domains to 

handle while
– This is the tricky bit
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Aujourd’hui, nous ferons …

•History & Motivation
•Assertions
•Validity
•Derivation Rules
•Soundness
•Completeness
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Review via Class Participation

• Tell Me About Operational Semantics
• Tell Me About Structural Induction
• Tell Me About Denotational Semantics

• We would also like a semantics that is 
appropriate for arguing program correctness

• “Axiomatic Semantics”, we’ll call it. 
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Axiomatic Semantics

• An axiomatic semantics consists of:
– A language for stating assertions about programs,
– Rules for establishing the truth of assertions

• Some typical kinds of assertions:
– This program terminates
– If this program terminates, the variables x and y have the 

same value throughout the execution of the program
– The array accesses are within the array bounds

• Some typical languages of assertions
– First-order logic
– Other logics (temporal, linear, pointer-assertion)
– Special-purpose specification languages (SLIC, Z, Larch)
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History

• Program verification is almost as old as 
programming (e.g., Checking a Large Routine, 
Turing 1949)

• In the late ’60s, Floyd had rules for flow-
charts and Hoare for structured languages

• Since then, there have been axiomatic 
semantics for substantial languages, and 
many applications
– ESC/Java, SLAM, PCC, SPARK Ada, …
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Tony Hoare Quote
• “Thus the practice of proving programs would 

seem to lead to solution of three of the most 
pressing problems in software and 
programming, namely, reliability, 
documentation, and compatibility. However, 
program proving, certainly at present, will be 
difficult even for programmers of high 
caliber; and may be applicable only to quite 
simple program designs.”

-- C.A.R Hoare, An Axiomatic Basis for 
Computer Programming,1969
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Edsger Dijkstra Quote

•“Program testing can be used to 
show the presence of bugs, but 
never to show their absence!”

Qu’est-ce 
que c’est?
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Tony Hoare Quote, Mark 2
• “It has been found a serious problem to define these 

languages [ALGOL, FORTRAN, COBOL] with sufficient 
rigor to ensure compatibility among all 
implementations. ... one way to achieve this would 
be to insist that all implementations of the language 
shall satisfy the axioms and rules of inference which 
underlie proofs of properties of programs expressed 
in the language. In effect, this is equivalent to 
accepting the axioms and rules of inference as the 
ultimately definitive specification of the meaning of 
the language.” 
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Other Applications of Axiomatic 
Semantics

• The project of defining and proving everything 
formally has not succeeded (at least not yet)

• Proving has not replaced testing and debugging
• Applications of axiomatic semantics:

– Proving the correctness of algorithms (or finding bugs)
– Proving the correctness of hardware descriptions (or 

finding bugs)
– “extended static checking” (e.g., checking array bounds)
– Proof-carrying code
– Documentation of programs and interfaces
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Assertion Notation

{A} c {B}
with the meaning that:

– if A holds in state σ and if <c, σ> ⇓ σ’
– then B holds in σ’

• A is the precondition
• B is the postcondition
• For example:

{ y · x } z := x; z := z +1 { y < z }
    is a valid assertion
• These are called Hoare triples or Hoare assertions
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Assertions for IMP

• {A} c {B} is a partial correctness assertion. 
– Does not imply termination (= it is valid if c diverges)

• [A] c [B] is a total correctness assertion meaning 
that
     If A holds in state σ
     Then there exists σ’ such that <c, σ> ⇓ σ’
          and B holds in state σ’

• Now let us be more formal (you know you want it!)
– Formalize the language of assertions, A and B
– Say when an assertion holds in a state
– Give rules for deriving Hoare triples
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The Assertion Language

• We use first-order predicate logic on top of IMP 
expressions

     A :: = true | false | e1 = e2 | e1 ¸ e2

           |  A1 Æ A2 | A1 Ç A2 | A1 ) A2 | 8x.A | 9x.A

• Note that we are somewhat sloppy in mixing logical 
variables and the program variables

• All IMP variables implicitly range over integers
• All IMP boolean expressions are also assertions
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Assertion Judgment  ²
• We need to assign meanings to our assertions
• New judgment σ ² A to say that an assertion 

holds in a given state (= “A is true in σ”)
– This is well-defined when σ is defined on all 

variables occurring in A

• The ² judgment is defined inductively on the 
structure of assertions (surprise!)

• It relies on the denotational semantics of 
arithmetic expressions from IMP
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Semantics of Assertions

Formal definition
 σ ² true always
 σ ² e1 = e2 iff «e1¬ σ = «e2¬σ
 σ ² e1 ¸ e2 iff «e1¬ σ ¸ «e2¬σ
 σ ² A1 Æ A2 iff σ ² A1 and σ ² A2

 σ ² A1 Ç A2 iff σ ² A1 or σ ² A2

 σ ² A1 ) A2 iff σ ² A1 implies σ ² A2

 σ ² 8x.A iff 8n2Z. σ[x:=n] ² A
 σ ² 9x.A iff 9n2Z. σ[x:=n] ² A
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Hoare Triple Semantics

• Now we can define formally the meaning of a 
partial correctness assertion ² { A } c { B }  

8σ2Σ. 8σ’2Σ. (σ ² A Æ <c,σ> ⇓ σ’) ) σ’ ² B
• … and a total correctness assertion ² [A] c [B]

8σ2Σ. σ ² A ) 9σ’2Σ. <c,σ> ⇓ σ’ Æ σ’ ² B
• or even better yet: (explain this to me!)
        8σ2Σ. 8σ’2Σ. (σ ² A Æ <c,σ> ⇓ σ’) ) σ’ ² B 

    Æ

        8σ2Σ. σ ² A ) 9σ’2Σ. <c,σ> ⇓ σ’
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Deriving Assertions

• Have a formal mechanism to decide ² { A } c { B }
– But it is not satisfactory
– Because ² {A} c {B} is defined in terms of the operational 

semantics, we practically have to run the program to 
verify an assertion

– It is impossible to effectively verify the truth of a 8x. A 
assertion (check every integer?)

• Plan: define a symbolic technique for deriving valid 
assertions from others that are known to be valid
– We start with validity of first-order formulas
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Derivation Rules

• We write ` A when A can be derived from basic 
axioms (` A === “we can prove A”)

• The derivation rules for ` A are the usual ones from 
first-order logic with arithmetic:

` A Æ B

` A      ` B

` 8x.A

` [a/x]A    (a is fresh)  

` 9x.A

` [e/x]A

` B

` A ) B   ` A

` A ) B

` A
…

` B ` B

` [a/x]A

…

` B

` 9x.A

` [e/x]A

` 8x.A
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Derivation Rules for Hoare Triples

• Similarly we write ` {A} c {B} when we 
can derive the triple using derivation 
rules

• There is one derivation rule for each 
command in the language

• Plus, the evil rule of consequence

` {A’} c {B’}
` A’ ) A   ` {A} c {B}   ` B ) B’
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Derivation Rules for Hoare Logic
• One rule for each syntactic construct:

` {A} skip {A} ` {[e/x]A} x := e {A}

` {A} c1; c2 {C}
` {A} c1 {B}    ` {B} c2 {C}

` {A} if b then c1 else c2 {B}
` {A Æ b} c1 {B}    ` {A Æ : b} c2 {B}

` {A} while b do c {A Æ : b}
` {A Æ b} c {A}
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Alternate Hoare Rules
• For some constructs multiple rules are possible:
• (Exercise: these rules can be derived from the 

previous ones using the consequence rules)

` {A} x := e {9x0.[x0/x]A Æ x = [x0/x]e}

` {A} while b do c {B}
` A Æ b ) C    ` {C} c {A}   ` A Æ : b ) B

(This one is called the “forward” axiom for assignment)

(C is the loop invariant)
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Example: Assignment

• (Assuming that x does not appear in e)
            Prove that {true} x := e { x = e }
• Assignment Rule:

     because [e/x](x = e) ! e = e
• Use Assignment + Consequence:

` {e = e} x := e {x = e}

` {e = e} x := e {x = e}

` {true} x := e {x = e}

` true ) e = e
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The Assignment Axiom (Cont.)

• “Assignment is undoubtedly the most characteristic 
feature of programming a digital computer, and one 
that most clearly distinguishes it from other 
branches of mathematics. It is surprising therefore 
that the axiom governing our reasoning about 
assignment is quite as simple as any to be found in 
elementary logic.” - Tony Hoare

• Caveats are sometimes needed for languages with 
aliasing (the strong update problem):
– If x and y are aliased then
     { true } x := 5 { x + y = 10}
   is true
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Example: Conditional

• D1 and D2 were obtained by consequence and 
assignment. D1 details:

` {true} if y · 0 then x := 1 else x := y {x > 0}

D1 :: ` {true Æ y · 0} x := 1 {x > 0}

D2 :: ` {true Æ y > 0} x := y {x > 0}

` D1 :: {true Æ y · 0} x := 1 {x > 0}

` {1 > 0} x := 1 {x > 0}             ` true Æ y · 0 ) 1 > 0
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Example: Loop
• We want to derive that

` {x · 0} while x · 5 do x := x + 1 { x = 6}
• Use the rule for while with invariant x · 6

• Then finish-off with consequence

` {x · 6} while x · 5 do x := x+1 { x · 6 Æ x > 5}

` {x+1 · 6} x := x+1 { x · 6 }

` {x · 6 Æ x · 5 } x := x+1 {x · 6}

` x · 6 Æ x · 5 ) x+1 · 6  

` {x · 6} while … { x · 6 Æ x > 5}

` {x · 0} while … {x = 6}

` x · 0 ) x · 6

 ` x · 6 Æ x > 5 ) x = 6
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Using Hoare Rules

• Hoare rules are mostly syntax directed
• There are three wrinkles:

– What invariant to use for while? (fix points, widening)
– When to apply consequence? (theorem proving)
– How do you prove the implications involved in 

consequence? (theorem proving)

• This is how theorem proving gets in the picture
– This turns out to be doable!
– The loop invariants turn out to be the hardest problem!

    (Should the programmer give them? See Dijkstra, ESC.)
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Where Do We Stand?
• We have a language for asserting properties 

of programs
• We know when such an assertion is true
• We also have a symbolic method for deriving 

assertions

A
{A} c {B}

σ ² A
² {A} c {B}

` A
` { A} c {B}

symbolic
derivation
(theorem proving)

meaning

soundness

completeness
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Soundness Soundness 
and and 

CompletenessCompleteness
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Soundness of Axiomatic Semantics

• Formal statement of soundness:
       if ` { A } c { B } then ² { A } c { B } 
   or, equivalently
       For all σ, if σ ² A 

and Op :: <c, σ> ⇓ σ’ 
       and Pr :: ` { A } c { B } 

then σ’ ² B 
• “Op” === “Opsem Derivation”
• “Pr” === “Axiomatic Proof” 

How shall we 
prove this, oh 

class?
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Not Easily!

• By induction on the structure of c?
– No, problems with while and rule of consequence

• By induction on the structure of Op?
– No, problems with while

• By induction on the structure of Pr?
– No, problems with consequence

• By simultaneous induction on the structure of 
Op and Pr
– Yes! New Technique!
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Simultaneous Induction

• Consider two structures Op and Pr
– Assume that x < y iff x is a substructure of y

• Define the ordering 
         (o, p) Á (o’, p’) iff    

o < o’   or   o = o’ and p < p’
– Called lexicographic (dictionary) ordering

• This Á is a well-founded order and leads to 
simultaneous induction 

• If o < o’ then h can actually be larger than h’! 
• It can even be unrelated to h’ !
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How’s The 
Homework 

Going?

• Remember that 
you can’t just 
define a meaning 
function in terms 
of itself – you 
must use some 
fixed point 
machinery. 


