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SemanticsSemantics
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How’s The 
Homework 

Going?

• Remember that 
you can’t just 
define a meaning 
function in terms 
of itself – you 
must use some 
fixed point 
machinery. 
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Observations

• A key part of doing research is noticing when 
something is incongruous or when something 
changes – or otherwise spotting patterns. 
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Observations

• A key part of doing research is noticing when 
something is incongruous or when something 
changes – or otherwise spotting patterns. 

• suffix === state
• r1 r2 === c1 ; c2
• r1*   === while ? do r1
• r1 | r2 === if ? then r1 else r2
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Aujourd’hui, nous ferons …

•Assertions
•Validity
•Derivation Rules
•Soundness
•Completeness
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Assertions for IMP

• {A} c {B} is a partial correctness assertion. 
– Does not imply termination (= it is valid if c diverges)

• [A] c [B] is a total correctness assertion meaning 
that
     If A holds in state σ
     Then there exists σ’ such that <c, σ> ⇓ σ’
          and B holds in state σ’

• Now let us be more formal (you know you want it!)
– Formalize the language of assertions, A and B
– Say when an assertion holds in a state
– Give rules for deriving Hoare triples
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The Assertion Language

• We use first-order predicate logic on top of IMP 
expressions

     A :: = true | false | e1 = e2 | e1 ¸ e2

           |  A1 Æ A2 | A1 Ç A2 | A1 ) A2 | 8x.A | 9x.A

• Note that we are somewhat sloppy in mixing logical 
variables and the program variables

• All IMP variables implicitly range over integers
• All IMP boolean expressions are also assertions
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Assertion Judgment  ²

• We need to assign meanings to our assertions

• New judgment σ ² A to say that an assertion 

holds in a given state (= “A is true in σ”)
– This is well-defined when σ is defined on all 

variables occurring in A

• The ² judgment is defined inductively on the 
structure of assertions (surprise!)

• It relies on the denotational semantics of 
arithmetic expressions from IMP
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Semantics of Assertions
Formal definition

 σ ² true always

 σ ² e1 = e2 iff «e1¬ σ = «e2¬σ
 σ ² e1 ¸ e2 iff «e1¬ σ ¸ «e2¬σ
 σ ² A1 Æ A2 iff σ ² A1 and σ ² A2

 σ ² A1 Ç A2 iff σ ² A1 or σ ² A2

 σ ² A1 ) A2 iff σ ² A1 implies σ ² A2

 σ ² 8x.A iff 8n2Z. σ[x:=n] ² A

 σ ² 9x.A iff 9n2Z. σ[x:=n] ² A
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Hoare Triple Semantics

• Now we can define formally the meaning of a 
partial correctness assertion ² { A } c { B }  

8σ2Σ. 8σ’2Σ. (σ ² A Æ <c,σ> ⇓ σ’) ) σ’ ² B

• … and a total correctness assertion ² [A] c [B]

8σ2Σ. σ ² A ) 9σ’2Σ. <c,σ> ⇓ σ’ Æ σ’ ² B

• or even better yet: (explain this to me!)

        8σ2Σ. 8σ’2Σ. (σ ² A Æ <c,σ> ⇓ σ’) ) σ’ ² B 

    Æ

        8σ2Σ. σ ² A ) 9σ’2Σ. <c,σ> ⇓ σ’
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Deriving Assertions

• Have a formal mechanism to decide ² { A } c { B }

– But it is not satisfactory

– Because ² {A} c {B} is defined in terms of the operational 
semantics, we practically have to run the program to 
verify an assertion

– It is impossible to effectively verify the truth of a 8x. A 
assertion (check every integer?)

• Plan: define a symbolic technique for deriving valid 
assertions from others that are known to be valid
– We start with validity of first-order formulas
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Derivation Rules

• We write ` A when A can be derived from basic 
axioms (` A === “we can prove A”)

• The derivation rules for ` A are the usual ones from 
first-order logic with arithmetic:

` A Æ B

` A      ` B

` 8x.A

` [a/x]A    (a is fresh)  

` 9x.A

` [e/x]A

` B

` A ) B   ` A

` A ) B

` A

…
` B ` B

` [a/x]A

…

` B

` 9x.A

` [e/x]A

` 8x.A
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Derivation Rules for Hoare Triples

• Similarly we write ` {A} c {B} when we 
can derive the triple using derivation 
rules

• There is one derivation rule for each 
command in the language

• Plus, the evil rule of consequence

` {A’} c {B’}
` A’ ) A   ` {A} c {B}   ` B ) B’
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Derivation Rules for Hoare Logic
• One rule for each syntactic construct:

` {A} skip {A} ` {[e/x]A} x := e {A}

` {A} c1; c2 {C}
` {A} c1 {B}    ` {B} c2 {C}

` {A} if b then c1 else c2 {B}
` {A Æ b} c1 {B}    ` {A Æ : b} c2 {B}

` {A} while b do c {A Æ : b}
` {A Æ b} c {A}
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Alternate Hoare Rules
• For some constructs multiple rules are possible:
• (Exercise: these rules can be derived from the 

previous ones using the consequence rules)

` {A} x := e {9x0.[x0/x]A Æ x = [x0/x]e}

` {A} while b do c {B}
` A Æ b ) C    ` {C} c {A}   ` A Æ : b ) B

(This one is called the “forward” axiom for assignment)

(C is the loop invariant)
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Example: Assignment

• (Assuming that x does not appear in e)
            Prove that {true} x := e { x = e }
• Assignment Rule:

     because [e/x](x = e) ! e = e

• Use Assignment + Consequence:

` {e = e} x := e {x = e}

` {e = e} x := e {x = e}

` {true} x := e {x = e}

` true ) e = e
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The Assignment Axiom (Cont.)

• “Assignment is undoubtedly the most characteristic 
feature of programming a digital computer, and one 
that most clearly distinguishes it from other 
branches of mathematics. It is surprising therefore 
that the axiom governing our reasoning about 
assignment is quite as simple as any to be found in 
elementary logic.” - Tony Hoare

• Caveats are sometimes needed for languages with 
aliasing (the strong update problem):
– If x and y are aliased then
     { true } x := 5 { x + y = 10}
   is true
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Example: Conditional

• D1 and D2 were obtained by consequence and 
assignment. D1 details:

` {true} if y · 0 then x := 1 else x := y {x > 0}

D1 :: ` {true Æ y · 0} x := 1 {x > 0}

D2 :: ` {true Æ y > 0} x := y {x > 0}

` D1 :: {true Æ y · 0} x := 1 {x > 0}

` {1 > 0} x := 1 {x > 0}             ` true Æ y · 0 ) 1 > 0
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Example: Loop
• We want to derive that

` {x · 0} while x · 5 do x := x + 1 { x = 6}

• Use the rule for while with invariant x · 6

• Then finish-off with consequence

` {x · 6} while x · 5 do x := x+1 { x · 6 Æ x > 5}

` {x+1 · 6} x := x+1 { x · 6 }

` {x · 6 Æ x · 5 } x := x+1 {x · 6}

` x · 6 Æ x · 5 ) x+1 · 6  

` {x · 6} while … { x · 6 Æ x > 5}

` {x · 0} while … {x = 6}

` x · 0 ) x · 6

 ` x · 6 Æ x > 5 ) x = 6
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Using Hoare Rules

• Hoare rules are mostly syntax directed
• There are three wrinkles:

– What invariant to use for while? (fix points, widening)
– When to apply consequence? (theorem proving)
– How do you prove the implications involved in 

consequence? (theorem proving)

• This is how theorem proving gets in the picture
– This turns out to be doable!
– The loop invariants turn out to be the hardest problem!
    (Should the programmer give them? See Dijkstra, ESC.)
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Where Do We Stand?
• We have a language for asserting properties 

of programs
• We know when such an assertion is true
• We also have a symbolic method for deriving 

assertions

A
{A} c {B}

σ ² A
² {A} c {B}

` A
` { A} c {B}

symbolic
derivation
(theorem proving)

meaning

soundness

completeness
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Soundness Soundness 
and and 

CompletenessCompleteness
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Soundness of Axiomatic Semantics

• Formal statement of soundness:
       if ` { A } c { B } then ² { A } c { B } 

   or, equivalently
       For all σ, if σ ² A 

and Op :: <c, σ> ⇓ σ’ 
       and Pr :: ` { A } c { B } 

then σ’ ² B 

• “Op” === “Opsem Derivation”
• “Pr” === “Axiomatic Proof” 

How shall we 
prove this, oh 

class?
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Not Easily!

• By induction on the structure of c?
– No, problems with while and rule of consequence

• By induction on the structure of Op?
– No, problems with while

• By induction on the structure of Pr?
– No, problems with consequence

• By simultaneous induction on the structure of 
Op and Pr
– Yes! New Technique!
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Simultaneous Induction

• Consider two structures Op and Pr
– Assume that x < y iff x is a substructure of y

• Define the ordering 
         (o, p) Á (o’, p’) iff    

o < o’   or   o = o’ and p < p’
– Called lexicographic (dictionary) ordering

• This Á is a well-founded order and leads to 
simultaneous induction 

• If o < o’ then h can actually be larger than h’! 
• It can even be unrelated to h’!
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““The Real The Real 
Deal” Deal” 

Axiomatic Axiomatic 
SemanticsSemantics
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Soundness of Axiomatic Semantics

• Formal statement of soundness:
       If ` { A } c { B } then ² { A } c { B } 
   or, equivalently
       For all σ, if σ ² A 

and Op :: <c, σ> ⇓ σ’ 
and Pr :: ` { A } c { B } 

then σ’ ² B 
• “Op” = “Opsem Derivation”
• “Pr” = “Axiomatic Proof” 
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Simultaneous Induction

• Consider two structures Op and Pr
– Assume that x < y iff x is a substructure of y

• Define the ordering 
         (o, p) Á (o’, p’) iff    

o < o’   or   o = o’ and p < p’
– Called lexicographic (dictionary) ordering

• This Á is a well founded order and leads to 
simultaneous induction 

• If o < o’ then p can actually be larger than p’! 
• It can even be unrelated to p’!
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Soundness of the While Rule
(Indiana Proof and the Slide of Doom)

• Case: last rule used in Pr : ` {A} c {B} was the while rule:

• Two possible rules for the root of Op (by inversion)
– We’ll only do the complicated case:

Assume that σ ² A
To show that σ’’ ² A Æ : b
• By soundness of booleans and Op1 we get σ ² b

– Hence σ ² A Æ b
• By IH on Pr1 and Op2 we get σ’ ² A
• By IH on Pr and Op3 we get  σ’’ ² A Æ : b, q.e.d.

– This is the tricky bit!

` {A} while b do c {A Æ : b}

Pr1 :: ` {A Æ b} c {A}

<while b do c, σ > ⇓ σ’’

Op1 :: <b, σ> ⇓ true      Op2 :: <c,σ> ⇓ σ’      Op3 ::  <while b do c, σ’ > ⇓ 
σ’’
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Soundness of the While Rule

• Note that in the last use of IH the derivation 
Pr did not decrease

• But Op3 was a sub-derivation of Op

• See Winskel, Chapter 6.5, for a soundness 
proof with denotational semantics
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Completeness of Axiomatic 
Semantics

• If ² {A} c {B} can we always derive ` {A} c {B} ?
• If so, axiomatic semantics is complete
• If not then there are valid properties of programs 

that we cannot verify with Hoare rules :-( 
• Good news: for our language the Hoare triples are 

complete
• Bad news: only if the underlying logic is complete

(whenever ² A we also have ` A)
- this is called relative completeness
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Examples, General Plan

• OK, so:
² { x < 5 Æ z = 2 } y := x + 2 { y < 7 }

• Can we prove it? 
?`? { x < 5 Æ z = 2 } y := x + 2 { y < 7 }

• Well, we could easily prove: 
` { x+2 < 7 } y := x + 2 { y < 7 }

• And we know … 
` x < 5 Æ z = 2 ) x+2 < 7

• Shouldn’t those two proofs be enough? 
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Proof Idea
• Dijkstra’s idea: To verify that { A } c { B }

a) Find out all predicates A’ such that ² { A’ } c { B } 
• call this set Pre(c, B) (Pre = “pre-conditions”)

b) Verify for one A’ 2 Pre(c, B) that A ) A’ 

• Assertions can be ordered:

false true)

strong weak 
Pre(c, B)

weakest
precondition: WP(c, B)

• Thus: compute WP(c, B) and prove A ) WP(c, B)

A
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Proof Idea (Cont.)
• Completeness of axiomatic semantics:

If ² { A } c { B } then ` { A } c { B }
• Assuming that we can compute wp(c, B) with the 

following properties: 
• wp is a precondition (according to the Hoare rules)
             ` { wp(c, B) } c { B } 
• wp is (truly) the weakest precondition          
             If  ² { A } c { B }   then  ² A ) wp(c, B)

• We also need that whenever ² A then ` A !

` {A} c {B}

` A ) wp(c, B)         ` {wp(c, B)} c {B}
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Weakest Preconditions
• Define wp(c, B) inductively on c, following the Hoare rules:
• wp(c1; c2, B) = 
    wp(c1, wp(c2, B))

• wp(x := e, B) = 
    [e/x]B

• wp(if E then c1 else c2, B) = 
    E ) wp(c1, B) Æ :E ) wp(c2, B)

{ A } c1; c2 {B}

{A} c1 {C}            {C} c2 {B}

{ [e/x]B } x := E {B}

{ E ) A1 Æ : E ) A2} if E then c1 else c2 {B}

{A1} c1 {B}            {A2} c2 {B}
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Weakest Preconditions for Loops

• We start from the unwinding equivalence
         while b do c    =  

if b then c; while b do c else skip
• Let w = while b do c and W = wp(w, B)
• We have that 
          W = b ) wp(c, W)   Æ   : b ) B
• But this is a recursive equation!

– We know how to solve these using domain theory
• But we need a domain for assertions
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A Partial Order for Assertions
• Which assertion contains the least information?

– “true” – does not say anything about the state
• What is an appropriate information ordering ?

A v A’      iff       ² A’ ) A
• Is this partial order complete? 

– Take a chain A1 v A2 v …

– Let ÆAi be the infinite conjunction of Ai

            σ ² ÆAi  iff for all i we have that σ ² Ai

– I assert that ÆAi is the least upper bound

• Can ÆAi be expressed in our language of assertions?
– In many cases: yes (see Winskel), we’ll assume yes for 

now
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Weakest Precondition for WHILE
• Use the fixed-point theorem
           F(A) = b ) wp(c, A) Æ : b ) B

– (Where did this come from? Two slides back!)
– I assert that F is both monotonic and continuous

• The least-fixed point (= the weakest fixed 
point) is

wp(w, B) = ÆFi(true)
• Notice that unlike for denotational semantics 

of IMP we are not working on a flat domain!
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Weakest Preconditions (Cont.)
• Define a family of wp’s

– wpk(while e do c, B) = weakest precondition on which 
the loop terminates in B if it terminates in k or fewer 
iterations

wp0 = : E ) B 
wp1 = E ) wp(c, wp0) Æ : E ) B
…

• wp(while e do c, B) = Æk ¸ 0 wpk = lub {wpk | k ¸ 0}
• See Necula document on the web page for the proof 

of completeness with weakest preconditions
• Weakest preconditions are 

– Impossible to compute (in general)
– Can we find something easier to compute yet sufficient?
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Not Quite Weakest Preconditions

• Recall what we are trying to do:
false true)

strong weak 
Pre(s, B)

weakest
precondition: WP(c, B)A

verification 
condition: VC(c, B)

• Construct a verification condition: VC(c, B)
– Our loops will be annotated with loop invariants!
– VC is guaranteed to be stronger than WP
– But still weaker than A: A ) VC(c, B) ) WP(c, B)
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Groundwork
• Factor out the hard work

– Loop invariants
– Function specifications (pre- and post-conditions)

• Assume programs are annotated with such specs
– Good software engineering practice anyway
– Requiring annotations = Kiss of Death? 

• New form of while that includes a loop invariant:

whileInv b do c
– Invariant formula Inv must hold every time before b is 

evaluated

• A process for computing VC(annotated_command, 
post_condition) is called VCGen
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Verification Condition Generation

• Mostly follows the definition of the wp 
function:
VC(skip, B) = B
VC(c1; c2, B) = VC(c1, VC(c2, B))

VC(if b then c1 else c2, B) = 

b ) VC(c1, B) Æ :b ) VC(c2, B)

VC(x := e, B)  = [e/x] B
VC(let x = e in c, B) = [e/x] VC(c, B)
VC(whileInv b do c, B) = ?
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     VC(whileInv e do c, B) = 

Inv Æ (8x1…xn. Inv ) (e ) VC(c, Inv)  Æ  : e ) B) )

• Inv is the loop invariant (provided externally)
• x1, …, xn are all the variables modified in c
• The 8 is similar to the 8 in mathematical induction:

P(0) Æ 8n 2 N. P(n) ) P(n+1)

VCGen for WHILE

Inv holds
on entry

Inv is preserved in 
an arbitrary iteration

B holds when the 
loop terminates 

in an arbitrary iteration
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Example VCGen Problem
• Let’s compute the VC of this program with 

respect to post-condition x ≠ 0

x = 0;

y = 2;
whilex+y=2 y > 0 do

    y := y - 1; 
    x := x + 1

First, what do we 
expect? What pre-
condition do we 

need to ensure x≠
0 after this?
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Example of VC
• By the sequencing rule, first we do the while loop 

(call it w):
whilex+y=2 y > 0 do

    y := y - 1; 
    x := x + 1

• VCGen(w, x ≠ 0) = x+y=2 Æ 

8x,y. x+y=2 ) (y>0 ) VC(c, x+y=2)  Æ y·0 ) x ≠ 0)

• VCGen(y:=y-1 ; x:=x+1, x+y=2) =
   (x+1) + (y-1) = 2

• w Result: x+y=2 Æ 

8x,y. x+y=2 ) (y>0 ) (x+1)+(y-1)=2  Æ y·0 ) x ≠ 0)

Pr
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Example of VC (2)

• VC(w, x ≠ 0) = x+y=2 Æ 

8x,y. x+y=2 ) 

(y>0 ) (x+1)+(y-1)=2  Æ y·0 ) x ≠ 0)

• VC(x := 0; y := 2 ; w, x ≠ 0) = 0+2=2 Æ
8x,y. x+y=2 ) 

(y>0 ) (x+1)+(y-1)=2  Æ y·0 ) x ≠ 0)

• So now we ask an automated theorem prover 
to prove it. 
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Thoreau, Thoreau, Thoreau

$ ./Simplify 

> (AND (EQ (+ 0 2) 2) 

(FORALL ( x y ) (IMPLIES (EQ (+ x y) 2) 

(AND (IMPLIES (> y 0) 

 (EQ (+ (+ x 1)(- y 1)) 2))

(IMPLIES (<= y 0) (NEQ x 0))))))

1: Valid.

• Huzzah!
• Simplify is a non-trivial five megabytes
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Can We Mess Up VCGen?
• The invariant is from the user (= the 

adversary, the untrusted code base)
• Let’s use a loop invariant that is too weak, 

like “true”. 
• VC = true Æ 8x,y. true ) 

(y>0 ) true  Æ  y·0 ) x ≠ 0)

• Let’s use a loop invariant that is false, like “x 
≠ 0”. 

• VC = 0 ≠ 0 Æ 8x,y. x ≠ 0 ) 

(y>0 ) x+1 ≠ 0  Æ  y·0 ) x ≠ 0)
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Emerson, Emerson, Emerson
$ ./Simplify 
> (AND TRUE
  (FORALL ( x y ) (IMPLIES TRUE
    (AND (IMPLIES (> y 0) TRUE)
         (IMPLIES (<= y 0) (NEQ x 0))))))
Counterexample: context:
    (AND
      (EQ x 0)
      (<= y 0)
    )
1: Invalid.

• OK, so we won’t be fooled. 



#50

Soundness of VCGen

• Simple form
² { VC(c,B) } c { B }

• Or equivalently that
² VC(c, B) ) wp(c, B)

• Proof is by induction on the structure of c
– Try it!

• Soundness holds for any choice of invariant!
• Next: properties and extensions of VCs



#51

VC and Invariants

• Consider the Hoare triple:
{x ≤ 0} whileI(x) x ≤ 5 do x := x + 1 {x = 6} 

• The VC for this is:
x ≤ 0 ⇒  I(x)  ∧   ∀x. (I(x) ⇒ (x > 5 ⇒ x = 6 ∧
                                               x ≤ 5 ⇒ I(x+1) ))

• Requirements on the invariant:
– Holds on entry ∀x. x ≤ 0 ⇒  I(x) 
– Preserved by the body ∀x.  I(x) ∧  x ≤ 5 ⇒ I(x+1)
– Useful ∀x.  I(x) ∧ x > 5 ⇒ x = 6 

• Check that I(x) = x ≤ 6 satisfies all constraints
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Forward VCGen

• Traditionally the VC is computed backwards
– That’s how we’ve been doing it in class
– It works well for structured code

• But it can also be computed forward 
– Works even for un-structured languages (e.g., 

assembly language)
– Uses symbolic execution, a technique that has 

broad applications in program analysis 
• e.g., the PREfix tool (Intrinsa, Microsoft) does this
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Forward VC Gen Intuition
• Consider the sequence of assignments

x1 := e1; x2 := e2

• The VC(c, B) = [e1/x1]([e2/x2]B)

                        = [e1/x1, e2[e1/x1]/x2] B

• We can compute the substitution in a forward way 
using symbolic execution (aka symbolic evaluation)
– Keep a symbolic state that maps variables to expressions
– Initially, Σ0 = { } 

– After x1 := e1, Σ1 = { x1 ! e1 }

– After x2 := e2, Σ2 = {x1 ! e1, x2 ! e2[e1/x1] }

– Note that we have applied Σ1 as a substitution to right-
hand side of assignment x2 := e2
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Simple Assembly Language

• Consider the language of instructions:
I ::= x := e  |  f() | if e goto L  |  goto L | 

L: | return | inv e

• The “inv e” instruction is an annotation
– Says that boolean expression e holds at that point

• Each function f() comes with Pref and Postf 
annotations (pre- and post-conditions)

• New Notation (yay!): Ik is the instruction at 
address k
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Symex States

• We set up a symbolic execution state:
 Σ : Var ! SymbolicExpressions
 Σ(x)         = the symbolic value of x in state Σ
 Σ[x:=e]    = a new state in which x’s value is e
• We use states as substitutions:
Σ(e) - obtained from e by replacing x with Σ(x)
• Much like the opsem so far …
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Symex Invariants
• The symbolic executor tracks invariants 

passed
• A new part of symex state: Inv µ {1…n}

• If k 2 Inv then Ik is an invariant instruction 
that we have already executed

• Basic idea: execute an inv instruction only 
twice:
– The first time it is encountered
– Once more time around an arbitrary iteration
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Symex Rules
• Define a VC function as an interpreter:

VC : Address £ SymbolicState £ InvariantState ! Assertion

if Ik = returnΣ(Postcurrent-function)

if Ik = x := eVC(k+1, Σ[x:=Σ(e)], Inv)

VC(k, Σ, Inv) =

if Ik = f()

Σ(Pref)    Æ

8a1..am.Σ’(Postf) ) 

     VC(k+1, Σ’, Inv)
(where y1, …, ym are modified by f)

and a1, …, am are fresh parameters

and Σ’ = Σ[y1 := a1, …, ym := am]

if Ik = if e goto L
   e ) VC(L, Σ, Inv)      Æ 
: e ) VC(k+1, Σ, Inv)

if Ik = goto L VC(L, Σ,  Inv)
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Symex Invariants (2a)
Two cases when seeing an invariant instruction:
2. We see the invariant for the first time

– Ik = inv e

– k ∉ Inv    (= “not in the set of invariants we’ve seen”)

– Let {y1, …, ym} = the variables that could be modified on 
a path from the invariant back to itself

– Let a1, …, am be fresh new symbolic parameters

VC(k, Σ, Inv) = 
         Σ(e) Æ 8a1…am. Σ’(e) ) VC(k+1, Σ’, Inv [ {k}])

 with  Σ’ = Σ[y1 := a1, …, ym := am]
                                                             (like a function call)
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Symex Invariants (2b)

1. We see the invariant for the second time
– Ik = inv E

– k 2 Inv

VC(k, Σ, Inv) = Σ(e)
                                                        (like a function return)

• Some tools take a more simplistic approach
– Do not require invariants
– Iterate through the loop a fixed number of times
– PREfix, versions of ESC (DEC/Compaq/HP SRC)
– Sacrifice completeness for usability


