Powerplay Transformer Error Ed |

Q

[TRZ2310] & level ik a time dimension must have a time rank which is
greater than itz preceding level and less than its fallowing level. Level Dtd
444 wieek hasz rank B0. In thiz caze, itz rank should be greater than 40

and legs than 10.

Axiomatic
Semantics:

Preconditions

MY STUDENTS DREW ME INTO
ANOTHER POLITICAL ARGUMENT:

| EHIT HARRENS,

LATELY, POLITICAL DEBATES BUTHER
ME. THEY JUST SHOW HOW G0oD
SMART PEOPLE ARE AT RATIONALIZING.

THE WORLD 1S 50 COMPLIGATED - THE MORE
T LEARN, THE LESS CLEAR ANYTHING GETS.
THERE. ARE T00 MANY' IDEAS AND ARGUMENTS
TO PICK AND CHOOSE FROM. How (AN T TRUST
MYSELF TD Know THETRUT;E ABOUT ANY THING?
AND IF EVERYTHING T KNow
15 SO SHAKY, WHAT 0N EARTH
HM I DOING TEACHINGS

1

T GUESS you JUST [0

YOUR BEST. NO ONE CAN
IMPART PERFECT UNIVERSAL
TRUTHS T0 THER, STUDENTS,

| e

... EXCEPT /
MATH TEHU—IERS

'[HP]NK YOU.

2

Proof Idea

e Dijkstra’s idea: To verify that { A} c{ B}
a) Find out all predicates A’ such thatF{ A’ } c{ B}
« call this set Pre(c, B) (Pre = “pre-conditions”)

b) Verify for one A’ € Pre(c, B) that A = A’
e Assertions can be ordered:

false = true

Pre(c, B)

strong i Tk : weak
WeaKes

A precondition: WP(c, B)

e Thus: compute WP(c, B) and prove A = WP(c, B)

#2

Proof Idea (Cont.)

 Completeness of axiomatic semantics:
fE{A}c{B}then-{A}c{B}

e Assuming that we can compute wp(c, B) with the
following properties:

e Wp is a precondition (according to the Hoare rules)
—{wp(c,B)}c{B}
e wp is (truly) the weakest precondition
If F{A}c{B} then F A= wp(c, B)
- A = wp(c, B) - {wp(c, B)} c {B}
- {A} c {B}

« We also need that whenever = A then - A !

#3

Weakest Preconditions

e Define wp(c, B) inductively on c, following the Hoare rules:

« WP(Cy; Gy, B) = A} ¢ 1C} iC} ¢, 1B}
wp(c,, Wp(c,, B)) {A}c;c, {B}

e WP(X :=¢, B) =
[e/x]B {[e/x]B} x :=E {B}

A ¢ {BS A GBS
{E=A A-E= A}if E then c, else c, {B}

« wp(if E then c, else c,, B) =
E = wpl(c,, B) A —=E = wp(c,, B)

#4

Weakest Preconditions for Loops

e We start from the unwinding equivalence
whilebdoc =
if b then c; while b do c else skip
e Let w = while b do c and W = wp(w, B)
e We have that
W=b=wp(c,W) A -b=0B8B
e But this is a recursive equation!
- We know how to solve these using domain theory
e But we need a domain for assertions

#5

A Partial Order for Assertions

Which assertion contains the least information?
- “true” - does not say anything about the state

What is an appropriate information ordering ?
ACA’ iff FA = A
Is this partial order complete?
- Takeachain A, C A, C ..
- Let AA, be the infinite conjunction of A
o E AA, iff for all i we have that o F A

- | assert that /\A. is the least upper bound

Can AA. be expressed in our language of assertions?

- In many cases: yes (see Winskel), we’ll assume yes for
now

#6

Weakest Precondition for WHILE
e Use the fixed-point theorem
F(A)=b = wp(c, AAN—-Db=028
- (Where did this come from? Two slides back!)
- | assert that F is both monotonic and continuous

e The least-fixed point (= the weakest fixed
point) is

wp(w, B) = AFi(true)

e Notice that unlike for denotational semantics
of IMP we are not working on a flat domain!

#7

Weakest Preconditions (Cont.)

Define a family of wp’s

- wp,(while e do c, B) = weakest precondition on which

the loop terminates in B if it terminates in k or fewer
iterations

wp,= - E=B
wp, = E = wp(c, wp,) A—-E=B

wp(while e do ¢, B) = A\, ., wp, = lub {wp, | k > O}
See Necula document on the web page for the proof
of completeness with weakest preconditions

Weakest preconditions are
- Impossible to compute (in general)
- Can we find something easier to compute yet sufficient?

#8

Not Quite Weakest Preconditions

e Recall what we are trying to do:

false = true
Pre(s, B)
strong I ! weak
weakest
A precondition: WP(c, B)
verification

condition: VC(c, B)

e Construct a verification condition: VC(c, B)
- Our loops will be annotated with loop invariants!
- VC is guaranteed to be stronger than WP

- But still weaker than A: A = VC(c, B) = WP(c, B)

#9

Groundwork

Factor out the hard work

- Loop invariants

- Function specifications (pre- and post-conditions)
Assume programs are annotated with such specs
- Good software engineering practice anyway

- Requiring annotations = Kiss of Death?

New form of while that includes a loop invariant:

while, b do c

- Invariant formula Inv must hold every time before b is
evaluated
A process for computing VC(annotated_command,
post_condition) is called VCGen

#10

Verification Condition Generation

e Mostly follows the definition of the wp
function:

VC(skip, B) =B
VC(c,; c,, B) = VC(c,, VC(c,, B))
VC(if b then ¢, else c,, B) =

b = VC(c,, B) A—=b = VC(C(c,, B)
VC(x := e, B) =[e/x] B
VC(let x =ein ¢, B) = [e/x] VC(c, B)
VC(while , b do ¢, B) =7

Inv

#11

VCGen for WHILE

VC(while,, e doc, B) =
Inv A (VX,..X.. Inv = (e = VC(c, Inv) A ~e=B))
—— \ v \ v
Inv holds Inv is preserved in B holds whgn the
on entry loop terminates

an arbitrary iteration

in an arbitrary iteration

e Inv is the loop invariant (provided externally)
¢ X, ..., X are all the variables modified in c

e The V is similar to the V in mathematical induction:
P(0) A Vn € N. P(n) = P(n+1)

#12

Example VCGen Problem

e Let’s compute the VC of this program with
respect to post-condition x # 0

O
O
X = 0;
y = 2; @
Whilex+y=2 y > 0 do g)i(ll‘jS;c,cghat do we
y:=y-1;

to ensure x#

X =X + 1 0 after this?

#13

Example of VC

e By the sequencing rule, first we do the while loop
(call it w):

while

X+y2y>0do
y:i=y-1;
X=X+ 1

e VCGen(w, X £ 0) = x+y=2 A

VX,y. x+y=2 = (y>0 = VC(c, x+y=2) Ay<0=x%£0)
o VCGen(y:=y-1; x:=x+1, x+y=2)

(x+1) + (y- 1) 2
o W Result: x+y=2 A
VX,y. X+y=2 = (y>0 = (x+1)+(y-1)=2 Ay<0=x=#0)

#14

Example of VC (2)

e VC(W, X #0) = x+y=2 A
VX,Y. X+y=2 =
(y>0 = (x+1)+(y-1)=2 ANy<0=x#%£0)
e VC(X:=0;y:=2;w,XxZ0)=0+2=2 A
VX,y. X+y=2 =
(y>0 = (x+1)+(y-1)=2 ANy<0=x#0)

e 50 now we ask an automated theorem prover
to prove it.

#15

Thoreau, Thoreau, Thoreau

$./Simplify
> (AND (EQ (+ 0 2) 2)
(FORALL (xy) (IMPLIES (EQ (+ x y) 2)
(AND (IMPLIES (> y 0)
(EQ (+ (+ x 1)(-y 1)) 2))
(IMPLIES (<= y 0) (NEQ x 0))))))
1: VvValid.

e Huzzah!
o Simplify is a non-trivial five megabytes

#16

Can We Mess Up VCGen?

e The invariant is from the user (= the
adversary, the untrusted code base)

e Let’s use a loop invariant that is too weak,
like “true”.

e VC = true A VX,y. true =
(y>0 = true A y<0 = x#%0)
e Let’s use a loop invariant that is false, like “x
Z 07,
e VC=0%0A VX,y. Xz 0 =
(y>0=x+1#20 N y<0=x%#0)

#17

Emerson, Emerson, Emerson

$./Simplify
> (AND TRUE
(FORALL (x vy) (IMPLIES TRUE
(AND (IMPLIES (> y 0) TRUE)
(IMPLIES (<=y 0) (NEQ x 0))))))
Counterexample: context.:
(AND
(EQ x 0)
(<= y 0)
)
1: Invalid.

e OK, so we won’t be fooled.

#18

Soundness of VCGen

e Simple form
F{VC(c,B)3ci{B}
e Or equivalently that
F VC(c, B) = wp(c, B)
e Proof is by induction on the structure of c
- Try it!
e Soundness holds for any choice of invariant!
e Next: properties and extensions of VCs

#19

Axiomatic
Semantics Il

The
Verification
Crusade

%, @

TM NOT BAD. - EXURERANT /
TM JST..UM.. | THERE'S MOTHING
E;tg ! 'WRONG 'WiITH
i =% 118 BEING EXUBERANT!
.

GO ON, EAPLAIN THE
SEMANTICS TO YOUR MoM |

———

Where Are We?

» Axiomatic Semantics: the meaning of a
program is what is true after it executes

e Hoare Triples: {A} c {B}
 Weakest Precondition: { WP(c,B) } c {B}
 Verification Condition: A=VC(c,B)=WP(c,b)
- Requires Loop Invariants
- Backward VC works for structured programs

- Forward VC (Symbolic Exec) works for assembly
- Here we are today ...

#21

Today’s Cunning Plan

* Symbolic Execution & Forward VCGen
 Handling Exponential Blowup

- Invariants

- Dropping Paths
* VCGen For Exceptions (double trouble)
e VCGen For Memory (McCarthyism)
* VCGen For Structures (have a field day)

e VCGen For “Dictator For Life”

#22

VC and Invariants

Consider the Hoare triple:
{x <0} while,,, x<5dox:=x+1{x=6}
The VC for this is:
x<00O I(x) O Ox. (Ix)O (x>50 x=6101
x<50 l(x+1)))
Requirements on the invariant:

- Holds on entry [Ix. x<0 0O I(x)
- Preserved by the body (Ox. I(x) O x<50 I(x+1)
- Useful [x. I(x) Ux>50 x=6

Check that I(x) = x < 6 satisfies all constraints

#23

Forward VCGen

e Traditionally the VC is computed backwards
- That’s how we’ve been doing it in class
- |t works well for structured code

e But it can also be computed forward

- Works even for un-structured languages (e.g.,
assembly language)

- Uses symbolic execution, a technique that has
broad applications in program analysis

e e.g., the PREfix tool (Intrinsa, Microsoft) does this

#24

Forward VC Gen Intuition

e Consider the sequence of assignments
X, :=€; X, =€,
« The VC(c, B) = [e,/x,]([e,/X,]B)
= [e,/x,, ele,/x]/%,] B

« We can compute the substitution in a forward way
using symbolic execution (aka symbolic evaluation)

- Keep a symbolic state that maps variables to expressions
Initially, >, ={ }

Afterx, :=e, 2, ={x, — e}

After x, :=e,, 2, = {X, > €, X, = e,[e,/x,] }

Note that we have applied >, as a substitution to right-
hand side of assignment x, := e,

#25

Simple Assembly Language

e Consider the language of instructions:
| ::= x:=e | f()|ifegotoL | gotolL |
L: | return | inv e

e The “inv €” instruction is an annotation
- Says that boolean expression e holds at that point

« Each function f() comes with Pre, and Post,
annotations (pre- and post-conditions)

« New Notation (yay!): |, is the instruction at
address k

#26

Symex States

« We set up a symbolic execution state:

> . Var — SymbolicExpressions

> (X) = the symbolic value of x in state X
>[x:=e] = a new state in which x’s value is e
e We use states as substitutions:

> (e) - obtained from e by replacing x with >(x)
e Much like the opsem so far ...

#27

Symex Invariants

e The symbolic executor tracks invariants
passed

e A new part of symex state: Inv C {1...n}

o If k € Inv then | _is an invariant instruction
that we have already executed

e Basic idea: execute an inv instruction only
twice:

- The first time it is encountered
- Once more time around an arbitrary iteration

#28

VC : Address x SymbolicState x InvariantState — Assertion

VC(k, Z, Inv) =

Symex Rules
e Define a VC function as an interpreter:

VC(L, Z, Inv)

if | =goto L

e = VC(L, Z, Inv) A

- e = VC(k+1, Z,

Inv)

if | =if e goto L

VC(k+1, Z[x:=2(e)], Inv) ifl =x:=e
Z(POStcurrent-function)]f Ik = return
2(Pre;) A
Va,..a_ .2’ (Post,) =

VC(k+1, 2, Inv) if 1, = ()

(Wherey,, ..., y.. are modified by f)

and a,, ..., a_, are fresh parameters

and 2’ = 2Jy, := a,, ...

y Y o= A]

#29

Symex Invariants (2a)

Two cases when seeing an invariant instruction:
2. We see the invariant for the first time

|, =1nv e
kK Ilnv (= “not in the set of invariants we’ve seen”)

Let {y,, ..., ¥..} = the variables that could be modified on
a path from the invariant back to itself

Let a,, ..., a_, be fresh new symbolic parameters

VC(K, =, Inv) =

>(e) A Va,..a_. 2’(e) = VC(k+1, 2, Inv U {k}])

with 2’ =2Jy. :=a,, ..., y_:=a_]

(like a function call) .

Symex Invariants (2b)

. We see the invariant for the second time

|, =1nv E
kK € Inv

VC(k, Z, Inv) = 3(e)

(like a function return)

Some tools take a more simplistic approach

Do not require invariants
Iterate through the loop a fixed number of times

PREfix, versions of ESC (DEC/Compaq/HP SRC)
Sacrifice completeness for usability

#31

Symex Summary

- Let x,, ..., X, be all the variables and a,, ..., a. fresh
parameters

- Let 2, be the state [x, :=a,, ...,X :=a]

- Let () be the empty Inv set

For all functions f in your program, prove:

Va,...a,. 2,(Pre;) = VC(f 25, L)

entry?

If you start the program by invoking any f in a state
that satisfies Pre,, then the program will execute

such that

- At all “inv e” the e holds, and
- If the function returns then Post. holds

Can be proved w.r.t. a real interpreter (operational
semantics)

Or via a proof technique called co-induction (or,
assume-guarantee) oo

Forward VCGen Example

e Consider the program
Precondition: x <0
Loop: invx <6
if x > 5 goto End
X=X+ 1
goto Loop
End: return Postconditon: x = 6

#33

Forward VCGen Example (2)

VX.
X<0=
X <6 A
VX’
(X’ <6=
X’>h=x"=6
A\

X’ <Hh=x"+1<6)

e VC contains both proof obligations and
assumptions about the control flow

#34

VCs Can Be Large

Consider the sequence of conditionals
(if x < 0 then x := - x); (if x < 3 then x += 3)
- With the postcondition P(x)

The VC is
X<O0OA-x<3 D P(-x + 3) A
X<O0OA-x>3 P(-x) A
Xx=20AXx<3 []Pu+3) A

x20Ax>3 O P(x)

There is one conjunct for each path
= exponential number of paths!
- Conjuncts for infeasible paths have un-satisfiable guards!

Try with P(x) =x =3

#35

VCs Can Be Exponential
e VCs are exponential in the size of the source
because they attempt relative completeness:

- Perhaps the correctness of the program must be argued
independently for each path

o Unlikely that the programmer wrote a program by
considering an exponential number of cases

- But possible. Any examples? Any solutions?

PROBLEMS OFTEN LOOK
OVERWHELMING AT FIRST.

THE SECRET 1S T0 BREAK
PROBLEMS IMTO SMALL,
MANAGEARBLE CHUNKS .

IF MOU DEAL WITH THOSE,
YOURE Done BEFORE You

FOR. EXAMPLE , I'™M SUPPOSED
T READ THIS ENTIRE
HISTORY CHAPTER. |T LOOKS
IMPOSSIBLE, SO T BREAK
THE PROBLEM DOWN.

Yoy FoCus
ol READING
THE FIRST
SECTION?

[ASK

MYSELF.

“Do T EVEN
CARE?"

VCs Can Be Exponential

e VCs are exponential in the size of the source
because they attempt relative completeness:

- Perhaps the correctness of the program must be
argued independently for each path

e Standard Solutions:
- Allow invariants even in straight-line code
- And thus do not consider all paths independently!

#37

Invariants in Straight-Line Code

Purpose: modularize the verification task

Add the command “after c establish Inv”
- Same semantics as c (Inv is only for VC purposes)

VC(after c establish Inv, P) =
VC(c,Inv) O x. Inv I P

« where x. are the ModifiedVars(c)

Use when c contains many paths

after if x < 0 then x := - x establish x = 0;
if x <3 thenx +=3 { P(X) }

VC is now:
(x<00O -x=20A (x=200 x=20)A

Ox.x200 (x<30O P(x+3) A x>30 P(x))
#38

Dropping Paths

In absence of annotations, we can drop some paths

VC(if E then c, else c,, P) = choose one of

- E0O VC(c,, P) O-E O VC(c,, P) (drop no paths)

- E0O VC(c,, P) (drops “else” path!)
-E 0 VC(c,, P) (drops “then” path!)

We sacrifice soundness! (we are now unsound)

- No more guarantees
- Possibly still a good debugging aid

Remarks:

- A recent trend is to sacrifice soundness to increase
usability (e.g., Metal, ESP, even ESC)

- The PREfix tool considers only 50 non-cyclic paths
through a function (almost at random)

#39

VCGen for Exceptions

 We extend the source language with
exceptions without arguments (cf. HW2):

- throw throws an exception
- try ¢, catch ¢, executes ¢, if ¢, throws

 Problem:

- We have non-local transfer of control
- What is VC(throw, P) ?

#40

VCGen for Exceptions

 We extend the source language with
exceptions without arguments (cf. HW2):

- throw throws an exception
- try ¢, catch ¢, executes ¢, if ¢, throws
e Problem:

- We have non-local transfer of control
- What is VC(throw, P) ?
e Standard Solution: use 2 postconditions

- One for normal termination
- One for exceptional termination

#41

VCGen for Exceptions (2)

* VC(c, P, Q) is a precondition that makes c
either not terminate, or terminate normally
with P or throw an exception with Q

e Rules
VC(skip, P, Q) =P
vC(c,; ¢,, P, Q) =VC(c,, VC(c,, P, Q), Q)
VC(throw, P, Q) =Q
VC(try ¢, catch c,, P, Q) = VC(c,, P, VC(c,, P, Q))
VC(try c, finally ¢,, P, Q) =7

#42

VCGen Finally

e Given these:
VC(c,; c,, P, Q) =VC(c,, VC(c,, P, Q), Q)
VC(try c, catch ¢,, P, Q) = VC(c,, P, VC(c,, P, Q))
e Finally is somewhat like “if”:
VC(try c, finally ¢,, P, Q) =
VC(c,, VC(c,, P, Q), true) A\
VC(c,, true, VC(c,, Q, Q))
* Which reduces to:

VC(c;, VC(c,, P, Q), VC(c,, Q, Q)

#43

Hoare Rules and the Heap

 When is the following Hoare triple valid?
fA}* X =5{**+*y =10}
 Ashould be “*y =5o0or x =y”
e The Hoare rule for assignment would give us:
- [5/*](*x +*y =10) =5+ *y =10 =
- *y =5 (we lost one case)
e Why didn’t this work?

OH GOOD, A TRUE QR AT LAST, SOME CLARITY! BVERY
., FALSE TEST?! - SENTEMCE |S EVTHER PURE,
= SWEET TRuTH OR A VILE,

f CONTEMPTIBLE LIE! ONE
OR THE OTHER ! NOTHING
IN BETWEEN /

Handling The Heap

 We do not yet have a way to talk about
memory (the heap, pointers) in assertions

* Model the state of memory as a symbolic
mapping from addresses to values:

- If A denotes an address and M is a memory state

then:
- sel(M,A) denotes the contents of the memory cell

- upd(M,A,V) denotes a new memory state obtained
from M by writing V at address A

#45

More on Memory

 We allow variables to range over memory

states

- We can quantify over all possible memory states

e Use the special pseudo-variable p(mu) in
assertions to refer to the current memory

e Example:
i.1=20

1<5

sel(y A+1i)>0

says that entries 0..4 in array A are positive

#46

Hoare Rules: Side-Effects

e To model writes we use memory expressions
- A memory write changes the value of memory

 Blupd(y A, E)/| } "A := E {B}

e Important technique: treat memory as a whole

 And reason later about memory expressions with
inference rules such as (McCarthy Axioms, ~‘67):

\% if A, = A,
sel(M, A)) if A, ZA

sel(upd(M, A,, V), A,) = {

#47

Memory Aliasing

e Consider again: { A} *x:=5{*x+*y =10}
 We obtain:

A=u
=[u
(1) =se

pd(Y X, 5)/d (*x + *y = 10)
pd(Y x, 3)/H (sel(y x) + sel(y y) = 10)

(upd(y X, 3), x) + sel(upd(y X, 5),y) =10

=5 + sel(upd(y x, 5), y) =10
=ifx=ythen5+5=10else 5 +sel(y y) = 10
(2) =x=yor*y=>5
e Up to (1) is theorem generation
e From (1) to (2) is theorem proving

#48

Alternative Handling for Memory

* Reasoning about aliasing can be expensive
- It is NP-hard (and/or undecideable)

e Sometimes completeness is sacrificed with

the following (approximate) rule:
-V if A, = (obviously) A,

sel(M, A,)) if A, # (obviously) A,

otherwise (p is a fresh
new parameter)

sel(upd(M, A, V), A;) = <

P

 The meaning of “obviously” varies:
 The addresses of two distinct globals are #
e The address of a global and one of a local are #

e PREfix and GCC use such schemes
#49

VCGen Overarching Example

e Consider the program

- Precondition: B : bool [JA : array(bool, L)
1:1:=0
R:=B
3:invl =0 [JR : bool
if | > L goto 9
assert saferd(A + 1)
T:=*A+1)
| =1+ 1
R:=T
goto 3
9: return R

- Postcondition: R : bool
#50

VCGen Overarching Example

VA. VB. VL. Vu
B : bool A A : array(bool, L) =
0>0AB: bool A
VI. VR.
| >0 AR : bool =
| > L = R : bool
N
| < L = saferd(A +1) A
| +1>0A
sel(y A +1) : bool

e VC contains both proof obligations and assumptions
about the control flow

#51

Mutable Records - Two Models

Let r: RECORD { f1: T1; f2: T2} END
For us, records are reference types

Method 1: one “memory” for each record
- One index constant for each field

- r.f1is sel(r,f1) and r.f1 := Eis r := upd(r,f1,E)
Method 2: one “memory” for each field

- The record address is the index
- r.f1issel(f1,r) and r.f1 :=Eis f1 := upd(f1,r,E)

Only works in strongly-typed languages like Java
- Fails in C where &r.f2 = &r + sizeof(T1)

#52

VC as a “Semantic Checksum”

 Weakest preconditions are an
expression of the program’s semantics:

- Two equivalent programs have logically
equivalent WPs

- No matter how different their syntax is!

e VC are almost as powerful

#53

VC as a “Semantic Checksum” (2)

e Consider the “assembly X °= 4
language” program to ¥tz x ==
the right assert x : bool
X .= not X
assert x

e High-level type checking is not appropriate here
e The VCis: 4 ==5: bool [Inot (4 == 5)
e No confusion from reuse of x with different types

#54

Invariance of VC Across
Optimizations

e VC is so good at abstracting syntactic details that it
is syntactically preserved by many common
optimizations

- Register allocation, instruction scheduling
- Common subexp elim, constant and copy propagation
- Dead code elimination

 We have identical VCs whether or not an
optimization has been performed
- Preserves syntactic form, not just semantic meaning!

e This can be used to verify correctness of compiler

optimizations (Translation Validation)
#55

VC Characterize a Safe
Interpreter

e Consider a fictitious “safe” interpreter

- As it goes along it performs checks (e.g. “safe to read
from this memory addr”, “this is a null-terminated

b2 B 1§

string”, “l have not already acquired this lock”)
- Some of these would actually be hard to implement
e The VC describes all of the checks to be performed

- Along with their context (assumptions from conditionals)

- Invariants and pre/postconditions are used to obtain a
finite expression (through induction)

e VC is valid = interpreter never fails
- We enforce same level of “correctness”
- But better (static + more powerful checks)

#56

e Verification conditions

VC Big Picture

- Capture the semantics of code + specifications
- Language independent

- Can be computed backward/forward on

structured/unstructured code

- Make Axiomatic Semantics practical

MISS WORMWOOD,
1 HANE A

QUESTION ABWT
THIS MATH

LESSON, .

GINEM THAT, SOOWER OR
LATER, WERE AlL JUST
GOING TO DIE, WHAT'S
THE PQINT OF LEARNING

AROMT INTEGERS ?
P y ST

I
X b

| I

NOBODY LIKES US
"Big PICTURE"
PEOPLE .

Invariants Are Not Easy

e Consider the following code from QuickSort
int partition(int *a, int L,, int H,, int pivot) {
intL=1L,, H=H,;
while(L < H) {
while(a[L] < pivot) L ++;
while(a[H] > pivot) H --;
if(L < H) { swap a[L] and a[H] }
}

return L

}
e Consider verifying only memory safety

* What is the loop invariant for the outer loop ? .

Wei Hu Memorial Homework Award

 Many turned in HW3 code like this:
let rec matches re s = match re with
| Star(r) -> union (singleton s)
(matches (Concat(r,Star(r))) s)
 Which is a direct translation of:

R[r*]s = {s} U Rrr*]s

or, equivalently:

R[rFls={s}u{y | Ix eR[r|s Ay € R[r*[x }
 Why doesn’t this work?

#59

