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Proof Idea
• Dijkstra’s idea: To verify that { A } c { B }

a) Find out all predicates A’ such that ² { A’ } c { B } 
• call this set Pre(c, B) (Pre = “pre-conditions”)

b) Verify for one A’ 2 Pre(c, B) that A ) A’ 

• Assertions can be ordered:
false true)

strong weak 
Pre(c, B)

weakest
precondition: WP(c, B)

• Thus: compute WP(c, B) and prove A ) WP(c, B)

A
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Proof Idea (Cont.)
• Completeness of axiomatic semantics:

If ² { A } c { B } then ` { A } c { B }

• Assuming that we can compute wp(c, B) with the 
following properties: 
• wp is a precondition (according to the Hoare rules)
             ` { wp(c, B) } c { B } 
• wp is (truly) the weakest precondition          
             If  ² { A } c { B }   then  ² A ) wp(c, B)

• We also need that whenever ² A then ` A !

` {A} c {B}

` A ) wp(c, B)         ` {wp(c, B)} c {B}
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Weakest Preconditions
• Define wp(c, B) inductively on c, following the Hoare rules:
• wp(c1; c2, B) = 
    wp(c1, wp(c2, B))

• wp(x := e, B) = 
    [e/x]B

• wp(if E then c1 else c2, B) = 
    E ) wp(c1, B) Æ :E ) wp(c2, B)

{ A } c1; c2 {B}

{A} c1 {C}            {C} c2 {B}

{ [e/x]B } x := E {B}

{ E ) A1 Æ : E ) A2} if E then c1 else c2 {B}

{A1} c1 {B}            {A2} c2 {B}
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Weakest Preconditions for Loops

• We start from the unwinding equivalence
         while b do c    =  

if b then c; while b do c else skip
• Let w = while b do c and W = wp(w, B)
• We have that 
          W = b ) wp(c, W)   Æ   : b ) B
• But this is a recursive equation!

– We know how to solve these using domain theory
• But we need a domain for assertions
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A Partial Order for Assertions
• Which assertion contains the least information?

– “true” – does not say anything about the state
• What is an appropriate information ordering ?

A v A’      iff       ² A’ ) A

• Is this partial order complete? 
– Take a chain A1 v A2 v …
– Let ÆAi be the infinite conjunction of Ai

            σ ² ÆAi  iff for all i we have that σ ² Ai

– I assert that ÆAi is the least upper bound

• Can ÆAi be expressed in our language of assertions?
– In many cases: yes (see Winskel), we’ll assume yes for 

now
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Weakest Precondition for WHILE
• Use the fixed-point theorem
           F(A) = b ) wp(c, A) Æ : b ) B

– (Where did this come from? Two slides back!)
– I assert that F is both monotonic and continuous

• The least-fixed point (= the weakest fixed 
point) is

wp(w, B) = ÆFi(true)
• Notice that unlike for denotational semantics 

of IMP we are not working on a flat domain!
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Weakest Preconditions (Cont.)
• Define a family of wp’s

– wpk(while e do c, B) = weakest precondition on which 
the loop terminates in B if it terminates in k or fewer 
iterations

wp0 = : E ) B 
wp1 = E ) wp(c, wp0) Æ : E ) B
…

• wp(while e do c, B) = Æk ¸ 0 wpk = lub {wpk | k ¸ 0}
• See Necula document on the web page for the proof 

of completeness with weakest preconditions
• Weakest preconditions are 

– Impossible to compute (in general)
– Can we find something easier to compute yet sufficient?
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Not Quite Weakest Preconditions

• Recall what we are trying to do:
false true)

strong weak 
Pre(s, B)

weakest
precondition: WP(c, B)A

verification 
condition: VC(c, B)

• Construct a verification condition: VC(c, B)
– Our loops will be annotated with loop invariants!
– VC is guaranteed to be stronger than WP

– But still weaker than A: A ) VC(c, B) ) WP(c, B)
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Groundwork

• Factor out the hard work
– Loop invariants
– Function specifications (pre- and post-conditions)

• Assume programs are annotated with such specs
– Good software engineering practice anyway
– Requiring annotations = Kiss of Death? 

• New form of while that includes a loop invariant:

whileInv b do c
– Invariant formula Inv must hold every time before b is 

evaluated

• A process for computing VC(annotated_command, 
post_condition) is called VCGen
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Verification Condition Generation

• Mostly follows the definition of the wp 
function:
VC(skip, B) = B
VC(c1; c2, B) = VC(c1, VC(c2, B))

VC(if b then c1 else c2, B) = 

b ) VC(c1, B) Æ :b ) VC(c2, B)

VC(x := e, B)  = [e/x] B
VC(let x = e in c, B) = [e/x] VC(c, B)
VC(whileInv b do c, B) = ?
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     VC(whileInv e do c, B) = 

Inv Æ (8x1…xn. Inv ) (e ) VC(c, Inv)  Æ  : e ) B) )

• Inv is the loop invariant (provided externally)
• x1, …, xn are all the variables modified in c
• The 8 is similar to the 8 in mathematical induction:

P(0) Æ 8n 2 N. P(n) ) P(n+1)

VCGen for WHILE

Inv holds
on entry

Inv is preserved in 
an arbitrary iteration

B holds when the 
loop terminates 

in an arbitrary iteration



#13

Example VCGen Problem
• Let’s compute the VC of this program with 

respect to post-condition x ≠ 0

x = 0;
y = 2;
whilex+y=2 y > 0 do

    y := y - 1; 
    x := x + 1

First, what do we 
expect? What pre-
condition do we 

need to ensure x≠
0 after this?
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Example of VC
• By the sequencing rule, first we do the while loop 

(call it w):
whilex+y=2 y > 0 do

    y := y - 1; 
    x := x + 1

• VCGen(w, x ≠ 0) = x+y=2 Æ 

8x,y. x+y=2 ) (y>0 ) VC(c, x+y=2)  Æ y·0 ) x ≠ 0)

• VCGen(y:=y-1 ; x:=x+1, x+y=2) =
   (x+1) + (y-1) = 2

• w Result: x+y=2 Æ 
8x,y. x+y=2 ) (y>0 ) (x+1)+(y-1)=2  Æ y·0 ) x ≠ 0)
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Example of VC (2)

• VC(w, x ≠ 0) = x+y=2 Æ 

8x,y. x+y=2 ) 

(y>0 ) (x+1)+(y-1)=2  Æ y·0 ) x ≠ 0)

• VC(x := 0; y := 2 ; w, x ≠ 0) = 0+2=2 Æ

8x,y. x+y=2 ) 

(y>0 ) (x+1)+(y-1)=2  Æ y·0 ) x ≠ 0)

• So now we ask an automated theorem prover 
to prove it. 
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Thoreau, Thoreau, Thoreau

$ ./Simplify 
> (AND (EQ (+ 0 2) 2) 
(FORALL ( x y ) (IMPLIES (EQ (+ x y) 2) 

(AND (IMPLIES (> y 0) 
 (EQ (+ (+ x 1)(- y 1)) 2))

(IMPLIES (<= y 0) (NEQ x 0))))))
1: Valid.

• Huzzah!
• Simplify is a non-trivial five megabytes
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Can We Mess Up VCGen?
• The invariant is from the user (= the 

adversary, the untrusted code base)
• Let’s use a loop invariant that is too weak, 

like “true”. 
• VC = true Æ 8x,y. true ) 

             (y>0 ) true  Æ  y·0 ) x ≠ 0)

• Let’s use a loop invariant that is false, like “x 
≠ 0”. 

• VC = 0 ≠ 0 Æ 8x,y. x ≠ 0 ) 
            (y>0 ) x+1 ≠ 0  Æ  y·0 ) x ≠ 0)
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Emerson, Emerson, Emerson
$ ./Simplify 
> (AND TRUE
  (FORALL ( x y ) (IMPLIES TRUE
    (AND (IMPLIES (> y 0) TRUE)
         (IMPLIES (<= y 0) (NEQ x 0))))))
Counterexample: context:
    (AND
      (EQ x 0)
      (<= y 0)
    )
1: Invalid.

• OK, so we won’t be fooled. 
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Soundness of VCGen

• Simple form
² { VC(c,B) } c { B }

• Or equivalently that
² VC(c, B) ) wp(c, B)

• Proof is by induction on the structure of c
– Try it!

• Soundness holds for any choice of invariant!
• Next: properties and extensions of VCs
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Axiomatic Axiomatic 
Semantics IIISemantics III

------
The The 

Verification Verification 
CrusadeCrusade
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Where Are We?

• Axiomatic Semantics: the meaning of a 
program is what is true after it executes

• Hoare Triples: {A} c {B} 
• Weakest Precondition: { WP(c,B) } c {B}
• Verification Condition: A)VC(c,B))WP(c,b)

– Requires Loop Invariants
– Backward VC works for structured programs
– Forward VC (Symbolic Exec) works for assembly
– Here we are today …
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Today’s Cunning Plan

• Symbolic Execution & Forward VCGen
• Handling Exponential Blowup

– Invariants
– Dropping Paths

• VCGen For Exceptions  (double trouble)
• VCGen For Memory     (McCarthyism)
• VCGen For Structures        (have a field day)
• VCGen For “Dictator For Life”
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VC and Invariants

• Consider the Hoare triple:
{x ≤ 0} whileI(x) x ≤ 5 do x := x + 1 {x = 6} 

• The VC for this is:
x ≤ 0 ⇒  I(x)  ∧   ∀x. (I(x) ⇒ (x > 5 ⇒ x = 6 ∧
                                               x ≤ 5 ⇒ I(x+1) ))

• Requirements on the invariant:
– Holds on entry ∀x. x ≤ 0 ⇒  I(x) 

– Preserved by the body ∀x.  I(x) ∧  x ≤ 5 ⇒ I(x+1)

– Useful ∀x.  I(x) ∧ x > 5 ⇒ x = 6 

• Check that I(x) = x ≤ 6 satisfies all constraints
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Forward VCGen

• Traditionally the VC is computed backwards
– That’s how we’ve been doing it in class
– It works well for structured code

• But it can also be computed forward 
– Works even for un-structured languages (e.g., 

assembly language)
– Uses symbolic execution, a technique that has 

broad applications in program analysis 
• e.g., the PREfix tool (Intrinsa, Microsoft) does this
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Forward VC Gen Intuition
• Consider the sequence of assignments

x1 := e1; x2 := e2

• The VC(c, B) = [e1/x1]([e2/x2]B)
                        = [e1/x1, e2[e1/x1]/x2] B

• We can compute the substitution in a forward way 
using symbolic execution (aka symbolic evaluation)
– Keep a symbolic state that maps variables to expressions
– Initially, Σ0 = { } 

– After x1 := e1, Σ1 = { x1 ! e1 }

– After x2 := e2, Σ2 = {x1 ! e1, x2 ! e2[e1/x1] }

– Note that we have applied Σ1 as a substitution to right-
hand side of assignment x2 := e2
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Simple Assembly Language

• Consider the language of instructions:
I ::= x := e  |  f() | if e goto L  |  goto L | 

L: | return | inv e

• The “inv e” instruction is an annotation
– Says that boolean expression e holds at that point

• Each function f() comes with Pref and Postf 
annotations (pre- and post-conditions)

• New Notation (yay!): Ik is the instruction at 
address k
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Symex States

• We set up a symbolic execution state:

 Σ : Var ! SymbolicExpressions

 Σ(x)         = the symbolic value of x in state Σ
 Σ[x:=e]    = a new state in which x’s value is e

• We use states as substitutions:

Σ(e) - obtained from e by replacing x with Σ(x)

• Much like the opsem so far …
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Symex Invariants
• The symbolic executor tracks invariants 

passed
• A new part of symex state: Inv µ {1…n}

• If k 2 Inv then Ik is an invariant instruction 
that we have already executed

• Basic idea: execute an inv instruction only 
twice:
– The first time it is encountered
– Once more time around an arbitrary iteration
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Symex Rules
• Define a VC function as an interpreter:

VC : Address £ SymbolicState £ InvariantState ! Assertion

if Ik = returnΣ(Postcurrent-function)

if Ik = x := eVC(k+1, Σ[x:=Σ(e)], Inv)

VC(k, Σ, Inv) =

if Ik = f()

Σ(Pref)    Æ

8a1..am.Σ’(Postf) ) 

     VC(k+1, Σ’, Inv)
(where y1, …, ym are modified by f)

and a1, …, am are fresh parameters

and Σ’ = Σ[y1 := a1, …, ym := am]

if Ik = if e goto L
   e ) VC(L, Σ, Inv)      Æ 

: e ) VC(k+1, Σ, Inv)

if Ik = goto L VC(L, Σ,  Inv)
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Symex Invariants (2a)
Two cases when seeing an invariant instruction:
2. We see the invariant for the first time

– Ik = inv e

– k ∉ Inv    (= “not in the set of invariants we’ve seen”)

– Let {y1, …, ym} = the variables that could be modified on 
a path from the invariant back to itself

– Let a1, …, am be fresh new symbolic parameters

VC(k, Σ, Inv) = 

         Σ(e) Æ 8a1…am. Σ’(e) ) VC(k+1, Σ’, Inv [ {k}])

 with  Σ’ = Σ[y1 := a1, …, ym := am]
                                                             (like a function call)
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Symex Invariants (2b)

1. We see the invariant for the second time
– Ik = inv E

– k 2 Inv

VC(k, Σ, Inv) = Σ(e)
                                                        (like a function return)

• Some tools take a more simplistic approach
– Do not require invariants
– Iterate through the loop a fixed number of times
– PREfix, versions of ESC (DEC/Compaq/HP SRC)
– Sacrifice completeness for usability
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Symex Summary
– Let x1, …, xn be all the variables and a1, …, an fresh 

parameters
– Let Σ0 be the state [x1 := a1, …,xn :=an]
– Let ; be the empty Inv set

• For all functions f in your program, prove:
           8a1…an. Σ0(Pref) ) VC(fentry, Σ0, ∅)
• If you start the program by invoking any f in a state 

that satisfies Pref, then the program will execute 
such that
– At all “inv e” the e holds, and 
– If the function returns then Postf holds

• Can be proved w.r.t. a real interpreter (operational 
semantics)

• Or via a proof technique called co-induction (or, 
assume-guarantee)
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Forward VCGen Example

• Consider the program
                        Precondition: x · 0
Loop: inv x · 6 
         if x > 5 goto End

         x := x + 1

         goto Loop

End:  return      Postconditon: x = 6
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Forward VCGen Example (2)
 8x. 
        x · 0 )
             x · 6 Æ
                  8x’.
                       (x’ · 6 )
                              x’ > 5 ) x’ = 6
                                       Æ
                              x’ · 5 ) x’ + 1 · 6 )
 
• VC contains both proof obligations and 

assumptions about the control flow                 
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VCs Can Be Large

• Consider the sequence of conditionals
(if x < 0 then x := - x); (if x ≤ 3 then x += 3)

– With the postcondition P(x) 

• The VC is 
x < 0 Æ -x ≤ 3 ⇒ P(-x + 3)  Æ

x < 0 Æ -x > 3 ⇒ P(-x)     Æ

x ≥ 0 Æ x ≤ 3 ⇒ P(x + 3)    Æ

x ≥ 0 Æ x > 3 ⇒ P(x ) 

• There is one conjunct for each path
) exponential number of paths!
– Conjuncts for infeasible paths have un-satisfiable guards!

• Try with P(x) = x ≥ 3
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VCs Can Be Exponential
• VCs are exponential in the size of the source 

because they attempt relative completeness:
– Perhaps the correctness of the program must be argued 

independently for each path

• Unlikely that the programmer wrote a program by 
considering an exponential number of cases
– But possible. Any examples? Any solutions?
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VCs Can Be Exponential

• VCs are exponential in the size of the source 
because they attempt relative completeness:
– Perhaps the correctness of the program must be 

argued independently for each path

• Standard Solutions:
– Allow invariants even in straight-line code
– And thus do not consider all paths independently!
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Invariants in Straight-Line Code
• Purpose: modularize the verification task
• Add the command “after c establish Inv”

– Same semantics as c (Inv is only for VC purposes)

    VC(after c establish Inv, P) =def  

VC(c,Inv) ∧ ∀xi. Inv ⇒ P
• where xi are the ModifiedVars(c) 

• Use when c contains many paths
after if x < 0 then x := - x  establish x ≥ 0;

if x ≤ 3 then x += 3 { P(x) }

• VC is now:
(x < 0 ⇒ - x ≥  0) Æ  (x ≥  0 ⇒ x ≥ 0) Æ  
∀x. x ≥ 0 ⇒ (x ≤ 3 ⇒ P(x+3) Æ  x > 3 ⇒ P(x))
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Dropping Paths

• In absence of annotations, we can drop some paths
• VC(if E then c1 else c2, P) = choose one of

– E ⇒ VC(c1, P) ∧ ¬E ⇒ VC(c2, P) (drop no paths)
– E ⇒ VC(c1, P) (drops “else” path!)
� ¬E ⇒ VC(c2, P) (drops “then” path!)

• We sacrifice soundness! (we are now unsound)
– No more guarantees
– Possibly still a good debugging aid

• Remarks:
– A recent trend is to sacrifice soundness to increase 

usability (e.g., Metal, ESP, even ESC)
– The PREfix tool considers only 50 non-cyclic paths 

through a function (almost at random)
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VCGen for Exceptions

• We extend the source language with 
exceptions without arguments (cf. HW2):
– throw              throws an exception    

– try c1 catch c2    executes c2 if c1 throws

• Problem:
– We have non-local transfer of control
– What is VC(throw, P) ?
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VCGen for Exceptions
• We extend the source language with 

exceptions without arguments (cf. HW2):
– throw              throws an exception    
– try c1 catch c2    executes c2 if c1 throws

• Problem:
– We have non-local transfer of control
– What is VC(throw, P) ?

• Standard Solution: use 2 postconditions
– One for normal termination
– One for exceptional termination
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VCGen for Exceptions (2)

• VC(c, P, Q) is a precondition that makes c 
either not terminate, or terminate normally 
with P or throw an exception with Q

• Rules
VC(skip, P, Q)    = P

VC(c1; c2, P, Q)  = VC(c1, VC(c2, P, Q), Q)

VC(throw, P, Q) = Q
VC(try c1 catch c2, P, Q) = VC(c1, P, VC(c2, P, Q))

VC(try c1 finally c2, P, Q) = ?
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VCGen Finally
• Given these: 

VC(c1; c2, P, Q)  = VC(c1, VC(c2, P, Q), Q)

VC(try c1 catch c2, P, Q) = VC(c1, P, VC(c2, P, Q))

• Finally is somewhat like “if”: 
VC(try c1 finally c2, P, Q) =

VC(c1, VC(c2, P, Q), true) Æ

 VC(c1, true, VC(c2, Q, Q))

• Which reduces to: 
VC(c1, VC(c2, P, Q), VC(c2, Q, Q))
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Hoare Rules and the Heap
• When is the following Hoare triple valid?

             { A } *x := 5 { *x + *y = 10 }
• A should be “*y = 5 or x = y” 
• The Hoare rule for assignment would give us:

– [5/*x](*x + *y = 10) = 5 + *y = 10 = 
– *y = 5     (we lost one case)

• Why didn’t this work? 
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Handling The Heap

• We do not yet have a way to talk about 
memory (the heap, pointers) in assertions

• Model the state of memory as a symbolic 
mapping from addresses to values:
– If A denotes an address and M is a memory state 

then:
– sel(M,A) denotes the contents of the memory cell 
– upd(M,A,V) denotes a new memory state obtained 

from M by writing V at address A
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More on Memory

• We allow variables to range over memory 
states
– We can quantify over all possible memory states 

• Use the special pseudo-variable µ (mu) in 
assertions to refer to the current memory

• Example:

∀i. i ≥ 0 ∧ i < 5 ⇒ sel(µ, A + i) > 0
says that entries 0..4 in array A are positive
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Hoare Rules: Side-Effects

• To model writes we use memory expressions
– A memory write changes the value of memory

• Important technique: treat memory as a whole
• And reason later about memory expressions with 

inference rules such as (McCarthy Axioms, ~‘67):

{ B[upd(µ, A, E)/µ] } *A := E {B}

if A1 = A2V

if A1 ≠ A2sel(M, A2)
sel(upd(M, A1, V), A2) = 
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Memory Aliasing

• Consider again: { A } *x := 5 { *x + *y = 10 }
• We obtain: 
     A = [upd(µ, x, 5)/µ] (*x + *y = 10)
        = [upd(µ, x, 5)/µ] (sel(µ, x) + sel(µ, y) = 10)
(1)    = sel(upd(µ, x, 5), x) + sel(upd(µ, x, 5), y) = 10
        = 5 + sel(upd(µ, x, 5), y) = 10
        = if x = y then 5 + 5 = 10 else 5 + sel(µ, y) = 10
(2)    = x = y or *y = 5 
• Up to (1) is theorem generation
• From (1) to (2) is theorem proving
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Alternative Handling for Memory
• Reasoning about aliasing can be expensive 

– It is NP-hard (and/or undecideable)

• Sometimes completeness is sacrificed with 
the following (approximate) rule:

otherwise (p is a fresh 
new parameter)

P

if A1 = (obviously) A2V

if A1 ≠ (obviously) A2sel(M, A2)sel(upd(M, A1, V), A2) = 

• The meaning of “obviously” varies:
• The addresses of two distinct globals are ≠
• The address of a global and one of a local are ≠

• PREfix and GCC use such schemes
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VCGen Overarching Example

• Consider the program
– Precondition: B : bool ∧ A : array(bool, L)
1: I := 0
    R := B
3: inv I ≥ 0 ∧ R : bool
    if I ≥  L goto 9
    assert saferd(A + I)
    T := *(A + I)
    I := I + 1
    R := T
    goto 3
9: return R
– Postcondition: R : bool
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VCGen Overarching Example

 8A. 8B. 8L. 8µ
        B : bool Æ A : array(bool, L) )
             0 ¸ 0 Æ B : bool Æ
                  8I. 8R.
                       I ¸ 0 Æ R : bool )
                              I ¸ L ) R : bool
                                       Æ
                               I < L ) saferd(A + I)  Æ
                                                 I + 1 ¸ 0 Æ
                                             sel(µ, A + I) : bool 
• VC contains both proof obligations and assumptions 

about the control flow                               
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Mutable Records - Two Models

• Let r :  RECORD { f1 : T1; f2 : T2 } END
• For us, records are reference types
• Method 1: one “memory” for each record

– One index constant for each field
– r.f1 is sel(r,f1) and  r.f1 := E is r := upd(r,f1,E)

• Method 2: one “memory” for each field
– The record address is the index
– r.f1 is sel(f1,r) and  r.f1 := E is f1 := upd(f1,r,E)

• Only works in strongly-typed languages like Java
– Fails in C where &r.f2 = &r + sizeof(T1) 



#53

VC as a “Semantic Checksum”

• Weakest preconditions are an 
expression of the program’s semantics:
– Two equivalent programs have logically 

equivalent WPs
– No matter how different their syntax is!

• VC are almost as powerful
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VC as a “Semantic Checksum” (2)

• Consider the “assembly 
language” program to 
the right

x := 4

x := x == 5

   assert x : bool

x := not x

   assert x

• High-level type checking is not appropriate here
• The VC is: 4 == 5 : bool ∧ not (4 == 5) 
• No confusion from reuse of x with different types
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Invariance of VC Across 
Optimizations

• VC is so good at abstracting syntactic details that it 
is syntactically preserved by many common 
optimizations
– Register allocation, instruction scheduling
– Common subexp elim, constant and copy propagation
– Dead code elimination

• We have identical VCs whether or not an 
optimization has been performed
– Preserves syntactic form, not just semantic meaning!

• This can be used to verify correctness of compiler 
optimizations (Translation Validation)
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VC Characterize a Safe 
Interpreter

• Consider a fictitious “safe” interpreter
– As it goes along it performs checks (e.g. “safe to read 

from this memory addr”, “this is a null-terminated 
string”, “I have not already acquired this lock”)

– Some of these would actually be hard to implement

• The VC describes all of the checks to be performed
– Along with their context (assumptions from conditionals)
– Invariants and pre/postconditions are used to obtain a 

finite expression (through induction)

• VC is valid ) interpreter never fails
– We enforce same level of “correctness”
– But better (static + more powerful checks)
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VC Big Picture
• Verification conditions

– Capture the semantics of code + specifications
– Language independent
– Can be computed backward/forward on 

structured/unstructured code
– Make Axiomatic Semantics practical
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Invariants Are Not Easy

• Consider the following code from QuickSort
int partition(int *a, int L0, int H0, int pivot) {

     int L = L0, H = H0;

     while(L < H) {
           while(a[L] < pivot) L ++;
           while(a[H] > pivot) H --;
           if(L < H) { swap a[L] and a[H] }
    }
    return L
}

• Consider verifying only memory safety
• What is the loop invariant for the outer loop ?



#59

Wei Hu Memorial Homework Award

• Many turned in HW3 code like this:
let rec matches re s = match re with

 | Star(r) -> union (singleton s) 
  (matches (Concat(r,Star(r))) s)

• Which is a direct translation of:
R«r*¬s = {s} [ R«rr*¬s

or, equivalently:

R«r*¬s = {s} [ { y | 9x 2 R«r¬s Æ y 2 R«r*¬x }
• Why doesn’t this work? 


