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Proof Idea

e Dijkstra’s idea: To verify that { A} c{ B}
a) Find out all predicates A’ such thatF{ A’ } c{ B}
« call this set Pre(c, B) (Pre = “pre-conditions”)

b) Verify for one A’ € Pre(c, B) that A = A’
e Assertions can be ordered:

false = true

Pre(c, B)

strong i Tk : weak
WeaKes

A precondition: WP(c, B)

e Thus: compute WP(c, B) and prove A = WP(c, B)

#2



Proof Idea (Cont.)

 Completeness of axiomatic semantics:
fE{A}c{B}then-{A}c{B}

e Assuming that we can compute wp(c, B) with the
following properties:

e Wp is a precondition (according to the Hoare rules)
—{wp(c,B)}c{B}
e wp is (truly) the weakest precondition
If F{A}c{B} then F A= wp(c, B)
- A = wp(c, B) - {wp(c, B)} c {B}
- {A} c {B}

« We also need that whenever = A then - A !

#3



Weakest Preconditions

e Define wp(c, B) inductively on c, following the Hoare rules:

« WP(Cy; Gy, B) = A} ¢ 1C} iC} ¢, 1B}
wp(c,, Wp(c,, B)) {A}c;c, {B}

e WP(X :=¢, B) =
[e/x]B {[e/x]B} x :=E {B}

A ¢ {BS A GBS
{E=A A-E= A}if E then c, else c, {B}

« wp(if E then c, else c,, B) =
E = wpl(c,, B) A —=E = wp(c,, B)

#4



Weakest Preconditions for Loops

e We start from the unwinding equivalence
whilebdoc =
if b then c; while b do c else skip
e Let w = while b do c and W = wp(w, B)
e We have that
W=b=wp(c,W) A -b=0B8B
e But this is a recursive equation!
- We know how to solve these using domain theory
e But we need a domain for assertions

#5



A Partial Order for Assertions

Which assertion contains the least information?
- “true” - does not say anything about the state

What is an appropriate information ordering ?
ACA’ iff FA = A
Is this partial order complete?
- Takeachain A, C A, C ..
- Let AA, be the infinite conjunction of A
o E AA, iff for all i we have that o F A

- | assert that /\A. is the least upper bound

Can AA. be expressed in our language of assertions?

- In many cases: yes (see Winskel), we’ll assume yes for
now

#6



Weakest Precondition for WHILE
e Use the fixed-point theorem
F(A)=b = wp(c, AAN—-Db=028
- (Where did this come from? Two slides back!)
- | assert that F is both monotonic and continuous

e The least-fixed point (= the weakest fixed
point) is

wp(w, B) = AFi(true)

e Notice that unlike for denotational semantics
of IMP we are not working on a flat domain!

#7



Weakest Preconditions (Cont.)

Define a family of wp’s

- wp,(while e do c, B) = weakest precondition on which

the loop terminates in B if it terminates in k or fewer
iterations

wp,= - E=B
wp, = E = wp(c, wp,) A—-E=B

wp(while e do ¢, B) = A\, ., wp, = lub {wp, | k > O}
See Necula document on the web page for the proof
of completeness with weakest preconditions

Weakest preconditions are
- Impossible to compute (in general)
- Can we find something easier to compute yet sufficient?

#8



Not Quite Weakest Preconditions

e Recall what we are trying to do:

false = true
Pre(s, B)
strong I ! weak
weakest
A precondition: WP(c, B)
verification

condition: VC(c, B)

e Construct a verification condition: VC(c, B)
- Our loops will be annotated with loop invariants!
- VC is guaranteed to be stronger than WP

- But still weaker than A: A = VC(c, B) = WP(c, B)

#9



Groundwork

Factor out the hard work

- Loop invariants

- Function specifications (pre- and post-conditions)
Assume programs are annotated with such specs
- Good software engineering practice anyway

- Requiring annotations = Kiss of Death?

New form of while that includes a loop invariant:

while, b do c

- Invariant formula Inv must hold every time before b is
evaluated
A process for computing VC(annotated_command,
post_condition) is called VCGen

#10



Verification Condition Generation

e Mostly follows the definition of the wp
function:

VC(skip, B) =B
VC(c,; c,, B) = VC(c,, VC(c,, B))
VC(if b then ¢, else c,, B) =

b = VC(c,, B) A—=b = VC(C(c,, B)
VC(x := e, B) =[e/x] B
VC(let x =ein ¢, B) = [e/x] VC(c, B)
VC(while , b do ¢, B) =7

Inv

#11



VCGen for WHILE

VC(while,, e doc, B) =
Inv A (VX,..X.. Inv = (e = VC(c, Inv) A ~e=B))
—— \ v \ v
Inv holds Inv is preserved in B holds whgn the
on entry loop terminates

an arbitrary iteration

in an arbitrary iteration

e Inv is the loop invariant (provided externally)
¢ X, ..., X are all the variables modified in c

e The V is similar to the V in mathematical induction:
P(0) A Vn € N. P(n) = P(n+1)

#12



Example VCGen Problem

e Let’s compute the VC of this program with
respect to post-condition x # 0

O
O
X = 0;
y = 2; @
Whilex+y=2 y > 0 do g)i(ll‘jS;c,cghat do we
y:=y-1;

to ensure x#

X =X + 1 0 after this?

#13



Example of VC

e By the sequencing rule, first we do the while loop
(call it w):

while

X+y2y>0do
y:i=y-1;
X=X+ 1

e VCGen(w, X £ 0) = x+y=2 A

VX,y. x+y=2 = (y>0 = VC(c, x+y=2) Ay<0=x%£0)
o VCGen(y:=y-1; x:=x+1, x+y=2)

(x+1) + (y- 1) 2
o W Result: x+y=2 A
VX,y. X+y=2 = (y>0 = (x+1)+(y-1)=2 Ay<0=x=#0)

#14



Example of VC (2)

e VC(W, X #0) = x+y=2 A
VX,Y. X+y=2 =
(y>0 = (x+1)+(y-1)=2 ANy<0=x#%£0)
e VC(X:=0;y:=2;w,XxZ0)=0+2=2 A
VX,y. X+y=2 =
(y>0 = (x+1)+(y-1)=2 ANy<0=x#0)

e 50 now we ask an automated theorem prover
to prove it.

#15



Thoreau, Thoreau, Thoreau

$ ./Simplify
> (AND (EQ (+ 0 2) 2)
(FORALL ( xy ) (IMPLIES (EQ (+ x y) 2)
(AND (IMPLIES (> y 0)
(EQ (+ (+ x 1)(-y 1)) 2))
(IMPLIES (<= y 0) (NEQ x 0))))))
1: VvValid.

e Huzzah!
o Simplify is a non-trivial five megabytes

#16



Can We Mess Up VCGen?

e The invariant is from the user (= the
adversary, the untrusted code base)

e Let’s use a loop invariant that is too weak,
like “true”.

e VC = true A VX,y. true =
(y>0 = true A y<0 = x#%0)
e Let’s use a loop invariant that is false, like “x
Z 07,
e VC=0%0A VX,y. Xz 0 =
(y>0=x+1#20 N y<0=x%#0)

#17



Emerson, Emerson, Emerson

$ ./Simplify
> (AND TRUE
(FORALL ( x vy ) (IMPLIES TRUE
(AND (IMPLIES (> y 0) TRUE)
(IMPLIES (<=y 0) (NEQ x 0))))))
Counterexample: context.:
(AND
(EQ x 0)
(<= y 0)
)
1: Invalid.

e OK, so we won’t be fooled.

#18



Soundness of VCGen

e Simple form
F{VC(c,B)3ci{B}
e Or equivalently that
F VC(c, B) = wp(c, B)
e Proof is by induction on the structure of c
- Try it!
e Soundness holds for any choice of invariant!
e Next: properties and extensions of VCs

#19
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Where Are We?

» Axiomatic Semantics: the meaning of a
program is what is true after it executes

e Hoare Triples: {A} c {B}
 Weakest Precondition: { WP(c,B) } c {B}
 Verification Condition: A=VC(c,B)=WP(c,b)
- Requires Loop Invariants
- Backward VC works for structured programs

- Forward VC (Symbolic Exec) works for assembly
- Here we are today ...

#21



Today’s Cunning Plan

* Symbolic Execution & Forward VCGen
 Handling Exponential Blowup

- Invariants

- Dropping Paths
* VCGen For Exceptions (double trouble)
e VCGen For Memory (McCarthyism)
* VCGen For Structures (have a field day)

e VCGen For “Dictator For Life”

#22



VC and Invariants

Consider the Hoare triple:
{x <0} while,,, x<5dox:=x+1{x=6}
The VC for this is:
x<00O I(x) O Ox. (Ix)O (x>50 x=6101
x<50 l(x+1)))
Requirements on the invariant:

- Holds on entry [Ix. x<0 0O I(x)
- Preserved by the body (Ox. I(x) O x<50 I(x+1)
- Useful [x. I(x) Ux>50 x=6

Check that I(x) = x < 6 satisfies all constraints

#23



Forward VCGen

e Traditionally the VC is computed backwards
- That’s how we’ve been doing it in class
- |t works well for structured code

e But it can also be computed forward

- Works even for un-structured languages (e.g.,
assembly language)

- Uses symbolic execution, a technique that has
broad applications in program analysis

e e.g., the PREfix tool (Intrinsa, Microsoft) does this

#24



Forward VC Gen Intuition

e Consider the sequence of assignments
X, :=€; X, =€,
« The VC(c, B) = [e,/x,]([e,/X,]B)
= [e,/x,, ele,/x]/%,] B

« We can compute the substitution in a forward way
using symbolic execution (aka symbolic evaluation)

- Keep a symbolic state that maps variables to expressions
Initially, >, ={ }

Afterx, :=e, 2, ={x, — e}

After x, :=e,, 2, = {X, > €, X, = e,[e,/x,] }

Note that we have applied >, as a substitution to right-
hand side of assignment x, := e,

#25



Simple Assembly Language

e Consider the language of instructions:
| ::= x:=e | f()|ifegotoL | gotolL |
L: | return | inv e

e The “inv €” instruction is an annotation
- Says that boolean expression e holds at that point

« Each function f() comes with Pre, and Post,
annotations (pre- and post-conditions)

« New Notation (yay!): |, is the instruction at
address k

#26



Symex States

« We set up a symbolic execution state:

> . Var — SymbolicExpressions

> (X) = the symbolic value of x in state X
>[x:=e] = a new state in which x’s value is e
e We use states as substitutions:

> (e) - obtained from e by replacing x with >(x)
e Much like the opsem so far ...

#27



Symex Invariants

e The symbolic executor tracks invariants
passed

e A new part of symex state: Inv C {1...n}

o If k € Inv then | _is an invariant instruction
that we have already executed

e Basic idea: execute an inv instruction only
twice:

- The first time it is encountered
- Once more time around an arbitrary iteration

#28



VC : Address x SymbolicState x InvariantState — Assertion

VC(k, Z, Inv) =

Symex Rules
e Define a VC function as an interpreter:

VC(L, Z, Inv)

if | =goto L

e = VC(L, Z, Inv) A

- e = VC(k+1, Z,

Inv)

if | =if e goto L

VC(k+1, Z[x:=2(e)], Inv) ifl =x:=e
Z(POStcurrent-function) ]f Ik = return
2(Pre;) A
Va,..a_ .2’ (Post,) =

VC(k+1, 2, Inv) if 1, = ()

(Wherey,, ..., y.. are modified by f)

and a,, ..., a_, are fresh parameters

and 2’ = 2Jy, := a,, ...

y Y o= A ]

#29



Symex Invariants (2a)

Two cases when seeing an invariant instruction:
2. We see the invariant for the first time

|, =1nv e
kK Ilnv (= “not in the set of invariants we’ve seen”)

Let {y,, ..., ¥..} = the variables that could be modified on
a path from the invariant back to itself

Let a,, ..., a_, be fresh new symbolic parameters

VC(K, =, Inv) =

>(e) A Va,..a_. 2’(e) = VC(k+1, 2, Inv U {k}])

with 2’ =2Jy. :=a,, ..., y_:=a_]

(like a function call) .



Symex Invariants (2b)

. We see the invariant for the second time

|, =1nv E
kK € Inv

VC(k, Z, Inv) = 3(e)

(like a function return)

Some tools take a more simplistic approach

Do not require invariants
Iterate through the loop a fixed number of times

PREfix, versions of ESC (DEC/Compaq/HP SRC)
Sacrifice completeness for usability

#31



Symex Summary

- Let x,, ..., X, be all the variables and a,, ..., a. fresh
parameters

- Let 2, be the state [x, :=a,, ...,X :=a]

- Let () be the empty Inv set

For all functions f in your program, prove:

Va,...a,. 2,(Pre;) = VC(f 25, L)

entry?

If you start the program by invoking any f in a state
that satisfies Pre,, then the program will execute

such that

- At all “inv e” the e holds, and
- If the function returns then Post. holds

Can be proved w.r.t. a real interpreter (operational
semantics)

Or via a proof technique called co-induction (or,
assume-guarantee) oo




Forward VCGen Example

e Consider the program
Precondition: x <0
Loop: invx <6
if x > 5 goto End
X=X+ 1
goto Loop
End: return  Postconditon: x = 6

#33



Forward VCGen Example (2)

VX.
X<0=
X <6 A
VX’
(X’ <6=
X’>h=x"=6
A\

X’ <Hh=x"+1<6)

e VC contains both proof obligations and
assumptions about the control flow

#34



VCs Can Be Large

Consider the sequence of conditionals
(if x < 0 then x := - x); (if x < 3 then x += 3)
- With the postcondition P(x)

The VC is
X<O0OA-x<3 D P(-x + 3) A
X<O0OA-x>3 P(-x) A
Xx=20AXx<3 []Pu+3) A

x20Ax>3 O P(x)

There is one conjunct for each path
= exponential number of paths!
- Conjuncts for infeasible paths have un-satisfiable guards!

Try with P(x) =x =3

#35



VCs Can Be Exponential
e VCs are exponential in the size of the source
because they attempt relative completeness:

- Perhaps the correctness of the program must be argued
independently for each path

o Unlikely that the programmer wrote a program by
considering an exponential number of cases

- But possible. Any examples? Any solutions?

PROBLEMS OFTEN LOOK
OVERWHELMING AT FIRST.

THE SECRET 1S T0 BREAK
PROBLEMS IMTO SMALL,
MANAGEARBLE CHUNKS .

IF MOU DEAL WITH THOSE,
YOURE Done BEFORE You

FOR. EXAMPLE , I'™M SUPPOSED
T READ THIS ENTIRE
HISTORY CHAPTER. |T LOOKS
IMPOSSIBLE, SO T BREAK
THE PROBLEM DOWN.

Yoy FoCus
ol READING
THE FIRST
SECTION?

[ ASK

MYSELF.

“Do T EVEN
CARE?"




VCs Can Be Exponential

e VCs are exponential in the size of the source
because they attempt relative completeness:

- Perhaps the correctness of the program must be
argued independently for each path

e Standard Solutions:
- Allow invariants even in straight-line code
- And thus do not consider all paths independently!

#37



Invariants in Straight-Line Code

Purpose: modularize the verification task

Add the command “after c establish Inv”
- Same semantics as c (Inv is only for VC purposes)

VC(after c establish Inv, P) =
VC(c,Inv) O x. Inv I P

« where x. are the ModifiedVars(c)

Use when c contains many paths

after if x < 0 then x := - x establish x = 0;
if x <3 thenx +=3 { P(X) }

VC is now:
(x<00O -x=20A (x=200 x=20)A

Ox.x200 (x<30O P(x+3) A x>30 P(x))
#38



Dropping Paths

In absence of annotations, we can drop some paths

VC(if E then c, else c,, P) = choose one of

- E0O VC(c,, P) O-E O VC(c,, P) (drop no paths)

- E0O VC(c,, P) (drops “else” path!)
-E 0 VC(c,, P) (drops “then” path!)

We sacrifice soundness! (we are now unsound)

- No more guarantees
- Possibly still a good debugging aid

Remarks:

- A recent trend is to sacrifice soundness to increase
usability (e.g., Metal, ESP, even ESC)

- The PREfix tool considers only 50 non-cyclic paths
through a function (almost at random)

#39



VCGen for Exceptions

 We extend the source language with
exceptions without arguments (cf. HW2):

- throw throws an exception
- try ¢, catch ¢, executes ¢, if ¢, throws

 Problem:

- We have non-local transfer of control
- What is VC(throw, P) ?

#40



VCGen for Exceptions

 We extend the source language with
exceptions without arguments (cf. HW2):

- throw throws an exception
- try ¢, catch ¢, executes ¢, if ¢, throws
e Problem:

- We have non-local transfer of control
- What is VC(throw, P) ?
e Standard Solution: use 2 postconditions

- One for normal termination
- One for exceptional termination

#41



VCGen for Exceptions (2)

* VC(c, P, Q) is a precondition that makes c
either not terminate, or terminate normally
with P or throw an exception with Q

e Rules
VC(skip, P, Q) =P
vC(c,; ¢,, P, Q) =VC(c,, VC(c,, P, Q), Q)
VC(throw, P, Q) =Q
VC(try ¢, catch c,, P, Q) = VC(c,, P, VC(c,, P, Q))
VC(try c, finally ¢,, P, Q) =7

#42



VCGen Finally

e Given these:
VC(c,; c,, P, Q) =VC(c,, VC(c,, P, Q), Q)
VC(try c, catch ¢,, P, Q) = VC(c,, P, VC(c,, P, Q))
e Finally is somewhat like “if”:
VC(try c, finally ¢,, P, Q) =
VC(c,, VC(c,, P, Q), true) A\
VC(c,, true, VC(c,, Q, Q))
* Which reduces to:

VC(c;, VC(c,, P, Q), VC(c,, Q, Q)

#43



Hoare Rules and the Heap

 When is the following Hoare triple valid?
fA}* X =5{**+*y =10}
 Ashould be “*y =5o0or x =y”
e The Hoare rule for assignment would give us:
- [5/*](*x +*y =10) =5+ *y =10 =
- *y =5 (we lost one case)
e Why didn’t this work?

OH GOOD, A TRUE QR AT LAST, SOME CLARITY! BVERY
., FALSE TEST?! - SENTEMCE |S EVTHER PURE,
= SWEET TRuTH OR A VILE,

f CONTEMPTIBLE LIE! ONE
OR THE OTHER ! NOTHING
IN BETWEEN /




Handling The Heap

 We do not yet have a way to talk about
memory (the heap, pointers) in assertions

* Model the state of memory as a symbolic
mapping from addresses to values:

- If A denotes an address and M is a memory state

then:
- sel(M,A) denotes the contents of the memory cell

- upd(M,A,V) denotes a new memory state obtained
from M by writing V at address A

#45



More on Memory

 We allow variables to range over memory

states

- We can quantify over all possible memory states

e Use the special pseudo-variable p(mu) in
assertions to refer to the current memory

e Example:
i.1=20

1<5

sel(y A+1i)>0

says that entries 0..4 in array A are positive

#46



Hoare Rules: Side-Effects

e To model writes we use memory expressions
- A memory write changes the value of memory

 Blupd(y A, E)/| } "A := E {B}

e Important technique: treat memory as a whole

 And reason later about memory expressions with
inference rules such as (McCarthy Axioms, ~‘67):

\% if A, = A,
sel(M, A)) if A, ZA

sel(upd(M, A,, V), A,) = {

#47



Memory Aliasing

e Consider again: { A} *x:=5{*x+*y =10}
 We obtain:

A=u
=[u
(1) =se

pd(Y X, 5)/d (*x + *y = 10)
pd(Y x, 3)/H (sel(y x) + sel(y y) = 10)

(upd(y X, 3), x) + sel(upd(y X, 5),y) =10

=5 + sel(upd(y x, 5), y) =10
=ifx=ythen5+5=10else 5 +sel(y y) = 10
(2) =x=yor*y=>5
e Up to (1) is theorem generation
e From (1) to (2) is theorem proving

#48



Alternative Handling for Memory

* Reasoning about aliasing can be expensive
- It is NP-hard (and/or undecideable)

e Sometimes completeness is sacrificed with

the following (approximate) rule:
-V if A, = (obviously) A,

sel(M, A,)) if A, # (obviously) A,

otherwise (p is a fresh
new parameter)

sel(upd(M, A, V), A;) = <

P

 The meaning of “obviously” varies:
 The addresses of two distinct globals are #
e The address of a global and one of a local are #

e PREfix and GCC use such schemes
#49



VCGen Overarching Example

e Consider the program

- Precondition: B : bool [JA : array(bool, L)
1:1:=0
R:=B
3:invl =0 [JR : bool
if | > L goto 9
assert saferd(A + 1)
T:=*A+1)
| =1+ 1
R:=T
goto 3
9: return R

- Postcondition: R : bool
#50



VCGen Overarching Example

VA. VB. VL. Vu
B : bool A A : array(bool, L) =
0>0AB: bool A
VI. VR.
| >0 AR : bool =
| > L = R : bool
N
| < L = saferd(A +1) A
| +1>0A
sel(y A +1) : bool

e VC contains both proof obligations and assumptions
about the control flow

#51



Mutable Records - Two Models

Let r: RECORD { f1: T1; f2: T2} END
For us, records are reference types

Method 1: one “memory” for each record
- One index constant for each field

- r.f1is sel(r,f1) and r.f1 := Eis r := upd(r,f1,E)
Method 2: one “memory” for each field

- The record address is the index
- r.f1issel(f1,r) and r.f1 :=Eis f1 := upd(f1,r,E)

Only works in strongly-typed languages like Java
- Fails in C where &r.f2 = &r + sizeof(T1)

#52



VC as a “Semantic Checksum”

 Weakest preconditions are an
expression of the program’s semantics:

- Two equivalent programs have logically
equivalent WPs

- No matter how different their syntax is!

e VC are almost as powerful

#53



VC as a “Semantic Checksum” (2)

e Consider the “assembly X °= 4
language” program to ¥tz x ==
the right assert x : bool
X .= not X
assert x

e High-level type checking is not appropriate here
e The VCis: 4 ==5: bool [Inot (4 == 5)
e No confusion from reuse of x with different types

#54



Invariance of VC Across
Optimizations

e VC is so good at abstracting syntactic details that it
is syntactically preserved by many common
optimizations

- Register allocation, instruction scheduling
- Common subexp elim, constant and copy propagation
- Dead code elimination

 We have identical VCs whether or not an
optimization has been performed
- Preserves syntactic form, not just semantic meaning!

e This can be used to verify correctness of compiler

optimizations (Translation Validation)
#55



VC Characterize a Safe
Interpreter

e Consider a fictitious “safe” interpreter

- As it goes along it performs checks (e.g. “safe to read
from this memory addr”, “this is a null-terminated

b2 B 1§

string”, “l have not already acquired this lock”)
- Some of these would actually be hard to implement
e The VC describes all of the checks to be performed

- Along with their context (assumptions from conditionals)

- Invariants and pre/postconditions are used to obtain a
finite expression (through induction)

e VC is valid = interpreter never fails
- We enforce same level of “correctness”
- But better (static + more powerful checks)

#56



e Verification conditions

VC Big Picture

- Capture the semantics of code + specifications
- Language independent

- Can be computed backward/forward on

structured/unstructured code

- Make Axiomatic Semantics practical

MISS WORMWOOD,
1 HANE A

QUESTION ABWT
THIS MATH

LESSON, .

GINEM THAT, SOOWER OR
LATER, WERE AlL JUST
GOING TO DIE, WHAT'S
THE PQINT OF LEARNING

AROMT INTEGERS ?
P y ST

I
X b

| I

NOBODY LIKES US
"Big PICTURE"
PEOPLE .




Invariants Are Not Easy

e Consider the following code from QuickSort
int partition(int *a, int L,, int H,, int pivot) {
intL=1L,, H=H,;
while(L < H) {
while(a[L] < pivot) L ++;
while(a[H] > pivot) H --;
if(L < H) { swap a[L] and a[H] }
}

return L

}
e Consider verifying only memory safety

* What is the loop invariant for the outer loop ? .



Wei Hu Memorial Homework Award

 Many turned in HW3 code like this:
let rec matches re s = match re with
| Star(r) -> union (singleton s)
(matches (Concat(r,Star(r))) s)
 Which is a direct translation of:

R[r*]s = {s} U Rrr*]s

or, equivalently:

R[rFls={s}u{y | Ix eR[r|s Ay € R[r*[x }
 Why doesn’t this work?
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