
#1

Symbolic ExecutionSymbolic Execution

#2

Wei Hu Memorial Homework Award

• Many turned in HW3 code like this:
let rec matches re s = match re with

 | Star(r) -> union (singleton s)
 (matches (Concat(r,Star(r))) s)

• Which is a direct translation of:
R«r*¬s = {s} [R«rr*¬s

or, equivalently:

R«r*¬s = {s} [{ y | 9x 2 R«r¬s Æ y 2 R«r*¬x }

• Why doesn’t this work?

#3

Today’s Cunning Plan

• Symbolic Execution & Forward VCGen
• Handling Exponential Blowup

– Invariants
– Dropping Paths

• VCGen For Exceptions (double trouble)
• VCGen For Memory (McCarthyism)
• VCGen For Structures (have a field day)
• VCGen For “Dictator For Life”

#4

Simple Assembly Language

• Consider the language of instructions:
I ::= x := e | f() | if e goto L | goto L |

L: | return | inv e

• The “inv e” instruction is an annotation
– Says that boolean expression e holds at that point

• Each function f() comes with Pref and Postf
annotations (pre- and post-conditions)

• New Notation (yay!): Ik is the instruction at
address k

#5

Symex States

• We set up a symbolic execution state:

 Σ : Var ! SymbolicExpressions

 Σ(x) = the symbolic value of x in state Σ
 Σ[x:=e] = a new state in which x’s value is e

• We use states as substitutions:

Σ(e) - obtained from e by replacing x with Σ(x)

• Much like the opsem so far …

#6

Symex Invariants
• The symbolic executor tracks invariants

passed
• A new part of symex state: Inv µ {1…n}

• If k 2 Inv then Ik is an invariant instruction
that we have already executed

• Basic idea: execute an inv instruction only
twice:
– The first time it is encountered
– Once more time around an arbitrary iteration

#7

Symex Rules
• Define a VC function as an interpreter:

VC : Address £ SymbolicState £ InvariantState ! Assertion

if Ik = returnΣ(Postcurrent-function)

if Ik = x := eVC(k+1, Σ[x:=Σ(e)], Inv)

VC(k, Σ, Inv) =

if Ik = f()

Σ(Pref) Æ

8a1..am.Σ’(Postf))

 VC(k+1, Σ’, Inv)
(where y1, …, ym are modified by f)

and a1, …, am are fresh parameters

and Σ’ = Σ[y1 := a1, …, ym := am]

if Ik = if e goto L
 e) VC(L, Σ, Inv) Æ

: e) VC(k+1, Σ, Inv)

if Ik = goto L VC(L, Σ, Inv)

#8

Symex Invariants (2a)
Two cases when seeing an invariant instruction:
1. We see the invariant for the first time

– Ik = inv e

– k ∉ Inv (= “not in the set of invariants we’ve seen”)

– Let {y1, …, ym} = the variables that could be modified on
a path from the invariant back to itself

– Let a1, …, am be fresh new symbolic parameters

VC(k, Σ, Inv) =

 Σ(e) Æ 8a1…am. Σ’(e)) VC(k+1, Σ’, Inv [{k}])

 with Σ’ = Σ[y1 := a1, …, ym := am]
 (like a function call)

#9

Symex Invariants (2b)

● We see the invariant for the second time
– Ik = inv E

– k 2 Inv

VC(k, Σ, Inv) = Σ(e)
 (like a function return)

• Some tools take a more simplistic approach
– Do not require invariants
– Iterate through the loop a fixed number of times
– PREfix, versions of ESC (DEC/Compaq/HP SRC)
– Sacrifice completeness for usability

#10

Symex Summary
– Let x1, …, xn be all the variables and a1, …, an fresh

parameters
– Let Σ0 be the state [x1 := a1, …,xn :=an]
– Let ; be the empty Inv set

• For all functions f in your program, prove:
 8a1…an. Σ0(Pref)) VC(fentry, Σ0, ∅)
• If you start the program by invoking any f in a state

that satisfies Pref, then the program will execute
such that
– At all “inv e” the e holds, and
– If the function returns then Postf holds

• Can be proved w.r.t. a real interpreter (operational
semantics)

• Or via a proof technique called co-induction (or,
assume-guarantee)

#11

Forward VCGen Example

• Consider the program
 Precondition: x · 0
Loop: inv x · 6

 if x > 5 goto End
 x := x + 1
 goto Loop

End: return Postconditon: x = 6

#12

Forward VCGen Example (2)
 8x.
 x · 0)
 x · 6 Æ
 8x’.
 (x’ · 6)
 x’ > 5) x’ = 6
 Æ
 x’ · 5) x’ + 1 · 6)

• VC contains both proof obligations and

assumptions about the control flow

#13

VCs Can Be Large

• Consider the sequence of conditionals
(if x < 0 then x := - x); (if x ≤ 3 then x += 3)

– With the postcondition P(x)

• The VC is
x < 0 Æ -x ≤ 3 ⇒ P(-x + 3) Æ

x < 0 Æ -x > 3 ⇒ P(-x) Æ

x ≥ 0 Æ x ≤ 3 ⇒ P(x + 3) Æ

x ≥ 0 Æ x > 3 ⇒ P(x)

• There is one conjunct for each path
) exponential number of paths!
– Conjuncts for infeasible paths have un-satisfiable guards!

• Try with P(x) = x ≥ 3

#14

VCs Can Be Exponential
• VCs are exponential in the size of the source

because they attempt relative completeness:
– Perhaps the correctness of the program must be argued

independently for each path

• Unlikely that the programmer wrote a program by
considering an exponential number of cases
– But possible. Any examples? Any solutions?

#15

VCs Can Be Exponential

• VCs are exponential in the size of the source
because they attempt relative completeness:
– Perhaps the correctness of the program must be

argued independently for each path

• Standard Solutions:
– Allow invariants even in straight-line code
– And thus do not consider all paths independently!

#16

Invariants in Straight-Line Code
• Purpose: modularize the verification task
• Add the command “after c establish Inv”

– Same semantics as c (Inv is only for VC purposes)

 VC(after c establish Inv, P) =def

VC(c,Inv) ∧ ∀xi. Inv ⇒ P
• where xi are the ModifiedVars(c)

• Use when c contains many paths
after if x < 0 then x := - x establish x ≥ 0;

if x ≤ 3 then x += 3 { P(x) }

• VC is now:
(x < 0 ⇒ - x ≥ 0) Æ (x ≥ 0 ⇒ x ≥ 0) Æ

∀x. x ≥ 0 ⇒ (x ≤ 3 ⇒ P(x+3) Æ x > 3 ⇒ P(x))

#17

Dropping Paths

• In absence of annotations, we can drop some paths
• VC(if E then c1 else c2, P) = choose one of

– E ⇒ VC(c1, P) ∧ ¬E ⇒ VC(c2, P) (drop no paths)
– E ⇒ VC(c1, P) (drops “else” path!)
� ¬E ⇒ VC(c2, P) (drops “then” path!)

• We sacrifice soundness! (we are now unsound)
– No more guarantees
– Possibly still a good debugging aid

• Remarks:
– A recent trend is to sacrifice soundness to increase

usability (e.g., Metal, ESP, even ESC)
– The PREfix tool considers only 50 non-cyclic paths

through a function (almost at random)

#18

VCGen for Exceptions

• We extend the source language with
exceptions without arguments (cf. HW2):
– throw throws an exception

– try c1 catch c2 executes c2 if c1 throws

• Problem:
– We have non-local transfer of control
– What is VC(throw, P) ?

#19

VCGen for Exceptions

• We extend the source language with
exceptions without arguments (cf. HW2):
– throw throws an exception
– try c1 catch c2 executes c2 if c1 throws

• Problem:
– We have non-local transfer of control
– What is VC(throw, P) ?

• Standard Solution: use 2 postconditions
– One for normal termination
– One for exceptional termination

#20

VCGen for Exceptions (2)

• VC(c, P, Q) is a precondition that makes c
either not terminate, or terminate normally
with P or throw an exception with Q

• Rules
VC(skip, P, Q) = P
VC(c1; c2, P, Q) = VC(c1, VC(c2, P, Q), Q)

VC(throw, P, Q) = Q
VC(try c1 catch c2, P, Q) = VC(c1, P, VC(c2, P, Q))

VC(try c1 finally c2, P, Q) = ?

#21

VCGen Finally
• Given these:

VC(c1; c2, P, Q) = VC(c1, VC(c2, P, Q), Q)

VC(try c1 catch c2, P, Q) = VC(c1, P, VC(c2, P, Q))

• Finally is somewhat like “if”:
VC(try c1 finally c2, P, Q) =

VC(c1, VC(c2, P, Q), true) Æ

 VC(c1, true, VC(c2, Q, Q))

• Which reduces to:
VC(c1, VC(c2, P, Q), VC(c2, Q, Q))

#22

Hoare Rules and the Heap
• When is the following Hoare triple valid?

 { A } *x := 5 { *x + *y = 10 }
• A should be “*y = 5 or x = y”
• The Hoare rule for assignment would give us:

– [5/*x](*x + *y = 10) = 5 + *y = 10 =
– *y = 5 (we lost one case)

• Why didn’t this work?

#23

Handling The Heap

• We do not yet have a way to talk about
memory (the heap, pointers) in assertions

• Model the state of memory as a symbolic
mapping from addresses to values:
– If A denotes an address and M is a memory state

then:
– sel(M,A) denotes the contents of the memory cell
– upd(M,A,V) denotes a new memory state obtained

from M by writing V at address A

#24

More on Memory

• We allow variables to range over memory
states
– We can quantify over all possible memory states

• Use the special pseudo-variable µ (mu) in
assertions to refer to the current memory

• Example:

∀i. i ≥ 0 ∧ i < 5 ⇒ sel(µ, A + i) > 0
says that entries 0..4 in array A are positive

#25

Hoare Rules: Side-Effects

• To model writes we use memory expressions
– A memory write changes the value of memory

• Important technique: treat memory as a whole
• And reason later about memory expressions with

inference rules such as (McCarthy Axioms, ~‘67):

{ B[upd(µ, A, E)/µ] } *A := E {B}

if A1 = A2V

if A1 ≠ A2sel(M, A2)
sel(upd(M, A1, V), A2) =

#26

Memory Aliasing

• Consider again: { A } *x := 5 { *x + *y = 10 }
• We obtain:
 A = [upd(µ, x, 5)/µ] (*x + *y = 10)
 = [upd(µ, x, 5)/µ] (sel(µ, x) + sel(µ, y) = 10)
(1) = sel(upd(µ, x, 5), x) + sel(upd(µ, x, 5), y) = 10
 = 5 + sel(upd(µ, x, 5), y) = 10
 = if x = y then 5 + 5 = 10 else 5 + sel(µ, y) = 10
(2) = x = y or *y = 5
• Up to (1) is theorem generation
• From (1) to (2) is theorem proving

#27

Alternative Handling for Memory
• Reasoning about aliasing can be expensive

– It is NP-hard (and/or undecideable)

• Sometimes completeness is sacrificed with
the following (approximate) rule:

otherwise (p is a fresh
new parameter)P

if A1 = (obviously) A2V

if A1 ≠ (obviously) A2sel(M, A2)sel(upd(M, A1, V), A2) =

• The meaning of “obviously” varies:
• The addresses of two distinct globals are ≠
• The address of a global and one of a local are ≠

• PREfix and GCC use such schemes

#28

VCGen Overarching Example

• Consider the program
– Precondition: B : bool ∧ A : array(bool, L)
1: I := 0
 R := B
3: inv I ≥ 0 ∧ R : bool
 if I ≥ L goto 9
 assert saferd(A + I)
 T := *(A + I)
 I := I + 1
 R := T
 goto 3
9: return R
– Postcondition: R : bool

#29

VCGen Overarching Example

 8A. 8B. 8L. 8µ
 B : bool Æ A : array(bool, L))
 0 ¸ 0 Æ B : bool Æ
 8I. 8R.
 I ¸ 0 Æ R : bool)
 I ¸ L) R : bool
 Æ
 I < L) saferd(A + I) Æ
 I + 1 ¸ 0 Æ
 sel(µ, A + I) : bool

• VC contains both proof obligations and assumptions
about the control flow

#30

Mutable Records - Two Models

• Let r : RECORD { f1 : T1; f2 : T2 } END
• For us, records are reference types
• Method 1: one “memory” for each record

– One index constant for each field
– r.f1 is sel(r,f1) and r.f1 := E is r := upd(r,f1,E)

• Method 2: one “memory” for each field
– The record address is the index
– r.f1 is sel(f1,r) and r.f1 := E is f1 := upd(f1,r,E)

• Only works in strongly-typed languages like Java
– Fails in C where &r.f2 = &r + sizeof(T1)

#31

VC as a “Semantic Checksum”

• Weakest preconditions are an
expression of the program’s semantics:
– Two equivalent programs have logically

equivalent WPs
– No matter how different their syntax is!

• VC are almost as powerful

#32

VC as a “Semantic Checksum” (2)

• Consider the “assembly
language” program to
the right

x := 4

x := (x == 5)
 assert x : bool

x := not x
 assert x

• High-level type checking is not appropriate here

• The VC is: ((4 == 5) : bool) ∧ (not (4 == 5))

• No confusion from reuse of x with different types

#33

Invariance of VC Across
Optimizations

• VC is so good at abstracting syntactic details that it
is syntactically preserved by many common
optimizations
– Register allocation, instruction scheduling
– Common subexp elim, constant and copy propagation
– Dead code elimination

• We have identical VCs whether or not an
optimization has been performed
– Preserves syntactic form, not just semantic meaning!

• This can be used to verify correctness of compiler
optimizations (Translation Validation)

#34

VC Characterize a Safe
Interpreter

• Consider a fictitious “safe” interpreter
– As it goes along it performs checks (e.g. “safe to read

from this memory addr”, “this is a null-terminated
string”, “I have not already acquired this lock”)

– Some of these would actually be hard to implement

• The VC describes all of the checks to be performed
– Along with their context (assumptions from conditionals)
– Invariants and pre/postconditions are used to obtain a

finite expression (through induction)

• VC is valid) interpreter never fails
– We enforce same level of “correctness”
– But better (static + more powerful checks)

#35

VC Big Picture
• Verification conditions

– Capture the semantics of code + specifications
– Language independent
– Can be computed backward/forward on

structured/unstructured code
– Make Axiomatic Semantics practical

#36

Invariants Are Not Easy

• Consider the following code from QuickSort
int partition(int *a, int L0, int H0, int pivot) {
 int L = L0, H = H0;
 while(L < H) {
 while(a[L] < pivot) L ++;
 while(a[H] > pivot) H --;
 if(L < H) { swap a[L] and a[H] }
 }
 return L
}

• Consider verifying only memory safety
• What is the loop invariant for the outer loop ?

#37

Done!

