Symbolic Execution

I COULD RESTRUCTURE THE PROGRAM'S FLDW OR USE ONE LITLE 'GOTO' INSTEAD.

EH, SCREN GOOD PRACTCE. HOW BAD CAN IT BE?

Wei Hu Memorial Homework Award

- Many turned in HW3 code like this:
let rec matches re s = match re with
| Star(r) -> union (singleton s)
(matches (Concat(r,Star(r))) s)
- Which is a direct translation of:

$$
\begin{gathered}
R \llbracket r^{*} \rrbracket s=\{s\} \cup R \llbracket r^{*} \rrbracket s \\
\text { or, equivalently: } \\
R \llbracket r^{*} \rrbracket s=\{s\} \cup\left\{y \mid \exists x \in R \llbracket r \rrbracket s \wedge y \in R \llbracket r^{*} \rrbracket x\right\}
\end{gathered}
$$

- Why doesn't this work?

Today’s Cunning Plan

- Symbolic Execution \& Forward VCGen
- Handling Exponential Blowup
- Invariants
- Dropping Paths
- VCGen For Exceptions
(double trouble)
(McCarthyism)
- VCGen For Memory
- VCGen For Structures
(have a field day)
- VCGen For "Dictator For Life"

Simple Assembly Language

- Consider the language of instructions: I::= $\quad x:=e|f()|$ if e goto $L \mid$ goto L |

L: | return | inv e

- The "inv e" instruction is an annotation
- Says that boolean expression e holds at that point
- Each function $f()$ comes with Pre $_{f}$ and Post $_{f}$ annotations (pre- and post-conditions)
- New Notation (yay!): I_{k} is the instruction at address k

Symex States

- We set up a symbolic execution state:
$\Sigma:$ Var \rightarrow SymbolicExpressions
$\Sigma(x) \quad=$ the symbolic value of x in state Σ
$\Sigma[\mathrm{x}:=\mathrm{e}] \quad=\mathrm{a}$ new state in which x 's value is e
- We use states as substitutions:
$\Sigma(\mathrm{e})$ - obtained from e by replacing x with $\Sigma(\mathrm{x})$
- Much like the opsem so far ...

Symex Invariants

- The symbolic executor tracks invariants passed
- A new part of symex state: $\operatorname{lnv} \subseteq\{1 . . . n\}$
- If $k \in \operatorname{lnv}$ then I_{k} is an invariant instruction that we have already executed
- Basic idea: execute an inv instruction only twice:
- The first time it is encountered
- Once more time around an arbitrary iteration

Symex Rules

- Define a VC function as an interpreter:

VC : Address \times SymbolicState \times InvariantState \rightarrow Assertion

$\mathrm{VC}(\mathrm{k}, \Sigma, \mathrm{Inv})=$	VC(L, $\Sigma, \mathrm{Inv})$	if $\mathrm{I}_{\mathrm{k}}=$ goto L
	$\begin{aligned} \mathrm{e} & \Rightarrow \mathrm{VC}(\mathrm{~L}, \Sigma, \operatorname{Inv}) \\ \neg \mathrm{e} & \Rightarrow \mathrm{VC}(\mathrm{k}+1, \Sigma, \operatorname{Inv}) \end{aligned}$	if $I_{k}=$ if e goto L
	VC(k+1, Σ [$\mathrm{x}:=\Sigma(\mathrm{e})]$, Inv)	if $\mathrm{I}_{\mathrm{k}}=\mathrm{x}:=\mathrm{e}$
	Σ Post $_{\text {current.function }}$)	if $\mathrm{I}_{\mathrm{k}}=$ return
	$\begin{aligned} & \Sigma\left(\text { Pre }_{\mathrm{f}}\right) \wedge \\ & \forall \mathrm{a}_{1} . . \mathrm{a}_{\mathrm{m}} \cdot \Sigma^{\prime}\left(\text { Post }_{\mathrm{f}}\right) \Rightarrow \\ & \quad \mathrm{VC}\left(\mathrm{k}+1, \Sigma^{\prime}, \mathrm{Inv}\right) \end{aligned}$ (where $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}$ are modified by f) and $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}$ are fresh parameters and $\Sigma^{\prime}=\Sigma\left[y_{1}:=a_{1}, \ldots, y_{m}:=a_{m}\right]$	if $\mathrm{I}_{\mathrm{k}}=\mathrm{f}()$

Symex Invariants (2a)

Two cases when seeing an invariant instruction:

1. We see the invariant for the first time

- $I_{k}=$ inve
- $k \notin \operatorname{lnv} \quad$ (= "not in the set of invariants we've seen")
- Let $\left\{y_{1}, \ldots, y_{m}\right\}=$ the variables that could be modified on a path from the invariant back to itself
- Let a_{1}, \ldots, a_{m} be fresh new symbolic parameters
$\operatorname{VC}(\mathrm{k}, \Sigma, \operatorname{Inv})=$

$$
\left.\Sigma(\mathrm{e}) \wedge \forall \mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{m}} \cdot \Sigma^{\prime}(\mathrm{e}) \Rightarrow \mathrm{VC}\left(\mathrm{k}+1, \Sigma^{\prime}, \operatorname{Inv} \cup\{\mathrm{k}\}\right]\right)
$$

with $\Sigma^{\prime}=\Sigma\left[\mathrm{y}_{1}:=\mathrm{a}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}:=\mathrm{a}_{\mathrm{m}}\right]$
(like a function call)

Symex Invariants (2b)

- We see the invariant for the second time
- $I_{k}=\operatorname{inv} E$
- $k \in \operatorname{Inv}$
$\mathrm{VC}(\mathrm{k}, \Sigma, \operatorname{Inv})=\Sigma(\mathrm{e})$
(like a function return)
- Some tools take a more simplistic approach
- Do not require invariants
- Iterate through the loop a fixed number of times
- PREfix, versions of ESC (DEC/Compaq/HP SRC)
- Sacrifice completeness for usability

Symex Summary

- Let x_{1}, \ldots, x_{n} be all the variables and a_{1}, \ldots, a_{n} fresh parameters
- Let Σ_{0} be the state $\left[\mathrm{x}_{1}:=\mathrm{a}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}:=\mathrm{a}_{\mathrm{n}}\right.$]
- Let \emptyset be the empty Inv set
- For all functions f in your program, prove:

$$
\forall \mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{n}} \cdot \Sigma_{0}\left(\text { Pre }_{\mathrm{f}}\right) \Rightarrow \operatorname{VC}\left(\mathrm{f}_{\mathrm{entry}}, \Sigma_{0}, \varnothing\right)
$$

- If you start the program by invoking any fin a state that satisfies Pre $_{f}$, then the program will execute such that
- At all "inv e" the e holds, and
- If the function returns then Post $_{f}$ holds
- Can be proved w.r.t. a real interpreter (operational semantics)
- Or via a proof technique called co-induction (or, assume-guarantee)

Forward VCGen Example

- Consider the program

$$
\text { Precondition: } x \leq 0
$$

Loop: inv $x \leq 6$

$$
\begin{aligned}
& \text { if } x>5 \text { goto End } \\
& x:=x+1 \\
& \text { goto Loop }
\end{aligned}
$$

End: return Postconditon: $x=6$

Forward VCGen Example (2)

$\forall x$.

$$
\begin{aligned}
& x \leq 0 \Rightarrow \\
& x \leq 6 \wedge \\
& \forall x^{\prime} .
\end{aligned}
$$

$$
\begin{aligned}
& \left(x^{\prime} \leq 6 \Rightarrow\right. \\
& x^{\prime}>5 \Rightarrow x^{\prime}=6 \\
& \wedge \\
& \left.x^{\prime} \leq 5 \Rightarrow x^{\prime}+1 \leq 6\right)
\end{aligned}
$$

- VC contains both proof obligations and assumptions about the control flow

VCs Can Be Large

- Consider the sequence of conditionals

$$
\text { (if } x<0 \text { then } x:=-x \text {); (if } x \leq 3 \text { then } x+=3 \text {) }
$$

- With the postcondition $\mathrm{P}(\mathrm{x})$
- The VC is

$$
\begin{array}{ll}
x<0 \wedge-x \leq 3 & \Rightarrow P(-x+3) \\
x<0 \wedge-x>3 & \Rightarrow P(-x) \\
x \geq 0 \wedge x \leq 3 & \Rightarrow P(x+3) \\
x \geq 0 \wedge x>3 & \Rightarrow P(x)
\end{array}
$$

- There is one conjunct for each path
\Rightarrow exponential number of paths!
- Conjuncts for infeasible paths have un-satisfiable guards!
- Try with $P(x)=x \geq 3$

VCs Can Be Exponential

- VCs are exponential in the size of the source because they attempt relative completeness:
- Perhaps the correctness of the program must be argued independently for each path
- Unlikely that the programmer wrote a program by considering an exponential number of cases
- But possible. Any examples? Any solutions?

VCs Can Be Exponential

- VCs are exponential in the size of the source because they attempt relative completeness:
- Perhaps the correctness of the program must be argued independently for each path
- Standard Solutions:
- Allow invariants even in straight-line code
- And thus do not consider all paths independently!

Invariants in Straight-Line Code

- Purpose: modularize the verification task
- Add the command "after c establish Inv"
- Same semantics as c (Inv is only for VC purposes)
$\mathrm{VC}($ after c establish Inv, P$)=_{\text {def }}$

$$
\mathrm{VC}(\mathrm{c}, \operatorname{Inv}) \wedge \forall \mathrm{x}_{\mathrm{i}} \cdot \operatorname{Inv} \Rightarrow \mathrm{P}
$$

- where x_{i} are the ModifiedVars(c)
- Use when c contains many paths after if $\mathrm{x}<0$ then $\mathrm{x}:=-\mathrm{x}$ establish $\mathrm{x} \geq 0$; if $x \leq 3$ then $x+=3\{P(x)\}$
- VC is now:

$$
\begin{aligned}
& (x<0 \Rightarrow-x \geq 0) \wedge(x \geq 0 \Rightarrow x \geq 0) \wedge \\
& \forall x . x \geq 0 \Rightarrow(x \leq 3 \Rightarrow P(x+3) \wedge x>3 \Rightarrow P(x))
\end{aligned}
$$

Dropping Paths

- In absence of annotations, we can drop some paths
- VC(if E then c_{1} else $\left.c_{2}, P\right)=$ choose one of
- $\mathrm{E} \Rightarrow \mathrm{VC}\left(\mathrm{c}_{1}, \mathrm{P}\right) \wedge \neg \mathrm{E} \Rightarrow \mathrm{VC}\left(\mathrm{c}_{2}, \mathrm{P}\right) \quad$ (drop no paths)
- $\mathrm{E} \Rightarrow \mathrm{VC}\left(\mathrm{c}_{1}, \mathrm{P}\right)$ $\neg \mathrm{E} \Rightarrow \mathrm{VC}\left(\mathrm{c}_{2}, \mathrm{P}\right)$
(drops "else" path!)
(drops "then" path!)
- We sacrifice soundness! (we are now unsound)
- No more guarantees
- Possibly still a good debugging aid
- Remarks:
- A recent trend is to sacrifice soundness to increase usability (e.g., Metal, ESP, even ESC)
- The PREfix tool considers only 50 non-cyclic paths through a function (almost at random)

VCGen for Exceptions

- We extend the source language with exceptions without arguments (cf. HW2):
- throw
- try c_{1} catch $c_{2} \quad$ executes c_{2} if c_{1} throws
- Problem:
- We have non-local transfer of control
- What is VC(throw, P) ?

VCGen for Exceptions

- We extend the source language with exceptions without arguments (cf. HW2):
- throw
- $\operatorname{try} \mathrm{c}_{1}$ catch $\mathrm{c}_{2} \quad$ executes c_{2} if c_{1} throws
- Problem:
- We have non-local transfer of control
- What is VC(throw, P) ?
- Standard Solution: use 2 postconditions
- One for normal termination
- One for exceptional termination

VCGen for Exceptions (2)

- $\mathrm{VC}(\mathrm{c}, \mathrm{P}, \mathrm{Q})$ is a precondition that makes c either not terminate, or terminate normally with P or throw an exception with Q
- Rules

VC(skip, P, Q) = P
$\operatorname{VC}\left(c_{1} ; c_{2}, P, Q\right)=V C\left(c_{1}, V C\left(c_{2}, P, Q\right), Q\right)$
$\mathrm{VC}($ throw, $\mathrm{P}, \mathrm{Q})=\mathrm{Q}$
$\mathrm{VC}\left(\right.$ try c_{1} catch $\left.\mathrm{c}_{2}, \mathrm{P}, \mathrm{Q}\right)=\mathrm{VC}\left(\mathrm{c}_{1}, \mathrm{P}, \mathrm{VC}\left(\mathrm{c}_{2}, \mathrm{P}, \mathrm{Q}\right)\right)$
$\mathrm{VC}\left(\right.$ try c_{1} finally $\left.\mathrm{C}_{2}, \mathrm{P}, \mathrm{Q}\right)=$?

VCGen Finally

- Given these:
$\operatorname{VC}\left(c_{1} ; c_{2}, P, Q\right)=\operatorname{VC}\left(c_{1}, V C\left(c_{2}, P, Q\right), Q\right)$
$\mathrm{VC}\left(\right.$ try c_{1} catch $\left.\mathrm{c}_{2}, \mathrm{P}, \mathrm{Q}\right)=\mathrm{VC}\left(\mathrm{c}_{1}, \mathrm{P}, \mathrm{VC}\left(\mathrm{c}_{2}, \mathrm{P}, \mathrm{Q}\right)\right)$
- Finally is somewhat like "if":
$\mathrm{VC}\left(\right.$ try c_{1} finally $\left.\mathrm{c}_{2}, \mathrm{P}, \mathrm{Q}\right)=$
$\mathrm{VC}\left(\mathrm{c}_{1}, \mathrm{VC}\left(\mathrm{c}_{2}, \mathrm{P}, \mathrm{Q}\right)\right.$, true $) \wedge$
$\mathrm{VC}\left(\mathrm{c}_{1}\right.$, true, VC($\left.\left.\mathrm{c}_{2}, \mathrm{Q}, \mathrm{Q}\right)\right)$
- Which reduces to:

$$
V C\left(c_{1}, V C\left(c_{2}, P, Q\right), V C\left(c_{2}, Q, Q\right)\right)
$$

Hoare Rules and the Heap

- When is the following Hoare triple valid?

$$
\{A\}{ }^{*} x:=5\left\{{ }^{*} x+{ }^{*} y=10\right\}
$$

- A should be "*y = 5 or $x=y "$
- The Hoare rule for assignment would give us:

$$
\begin{aligned}
& -[5 / * x]\left({ }^{*} x+{ }^{*} y=10\right)=5+{ }^{*} y=10= \\
& -{ }^{*} y=5 \quad \text { (we lost one case) }
\end{aligned}
$$

- Why didn't this work?

> AT LAST, SOME CLARITY! EVERY SENTENCE IS EITHER PURE, SWEET TRUTH OR A VILE, CONTEMPTIBLE LIE! ONE OR THE OTHER! NOTHING IN BETWEEN!

Handling The Heap

- We do not yet have a way to talk about memory (the heap, pointers) in assertions
- Model the state of memory as a symbolic mapping from addresses to values:
- If A denotes an address and M is a memory state then:
- $\operatorname{sel}(M, A)$ denotes the contents of the memory cell
- upd (M, A, V) denotes a new memory state obtained from M by writing V at address A

More on Memory

- We allow variables to range over memory states
- We can quantify over all possible memory states
- Use the special pseudo-variable μ (mu) in assertions to refer to the current memory
- Example:

$$
\forall \text { i. } \mathrm{i} \geq 0 \wedge \mathrm{i}<5 \Rightarrow \operatorname{sel}(\mu, A+i)>0
$$

says that entries $0 . .4$ in array A are positive

Hoare Rules: Side-Effects

- To model writes we use memory expressions
- A memory write changes the value of memory

$$
\{\mathrm{B}[\mathrm{upd}(\mu, \mathrm{~A}, \mathrm{E}) / \mu]\}^{*} \mathrm{~A}:=\mathrm{E}\{\mathrm{~B}\}
$$

- Important technique: treat memory as a whole
- And reason later about memory expressions with inference rules such as (McCarthy Axioms, ~'67):
$\operatorname{sel}\left(\operatorname{upd}\left(M, A_{1}, V\right), A_{2}\right)= \begin{cases}V & \text { if } A_{1}=A_{2} \\ \operatorname{sel}\left(M, A_{2}\right) & \text { if } A_{1} \neq A_{2}\end{cases}$

Memory Aliasing

- Consider again: $\{A\}{ }^{*} x:=5\left\{{ }^{*} x+{ }^{*} y=10\right\}$
- We obtain:

$$
\begin{aligned}
A & =[\operatorname{upd}(\mu, x, 5) / \mu]\left({ }^{*} x+* y=10\right) \\
& =[\operatorname{upd}(\mu, x, 5) / \mu](\operatorname{sel}(\mu, x)+\operatorname{sel}(\mu, y)=10)
\end{aligned}
$$

(1) $=\operatorname{sel}(\operatorname{upd}(\mu, x, 5), x)+\operatorname{sel}(\operatorname{upd}(\mu, x, 5), y)=10$
$=5+\operatorname{sel}(\operatorname{upd}(\mu, x, 5), y)=10$
$=$ if $x=y$ then $5+5=10$ else $5+\operatorname{sel}(\mu, y)=10$
(2) $=x=y$ or ${ }^{2} y=5$

- Up to (1) is theorem generation
- From (1) to (2) is theorem proving

Alternative Handling for Memory

- Reasoning about aliasing can be expensive - It is NP-hard (and/or undecideable)
- Sometimes completeness is sacrificed with the following (approximate) rule:
$\operatorname{sel}\left(\operatorname{upd}\left(M, A_{1}, V\right), A_{2}\right)= \begin{cases}V & \text { if } A_{1}=\text { (obviously) } A_{2} \\ \operatorname{sel}\left(M, A_{2}\right) & \text { if } A_{1} \neq \text { (obviously) } A_{2} \\ P & \text { otherwise (p is a fresh }\end{cases}$
- The meaning of "obviously" varies:
- The addresses of two distinct globals are \neq
- The address of a global and one of a local are \neq
- PREfix and GCC use such schemes

VCGen Overarching Example

- Consider the program
- Precondition: B:bool $\wedge A$: array(bool, L)

1: I:=0
R:= B
3: inv $I \geq 0 \wedge R$: bool
if $\mathrm{I} \geq \mathrm{L}$ goto 9
assert $\operatorname{saferd}(A+I)$
T:= *(A + I)
I:=I + 1
R:= T
goto 3
9: return R

- Postcondition: R : bool

VCGen Overarching Example

\forall A. \forall B. \forall L. $\forall \mu$
$B: \operatorname{bool} \wedge A: \operatorname{array}($ bool, L) \Rightarrow
$0 \geq 0 \wedge B:$ bool \wedge
$\forall \mathrm{I} . \forall \mathrm{R}$.

$$
\begin{gathered}
I \geq 0 \wedge R: \text { bool } \Rightarrow \\
I \geq L \Rightarrow R: \text { bool } \\
\wedge
\end{gathered}
$$

$$
\mathrm{I}<\mathrm{L} \Rightarrow \operatorname{saferd}(\mathrm{~A}+\mathrm{I}) \wedge
$$

$$
\mid+1 \geq 0 \wedge
$$

$$
\operatorname{sel}(\mu, \mathrm{A}+\mathrm{I}): \text { bool }
$$

- VC contains both proof obligations and assumptions about the control flow

Mutable Records - Two Models

- Let $\mathrm{r}: \operatorname{RECORD}\{\mathrm{f} 1: \mathrm{T} 1 ; \mathrm{f} 2: \mathrm{T} 2$ \} END
- For us, records are reference types
- Method 1: one "memory" for each record
- One index constant for each field
- r.f1 is sel(r,f1) and r.f1 $:=\mathrm{E}$ is $\mathrm{r}:=\operatorname{upd}(\mathrm{r}, \mathrm{f} 1, \mathrm{E})$
- Method 2: one "memory" for each field
- The record address is the index
- r.f1 is sel(f1,r) and r.f1 $:=\mathrm{E}$ is $\mathrm{f} 1:=\operatorname{upd}(\mathrm{f} 1, \mathrm{r}, \mathrm{E})$
- Only works in strongly-typed languages like Java
- Fails in C where \&r.f2 = \&r + sizeof(T1)

VC as a "Semantic Checksum"

- Weakest preconditions are an expression of the program's semantics:
- Two equivalent programs have logically equivalent WPs
- No matter how different their syntax is!
- VC are almost as powerful

VC as a "Semantic Checksum" (2)

- Consider the "assembly language" program to the right

$$
\begin{aligned}
x & :=4 \\
x & :=(x==5) \\
& \text { assert } x: \text { bool } \\
x & :=\text { not } x \\
& \text { assert } x
\end{aligned}
$$

- High-level type checking is not appropriate here
- The VC is: ((4 == 5) : bool) ^(not (4 == 5))
- No confusion from reuse of x with different types

Invariance of VC Across Optimizations

- VC is so good at abstracting syntactic details that it is syntactically preserved by many common optimizations
- Register allocation, instruction scheduling
- Common subexp elim, constant and copy propagation
- Dead code elimination
- We have identical VCs whether or not an optimization has been performed
- Preserves syntactic form, not just semantic meaning!
- This can be used to verify correctness of compiler optimizations (Translation Validation)

VC Characterize a Safe Interpreter

- Consider a fictitious "safe" interpreter
- As it goes along it performs checks (e.g. "safe to read from this memory addr", "this is a null-terminated string", "I have not already acquired this lock")
- Some of these would actually be hard to implement
- The VC describes all of the checks to be performed
- Along with their context (assumptions from conditionals)
- Invariants and pre/postconditions are used to obtain a finite expression (through induction)
- VC is valid \Rightarrow interpreter never fails
- We enforce same level of "correctness"
- But better (static + more powerful checks)

VC Big Picture

- Verification conditions
- Capture the semantics of code + specifications
- Language independent
- Can be computed backward/forward on structured/unstructured code
- Make Axiomatic Semantics practical

Invariants Are Not Easy

- Consider the following code from QuickSort int partition(int *a, int L_{0}, int H_{0}, int pivot) \{

```
int L = L , H = Ho
while(L < H) {
while(a[L] < pivot) L ++;
while(a[H] > pivot) H --;
if(L < H) { swap a[L] and a[H] }
```

\}
return L
\}

- Consider verifying only memory safety
- What is the loop invariant for the outer loop?

Done!

