Symbolic Execution

Wei Hu Memorial Homework Award

 Many turned in HW3 code like this: let rec matches re s = match re with
 | Star(r) -> union (singleton s)

(matches (Concat(r,Star(r))) s)

• Which is a direct translation of:

$$\mathbb{R}\llbracket r^* \rrbracket s = \{s\} \cup \mathbb{R}\llbracket rr^* \rrbracket s$$

or, equivalently:

- $\mathsf{R}\llbracket r^* \rrbracket s = \{s\} \cup \{ y \mid \exists x \in \mathsf{R}\llbracket r \rrbracket s \land y \in \mathsf{R}\llbracket r^* \rrbracket x \}$
- Why doesn't this work?

Today's Cunning Plan

- Symbolic Execution & Forward VCGen
- Handling Exponential Blowup
 - Invariants
 - Dropping Paths
- VCGen For Exceptions
- VCGen For Memory
- VCGen For Structures
- VCGen For "Dictator For Life"

(double trouble)

(have a field day)

(McCarthyism)

Simple Assembly Language

- Consider the language of instructions:
 - I ::= x := e | f() | if e goto L | goto L | L: | return | inv e
- The "inv e" instruction is an annotation
 - Says that boolean expression e holds at that point
- Each function f() comes with Pre_f and Post_f annotations (pre- and post-conditions)
- New Notation (yay!): I_k is the instruction at address k

Symex States

- We set up a symbolic execution state:
- $\Sigma: Var \to SymbolicExpressions$
- $\Sigma(x)$ = the symbolic value of x in state Σ
- $\Sigma[x:=e] = a$ new state in which x's value is e
- We use states as substitutions:
- $\Sigma(e)$ obtained from e by replacing x with $\Sigma(x)$
- Much like the opsem so far ...

Symex Invariants

- The symbolic executor tracks invariants passed
- A new part of symex state: $Inv \subseteq \{1...n\}$
- If $k \in Inv$ then I_k is an invariant instruction that we have already executed
- Basic idea: execute an inv instruction only <u>twice</u>:
 - The first time it is encountered
 - Once more time around an **arbitrary** iteration

Symex Rules

- Define a VC function as an interpreter:
 - $VC: Address \times SymbolicState \times InvariantState \rightarrow Assertion$

VC(L, Σ , Inv) if I_{k} = goto L $e \Rightarrow VC(L, \Sigma, Inv)$ \wedge if I_{k} = if e goto L $\neg e \Rightarrow VC(k+1, \Sigma, Inv)$ VC(k+1, Σ [x:= Σ (e)], Inv) if $I_{k} = x := e$ $\Sigma(\mathsf{Post}_{\mathsf{current-function}})$ if I_k = return VC(k, Σ , Inv) = $\Sigma(Pre_f)$ \wedge $\forall a_1...a_m.\Sigma'(\mathsf{Post}_f) \Rightarrow$ VC(k+1, Σ ', Inv) if $I_{\mu} = f()$ (where $y_1, ..., y_m$ are modified by f) and $a_1, ..., a_m$ are fresh parameters and $\Sigma' = \Sigma[y_1 := a_1, ..., y_m := a_m]$

Symex Invariants (2a)

Two cases when seeing an invariant instruction:

- 1. We see the invariant for the first time
 - $I_k = inv e$
 - $k \notin Inv$ (= "not in the set of invariants we've seen")
 - Let {y₁, ..., y_m} = the variables that could be modified on a path from the invariant back to itself
 - Let a₁, ..., a_m be fresh new symbolic parameters

VC(k, Σ , Inv) =

 $\Sigma(e) \land \forall a_1...a_m. \Sigma'(e) \Rightarrow VC(k+1, \Sigma', Inv \cup \{k\}])$

with $\Sigma' = \Sigma[y_1 := a_1, ..., y_m := a_m]$

(like a function call)

Symex Invariants (2b)

- We see the invariant for the second time
 - $I_k = inv E$
 - $k \in Inv$

VC(k, Σ , Inv) = Σ (e)

(like a function return)

- Some tools take a more simplistic approach
 - Do not require invariants
 - Iterate through the loop a fixed number of times
 - PREfix, versions of ESC (DEC/Compaq/HP SRC)
 - Sacrifice completeness for usability

Symex Summary

- Let x₁, ..., x_n be all the variables and a₁, ..., a_n fresh parameters
- Let Σ_0 be the state $[x_1 := a_1, ..., x_n := a_n]$
- Let Ø be the empty Inv set
- For all functions f in your program, prove:

 $\forall a_1...a_n. \Sigma_0(Pre_f) \Rightarrow VC(f_{entry}, \Sigma_0, \emptyset)$

- If you start the program by invoking any f in a state that satisfies Pre_f, then the program will execute such that
 - At all "inv e" the e holds, and
 - If the function returns then Post_f holds
- Can be proved w.r.t. a real interpreter (operational semantics)
- Or via a proof technique called co-induction (or, <u>assume-guarantee</u>)

Forward VCGen Example

- Consider the program
 Precondition: x ≤ 0

 Loop: inv x < 6
 - Loop: $mv x \le 0$ if x > 5 goto End x := x + 1goto Loop End: return *Postconditon:* x = 6

Forward VCGen Example (2) ∀x. $x < 0 \Rightarrow$ $x < 6 \wedge$ $\forall x'$. (x' \leq 6 \Rightarrow $x' > 5 \Rightarrow x' = 6$ $x' < 5 \Rightarrow x' + 1 < 6$)

 VC contains both proof obligations and assumptions about the control flow

VCs Can Be Large

• Consider the sequence of conditionals

(if x < 0 then x := -x); (if $x \le 3$ then x += 3)

- With the postcondition P(x)
- The VC is

 $x < 0 \land -x \le 3 \implies P(-x + 3) \land$

- $x < 0 \land -x > 3 \implies P(-x) \land$
- $x \ge 0 \ \land \ x \le 3 \qquad \Rightarrow \mathsf{P}(x+3) \qquad \land$

 $x \ge 0 \land x > 3 \implies P(x)$

- There is one conjunct for each path
 ⇒ exponential number of paths!
 - Conjuncts for infeasible paths have un-satisfiable guards!
- Try with $P(x) = x \ge 3$

VCs Can Be Exponential

- VCs are exponential in the size of the source because they attempt relative completeness:
 - Perhaps the correctness of the program must be argued independently for each path
- Unlikely that the programmer wrote a program by considering an exponential number of cases
 - But possible. Any examples? Any solutions?

VCs Can Be Exponential

- VCs are exponential in the size of the source because they attempt relative completeness:
 - Perhaps the correctness of the program must be argued independently for each path
- Standard Solutions:
 - Allow invariants even in straight-line code
 - And thus do not consider all paths independently!

Invariants in Straight-Line Code

- Purpose: modularize the verification task
- Add the command "after c establish Inv"
 - Same semantics as c (Inv is only for VC purposes) VC(after c establish Inv, P) = $_{def}$

 $\mathsf{VC}(\mathsf{c},\mathsf{Inv})\land\forall x_{\mathsf{i}}.\;\mathsf{Inv}\Rightarrow\mathsf{P}$

- where x_i are the ModifiedVars(c)
- Use when c contains many paths after if x < 0 then x := - x establish x ≥ 0; if x ≤ 3 then x += 3 { P(x) }
- VC is now:

 $(x < 0 \Rightarrow -x \ge 0) \land (x \ge 0 \Rightarrow x \ge 0) \land$ $\forall x. \ x \ge 0 \Rightarrow (x \le 3 \Rightarrow P(x+3) \land x > 3 \Rightarrow P(x))$

Dropping Paths

- In absence of annotations, we can drop some paths
- VC(if E then c₁ else c₂, P) = choose one of
 - $E \Rightarrow VC(c_1, P) \land \neg E \Rightarrow VC(c_2, P)$ (drop no paths)
 - $E \Rightarrow VC(c_1, P)$ (drops "else" path!) $\neg E \Rightarrow VC(c_2, P)$ (drops "then" path!)
- We sacrifice soundness! (we are now <u>unsound</u>)
 - No more guarantees
 - Possibly still a good debugging aid
- Remarks:
 - A recent trend is to sacrifice soundness to increase usability (e.g., Metal, ESP, even ESC)
 - The PREfix tool considers only 50 non-cyclic paths through a function (almost at random)

VCGen for Exceptions

- We extend the source language with exceptions without arguments (cf. HW2):
 - throw throws an exception
 - try c_1 catch c_2 executes c_2 if c_1 throws
- Problem:
 - We have non-local transfer of control
 - What is VC(throw, P)?

VCGen for Exceptions

- We extend the source language with exceptions without arguments (cf. HW2):
 - throw throws an exception
 - try c_1 catch c_2 executes c_2 if c_1 throws
- Problem:
 - We have non-local transfer of control
 - What is VC(throw, P)?
- Standard Solution: use 2 postconditions
 - One for <u>normal termination</u>
 - One for exceptional termination

VCGen for Exceptions (2)

- VC(c, P, Q) is a precondition that makes c either not terminate, or terminate normally with P or throw an exception with Q
- Rules

VC(skip, P, Q) = P VC(c_1 ; c_2 , P, Q) = VC(c_1 , VC(c_2 , P, Q), Q) VC(throw, P, Q) = Q VC(try c_1 catch c_2 , P, Q) = VC(c_1 , P, VC(c_2 , P, Q)) VC(try c_1 finally c_2 , P, Q) = ?

VCGen Finally

• Given these:

 $VC(c_1; c_2, P, Q) = VC(c_1, VC(c_2, P, Q), Q)$

VC(try c_1 catch c_2 , P, Q) = VC(c_1 , P, VC(c_2 , P, Q))

- Finally is somewhat like "if":
 VC(try c₁ finally c₂, P, Q) =
 VC(c₁, VC(c₂, P, Q), true)
 VC(c₁, true, VC(c₂, Q, Q))
- Which reduces to:

 $VC(c_1, VC(c_2, P, Q), VC(c_2, Q, Q))$

Hoare Rules and the Heap

• When is the following Hoare triple valid?

{ A } *x := 5 { *x + *y = 10 }

- A *should be* "*y = 5 or x = y"
- The Hoare rule for assignment would give us:

$$[5/*x](*x + *y = 10) = 5 + *y = 10 =$$

- *y = 5 (we lost one case)

• Why didn't this work?

Handling The Heap

- We do not yet have a way to talk about memory (the heap, pointers) in assertions
- Model the state of memory as a symbolic mapping from addresses to values:
 - If A denotes an address and M is a memory state then:
 - sel(M,A) denotes the contents of the memory cell
 - upd(M,A,V) denotes a new memory state obtained from M by writing V at address A

More on Memory

- We allow variables to range over memory states
 - We can quantify over all possible memory states
- Use the special pseudo-variable μ (mu) in assertions to refer to the current memory
- Example:

$\forall i. i \ge 0 \land i < 5 \implies sel(\mu, A + i) > 0$ says that entries 0..4 in array A are positive

Hoare Rules: Side-Effects

- To model writes we use memory expressions
 - A memory write changes the value of memory

{ B[upd(µ, A, E)/µ] } ***A := E** {B}

- Important technique: treat memory as a whole
- And reason later about memory expressions with inference rules such as (<u>McCarthy Axioms</u>, ~'67):

sel(upd(M, A₁, V), A₂) = $\begin{cases} V & \text{if } A_1 = A_2 \\ \text{sel}(M, A_2) & \text{if } A_1 \neq A_2 \end{cases}$

Memory Aliasing

- Consider again: { A } *x := 5 { *x + *y = 10 }
- We obtain:
 - A = [upd(μ , x, 5)/ μ] (*x + *y = 10)
 - = $[upd(\mu, x, 5)/\mu]$ (sel(μ, x) + sel(μ, y) = 10)
- (1) = sel(upd(μ , x, 5), x) + sel(upd(μ , x, 5), y) = 10
 - $= 5 + sel(upd(\mu, x, 5), y) = 10$

= if x = y then 5 + 5 = 10 else 5 + sel(μ , y) = 10

- (2) = x = y or *y = 5
- Up to (1) is theorem generation
- From (1) to (2) is theorem proving

Alternative Handling for Memory

- Reasoning about aliasing can be expensive
 - It is NP-hard (and/or undecideable)
- Sometimes completeness is sacrificed with the following (approximate) rule:

sel(upd(M, A₁, V), A₂) = $\begin{cases} V & \text{if } A_1 = (\text{obviously}) A_2 \\ \text{sel}(M, A_2) & \text{if } A_1 \neq (\text{obviously}) A_2 \\ P & \text{otherwise (p is a fresh} \end{cases}$

new parameter)

- The meaning of "obviously" varies:
 - The addresses of two distinct globals are \neq
 - The address of a global and one of a local are \neq
- PREfix and GCC use such schemes

VCGen Overarching Example

- Consider the program
 - Precondition: B : bool ^ A : array(bool, L)
 - 1: I := 0
 - R := B
 - 3: inv $I \ge 0 \land R$: bool
 - if $I \ge L$ goto 9 assert saferd(A + I)
 - T := *(A + I)
 - I := I + 1
 - R := T
 - goto 3
 - 9: return R
 - Postcondition: *R* : *bool*

VCGen Overarching Example

```
\forall A. \forall B. \forall L. \forall \mu
        B : bool \land A : array(bool, L) \Rightarrow
             0 > 0 \land B : bool \land
                   \forall I. \forall R.
                         I > 0 \land R : bool \Rightarrow
                                 I > L \Rightarrow R : bool
                                            Λ
                                  I < L \Rightarrow saferd(A + I) \land
                                                  I + 1 > 0 ∧
                                                  sel(\mu, A + I): bool
```

 VC contains both proof obligations and assumptions about the control flow

Mutable Records - Two Models

- Let r : RECORD { f1 : T1; f2 : T2 } END
- For us, records are reference types
- Method 1: one "memory" for each record
 - One index constant for each field
 - r.f1 is sel(r,f1) and r.f1 := E is r := upd(r,f1,E)
- Method 2: one "memory" for each field
 - The record address is the index
 - r.f1 is sel(f1,r) and r.f1 := E is f1 := upd(f1,r,E)
- Only works in strongly-typed languages like Java
 - Fails in C where &r.f2 = &r + sizeof(T1)

VC as a "Semantic Checksum"

- Weakest preconditions are an expression of the program's semantics:
 - Two equivalent programs have logically equivalent WPs
 - No matter how different their syntax is!

• VC are almost as powerful

VC as a "Semantic Checksum" (2)

 Consider the "assembly language" program to the right

- High-level type checking is not appropriate here
- The VC is: ((4 == 5) : bool) \land (not (4 == 5))
- No confusion from reuse of x with different types

Invariance of VC Across Optimizations

- VC is so good at abstracting syntactic details that it is syntactically preserved by many common optimizations
 - Register allocation, instruction scheduling
 - Common subexp elim, constant and copy propagation
 - Dead code elimination
- We have *identical* VCs whether or not an optimization has been performed
 - Preserves syntactic form, not just semantic meaning!
- This can be used to verify correctness of compiler optimizations (Translation Validation)

VC Characterize a Safe Interpreter

- Consider a fictitious "safe" interpreter
 - As it goes along it performs checks (e.g. "safe to read from this memory addr", "this is a null-terminated string", "I have not already acquired this lock")
 - Some of these would actually be hard to implement
- The VC describes all of the checks to be performed
 - Along with their context (assumptions from conditionals)
 - Invariants and pre/postconditions are used to obtain a finite expression (through induction)
- VC is valid \Rightarrow interpreter *never fails*
 - We enforce same level of "correctness"
 - But better (static + more powerful checks)

VC Big Picture

- Verification conditions
 - Capture the semantics of code + specifications
 - Language independent
 - Can be computed backward/forward on structured/unstructured code
 - Make Axiomatic Semantics practical

Invariants Are Not Easy

 Consider the following code from QuickSort int partition(int *a, int L₀, int H₀, int pivot) {

```
int L = L<sub>0</sub>, H = H<sub>0</sub>;
while(L < H) {
    while(a[L] < pivot) L ++;
    while(a[H] > pivot) H --;
    if(L < H) { swap a[L] and a[H] }
}
return L
```

```
}
```

- Consider verifying only memory safety
- What is the loop invariant for the outer loop ?

Done!