MS Patch Tuesday - Plus ca change

- "eEye Digital Security has reported a vulnerability in Windows Media Player ... due to a boundary error within the processing of bitmap files (.bmp) and can be exploited to cause a heap-based buffer overflow via a specially crafted bitmap file that declares its size as 0 ... exploitation allows execution of arbitrary code"
- Six of seven "critical" or "important" bugs were found by people outside of Microsoft

NEXT, ON EYEWITNESS ACTION

 NEWS: BLOOD-SPATTERED SIDEWALKS AND SHROUD. COVERED BODIES ! COULD THE NEXT VICTIM BE YOU??

WE'LL GET THE STORY FROM THE LIVING ROOMS OF SOBBING, HYSTERICAL RELATIVES AND WELL TELL YOU WHY YOU SHOULD BE PARALYZED WITH HELPLESS FEAR!

Apologies to Ralph Macchio

- Daniel: You're supposed to teach and I'm supposed to learn. Four homeworks l've been working on IMP, I haven't learned a thing.
- Miyagi: You learn plenty.
- Daniel: I learn plenty, yeah. I learned how to analyze IMP, maybe. I evaluate your commands, derive your judgments, prove your soundness. I learn plenty!
- Miyagi: Not everything is as seems.
- Daniel: You're not even relatively complete! I'm going home, man.
- Miyagi: Daniel-san!
- Daniel: What?
- Miyagi: Come here. Show me "compute the VC".

Abstract Interpretation (Non-Standard Semantics)

a.k.a. "Picking The Right Abstraction"

The Problem

- It is extremely useful to predict program behavior statically (= without running the program)
- For optimizing compilers, program analyses, software engineering tools, finding security flaws, etc.
- The semantics we studied so far give us the precise behavior of a program
- However, precise static predictions are impossible
- The exact semantics is not computable
- We must settle for approximate, but correct, static analyses (e.g. VC vs. WP)

The Plan

- We will introduce abstract interpretation by example
- Starting with a miniscule language we will build up to a fairly realistic application
- Along the way we will see most of the ideas and difficulties that arise in a big class of applications

A Tiny Language

- Consider the following language of arithmetic ("shrIMP"?)

$$
\mathrm{e}::=\mathrm{n} \mid \mathrm{e}_{1}{ }^{*} \mathrm{e}_{2}
$$

- The denotational semantics of this language

$$
\begin{aligned}
& \llbracket \mathrm{n} \rrbracket=\mathrm{n} \\
& \llbracket \mathrm{e}_{1}{ }^{*} \mathrm{e}_{2} \rrbracket=\llbracket \mathrm{e}_{1} \rrbracket \times \llbracket \mathrm{e}_{2} \rrbracket
\end{aligned}
$$

- We'll take deno-sem as the "ground truth"
- For this language the precise semantics is computable (but in general it's not)

An Abstraction

- Assume that we are interested not in the value of the expression, but only in its sign:
- positive (+), negative (-), or zero (0)
- We can define an abstract semantics that computes only the sign of the result

$$
\sigma: \operatorname{Exp} \rightarrow\{-, 0,+\}
$$

$$
\begin{aligned}
& \sigma(n)=\operatorname{sign}(n) \\
& \sigma\left(e_{1} * e_{2}\right)=\sigma\left(e_{1}\right) \otimes \sigma\left(e_{2}\right)
\end{aligned}
$$

\otimes	-	0	+
-	+	0	-
0	0	0	0
+	-	0	+

I Saw the Sign

- Why did we want to compute the sign of an expression?
- One reason: no one will believe you know abstract interp if you haven't seen the sign thing
- What could we be computing instead?
- Alex Aiken was here ...

YOU'D STILL HAVE TO READ THE BOOK AND TELL THE COMPUTER WHAT YOU WANT TO SAY, YOU KNOW.

Correctness of Sign Abstraction

- We can show that the abstraction is correct in the sense that it predicts the sign

$$
\begin{aligned}
& \llbracket \mathrm{e} \rrbracket>0 \Leftrightarrow \sigma(\mathrm{e})=+ \\
& \llbracket \mathrm{e} \rrbracket=0 \Leftrightarrow \sigma(\mathrm{e})=0 \\
& \llbracket \mathrm{e} \rrbracket<0 \Leftrightarrow \sigma(\mathrm{e})=-
\end{aligned}
$$

- Our semantics is abstract but precise
- Proof is by structural induction on the expression e
- Each case repeats similar reasoning

Another View of Soundness

- Link each concrete value to an abstract one:

$$
\beta: \mathbb{Z} \rightarrow\{-, 0,+\}
$$

- This is called the abstraction function (β)
- This three-element set is the abstract domain
- Also define the concretization function (γ):

$$
\begin{aligned}
\gamma:\{-, & 0,+\} \rightarrow \mathcal{P}(\mathbb{Z}) \\
\gamma(+) & =\quad\{n \in \mathbb{Z} \mid n>0\} \\
\gamma(0) & =\{0\} \\
\gamma(-) & =\{n \in \mathbb{Z} \mid n<0\}
\end{aligned}
$$

Another View of Soundness 2

- Soundness can be stated succinctly

$$
\forall \mathrm{e} \in \operatorname{Exp} . \llbracket \mathrm{e} \rrbracket \in \gamma(\sigma(\mathrm{e}))
$$

(the real value of the expression is among the concrete values represented by the abstract value of the expression)

- Let C be the concrete domain (e.g. \mathbb{Z}) and A be the abstract domain (e.g. $\{-, 0,+\}$)
- Commutative diagram:

Another View of Soundness 3

- Consider the generic abstraction of an operator

$$
\sigma\left(\mathrm{e}_{1} \text { op } \mathrm{e}_{2}\right)=\sigma\left(\mathrm{e}_{1}\right) \text { op } \sigma\left(\mathrm{e}_{2}\right)
$$

- This is sound iff
$\forall a_{1} \forall a_{2} . \gamma\left(\mathrm{a}_{1}\right.$ op $\left.\mathrm{a}_{2}\right) \supseteq\left\{\mathrm{n}_{1}\right.$ op $\left.\mathrm{n}_{2} \mid \mathrm{n}_{1} \in \gamma\left(\mathrm{a}_{1}\right), \mathrm{n}_{2} \in \gamma\left(\mathrm{a}_{2}\right)\right\}$
- e.g. $\gamma\left(a_{1} \otimes a_{2}\right) \supseteq\left\{n_{1}{ }^{*} n_{2} \mid n_{1} \in \gamma\left(a_{1}\right), n_{2} \in \gamma\left(a_{2}\right)\right\}$
- This reduces the proof of correctness to one proof for each operator

Abstract Interpretation

- This is our first example of an abstract interpretation
- We carry out computation in an abstract domain
- The abstract semantics is a sound approximation of the standard semantics
- The concretization and abstraction functions establish the connection between the two domains

Adding Unary Minus and Addition

- We extend the language to

$$
\mathrm{e}::=\mathrm{n}\left|\mathrm{e}_{1}{ }^{*} \mathrm{e}_{2}\right|-\mathrm{e}
$$

- We define $\sigma(-\mathrm{e})=\ominus \sigma(\mathrm{e})$

- Now we add addition:

$$
\mathrm{e}::=\mathrm{n}\left|\mathrm{e}_{1}{ }^{*} \mathrm{e}_{2}\right|-\mathrm{e} \mid \mathrm{e}_{1}+\mathrm{e}_{2}
$$

\oplus	-	0	+
-	-	-	$?$
0	-	0	+
+	$?$	+	+

- We define $\sigma\left(\mathrm{e}_{1}+\mathrm{e}_{2}\right)=\sigma\left(\mathrm{e}_{1}\right) \oplus \sigma\left(\mathrm{e}_{2}\right)$

Adding Addition

- The sign values are not closed under addition - What should be the value of "+ \oplus-"?
- Start from the soundness condition:

$$
\gamma(+\oplus-) \supseteq\left\{n_{1}+n_{2} \mid n_{1}>0, n_{2}<0\right\}=\mathbb{Z}
$$

- We don't have an abstract value whose concretization includes \mathbb{Z}, so we add one:
T ("top" = "don’t know")

\oplus	-	0	+	T
-	-	-	T	T
0	-	0	+	T
+	T	+	+	T
T	T	T	T	T

Loss of Precision

- Abstract computation may lose information:

$$
\llbracket(1+2)+-3 \rrbracket=0
$$

but:

$$
\begin{aligned}
& \sigma((1+2)+-3)= \\
& \quad(\sigma(1) \oplus \sigma(2)) \oplus \sigma(-3)= \\
& \quad(+\oplus+) \oplus-=\top
\end{aligned}
$$

- We lost some precision
- But this will simplify the computation of the abstract answer in cases when the precise answer is not computable

Adding Division

- Straightforward except for division by 0
- We say that there is no answer in that case
- $\gamma(+\oslash 0)=\left\{n \mid n=n_{1} / 0, n_{1}>0\right\}=\emptyset$
- Introduce \perp to be the abstraction of the \emptyset
- We also use the same abstraction for non-termination!
$\perp=$ "nothing"
$\mathrm{T}=$ "something unknown"

\varnothing	-	0	+	T	\perp
-	+	0	-	T	\perp
0	\perp	\perp	\perp	\perp	\perp
+	-	0	+	\top	\perp
\top	\top	\top	\top	\top	\perp
\perp	\perp	\perp	\perp	\perp	\perp

The Abstract Domain

- Our abstract domain forms a lattice
- A partial order is induced by γ

$$
a_{1} \leq a_{2} \quad \text { iff } \gamma\left(a_{1}\right) \subseteq \gamma\left(a_{2}\right)
$$

- We say that a_{1} is more precise than a_{2} !
- Every finite subset has a least-upper
 bound (lub) and a greatest-lower bound (glb)

Lattice Facts

- A lattice is complete when every subset has a lub and a gub
- Even infinite subsets!
- Every finite lattice is (trivially) complete
- Every complete lattice is a complete partial order (recall: denotational semantics!)
- Since a chain is a subset
- Not every CPO is a complete lattice
- Might not even be a lattice

Lattice History

- Early work in denotational semantics used lattices (instead of what?)
- But only chains need to have lubs
- And there was no need for T and glb
- In abstract interpretation we'll use \top to denote "I don't know".
- Corresponds to all values in the concrete domain

From One, Many

- We can start with the abstraction function β

$$
\beta: C \rightarrow A
$$

(maps a concrete value to the best abstract value)

- A must be a lattice
- We can derive the concretization function γ

$$
\begin{aligned}
& \gamma: A \rightarrow \mathcal{P}(C) \\
& \gamma(a)=\{x \in C \mid \beta(x) \leq a\}
\end{aligned}
$$

- And the abstraction for sets $\underline{\alpha}$

$$
\begin{aligned}
& \alpha: \mathcal{P}(C) \rightarrow A \\
& \alpha(S)=\operatorname{lub}\{\beta(x) \mid x \in S\}
\end{aligned}
$$

Example

- Consider our sign lattice

$$
\beta(n)= \begin{cases}+ & \text { if } n>0 \\ 0 & \text { if } n=0 \\ - & \text { if } n<0\end{cases}
$$

- $\alpha(S)=\operatorname{lub}\{\beta(x) \mid x \in S\}$
- Example: $\alpha(\{1,2\})=\operatorname{lub}\{+\}=+$
$\alpha(\{1,0\})=\operatorname{lub}\{+, 0\}=T$
$\alpha(\}) \quad=\operatorname{lub}\{ \} \quad=\perp$
- $\gamma(\mathrm{a})=\{\mathrm{n} \mid \beta(\mathrm{n}) \leq \mathrm{a}\}$
- Example: $\gamma(+)=\quad\{n \mid \beta(n) \leq+\} \quad=$

$$
\{n \mid \beta(n)=+\} \quad=\{n \mid n>0\}
$$

$\gamma \quad(T)=\{n \mid \beta(n) \leq T\}=\mathbb{Z}$

$$
\gamma(\perp)=\{n \mid \beta(n) \leq \perp\}=\emptyset
$$

Galois Connections

- We can show that
- γ and α are monotonic (with \subseteq ordering on $\mathcal{P}(\mathrm{C})$)
- $\alpha(\gamma(\mathrm{a}))=\mathrm{a} \quad$ for all $\mathrm{a} \in \mathrm{A}$
- $\gamma(\alpha(\mathrm{S})) \supseteq \mathrm{S} \quad$ for all $\mathrm{S} \in \mathcal{P}(\mathrm{C})$
- Such a pair of functions is called a Galois connection
- Between the lattices A and $\mathcal{P}(\mathrm{C})$

Correctness Condition

- In general, abstract interpretation satisfies the following (amazingly common) diagram

Three Little Correctness Conditions

- Three conditions define a correct abstract interpretation
- $\quad \alpha$ and γ are monotonic
- α and γ form a Galois connection
$=$ " α and γ are almost inverses"

4. Abstraction of operations is correct

$$
a_{1} \text { op } a_{2}=\alpha\left(\gamma\left(a_{1}\right) \text { op } \gamma\left(a_{2}\right)\right)
$$

Homework

- Homework 4 Due Today
- Homework 5 Out Today
- Read Ken Thompson Turing Award

