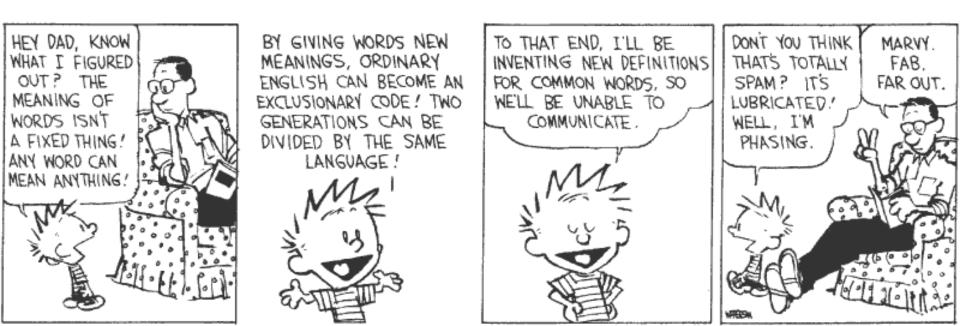
Abstract Interpretation

(Galois, Collections, Widening)



Tool Time

- How's Homework 5 going?
- Get started early
- Compilation problems?
 - See FAQ
 - (trivia: what tool brand is this?)

More Power!

• You can handle it!

Abstract Interpretation

- We have an abstract domain A
 - e.g., A = { positive, negative, zero }
 - An abstraction function $\beta:\mathbb{Z}\to A$
 - $\bullet \ensuremath{\mathbb{Z}}$ is our concrete domain
 - A concretization function $\gamma : A \to \mathcal{P}(\mathbb{Z})$
- Positive + Positive = ???
- Positive + Negative = ???
- Positive / Zero = ???

We don't want security to get suspicious ...

Review

- We introduced abstract interpretation
- An abstraction mapping from concrete to abstract values
 - Has a concretization mapping which forms a Galois connection
- We'll look a bit more at Galois connections
- We'll lift AI from expressions to programs
- ... and we'll discuss the mythic "widening"

Why Galois Connections?

- We have an abstract domain A
 - An abstraction function $\beta:\mathbb{Z}\to A$
 - Induces $\alpha : \mathcal{P}(\mathbb{Z}) \to A$ and $\gamma : A \to \mathcal{P}(\mathbb{Z})$
- We argued that for correctness

 $\gamma(a_1 \text{ op } a_2) \supseteq \gamma(a_1) \text{ op } \gamma(a_2)$

- We wish for the set on the left to be as small as possible
- To reduce the loss of information through abstraction
- For each set $S \subseteq C$, define $\alpha(S)$ as follows:
 - Pick smallest S' that includes S and is in the image of γ
 - Define $\alpha(S) = \gamma^{1}(S')$
 - Then we define: $a_1 op a_2 = \alpha(\gamma(a_1) op \gamma(a_2))$
- Then α and γ form a Galois connection

Galois Connections

• A <u>Galois connection</u> between complete lattices A and $\mathcal{P}(C)$ is a pair of functions α and γ such that:

for all $S \in \mathcal{P}(C)$

1,2

2

- γ and α are monotonic
 - (with the \subseteq ordering on $\mathcal{P}(C)$)
- α (γ (a)) = a for all a \in A
- $\gamma (\alpha(S)) \supseteq S$

γα

More on Galois Connections

IS FREEDOM OF SPEECH AN ABSOLUTE RIGHT? anything which hurts other people's convictions, particularly religious convictions, must be avoided. Freedom of expression should be exercised in a spirit of responsibility. I must condemn any overt 🕵 provocatio "I may not agree with that could what you say but I will dangerously defend to the death fuel passion your right to say it."

- All Galois connections are monotonic
- In a Galois connection one function uniquely and absolutely determines the other

Abstract Interpretation for Imperative Programs

- So far we abstracted the value of expressions
- Now we want to abstract the state at each point in the program
- First we define the concrete semantics that we are abstracting
 - We'll use a collecting semantics

Collecting Semantics

- Recall
 - A state $\sigma \in \Sigma$. Any state σ has type Var $\to \mathbb{Z}$
 - States vary from program point to program point
- We introduce a set of program points: labels
- We want to answer questions like:
 - Is x always positive at label i?
 - Is x always greater or equal to y at label j?
- To answer these questions we'll construct
 - $C \in Contexts$. C has type Labels $\rightarrow \mathcal{P}(\Sigma)$
 - For each label i, C(i) = all possible states at label i
 - This is called the <u>collecting semantics</u> of the program
 - This is basically what SLAM (and BLAST, ESP, ...) approximate (using BDDs to store $\mathcal{P}(\Sigma)$ efficiently)

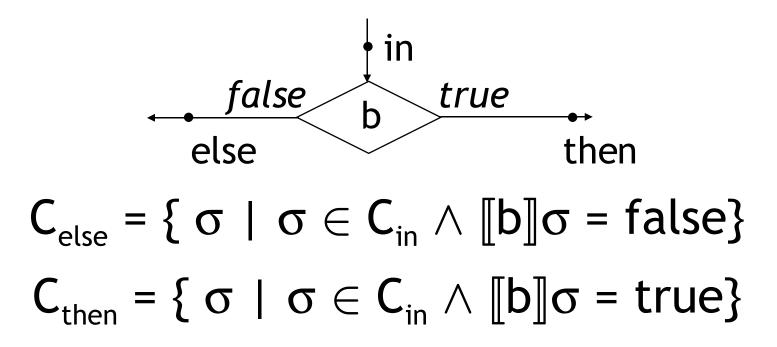
Defining the Collecting Semantics

- We first define relations between the collecting semantics at different labels
 - We do it for unstructured CFGs (cf. HW5!)
 - Can do it for IMP with careful notion of program points
- Define a label on each edge in the CFG
- For assignment

$$\begin{array}{c} \downarrow i \\ \hline x := e \\ \downarrow j \end{array} \quad C_j = \{ \sigma[x := n] \mid \sigma \in C_i \land [e] \sigma = n \} \end{array}$$

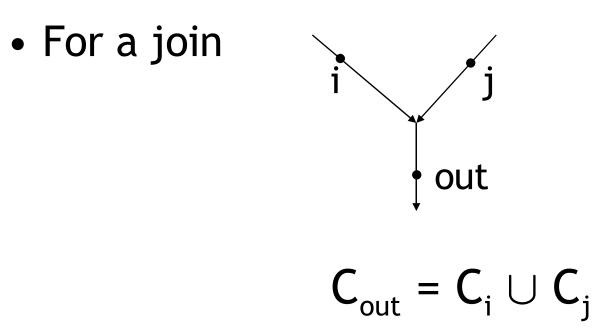
Defining the Collecting Semantics

• For conditionals



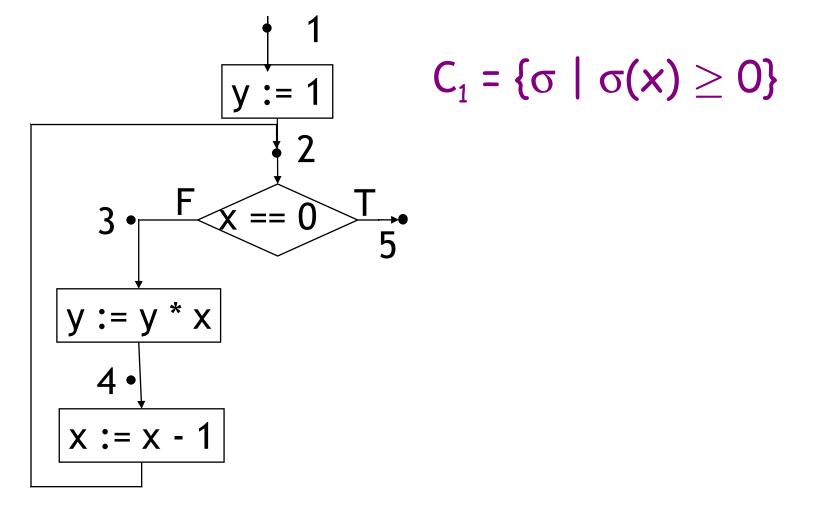
• Assumes b has no side effects (as in IMP or HW5)

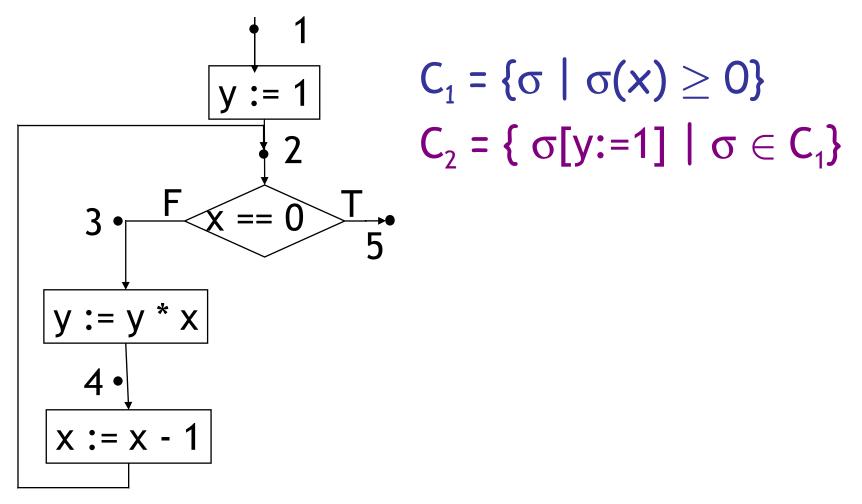
Defining the Collecting Semantics

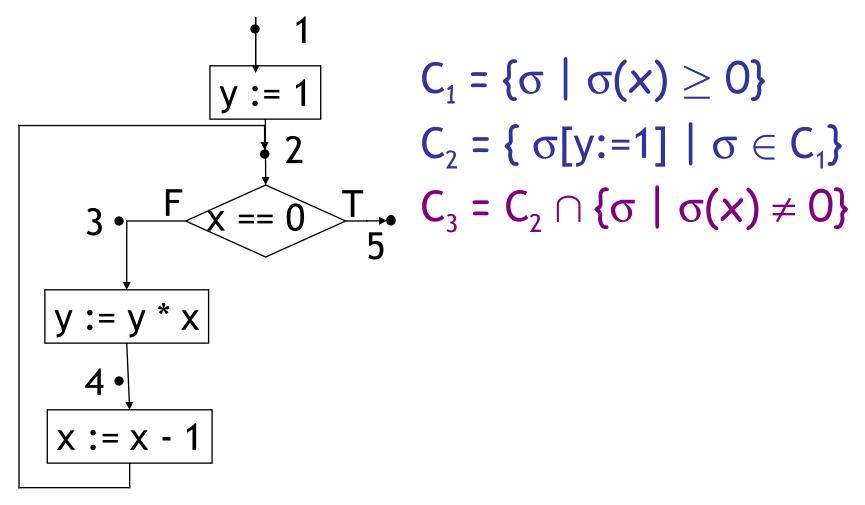


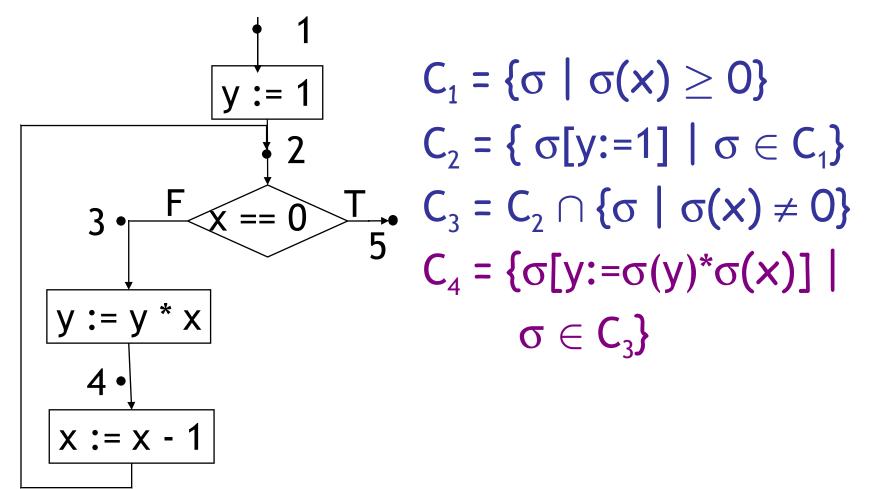
Verify that these relations are monotonic
 If we increase a C_x all other C_y can only increase

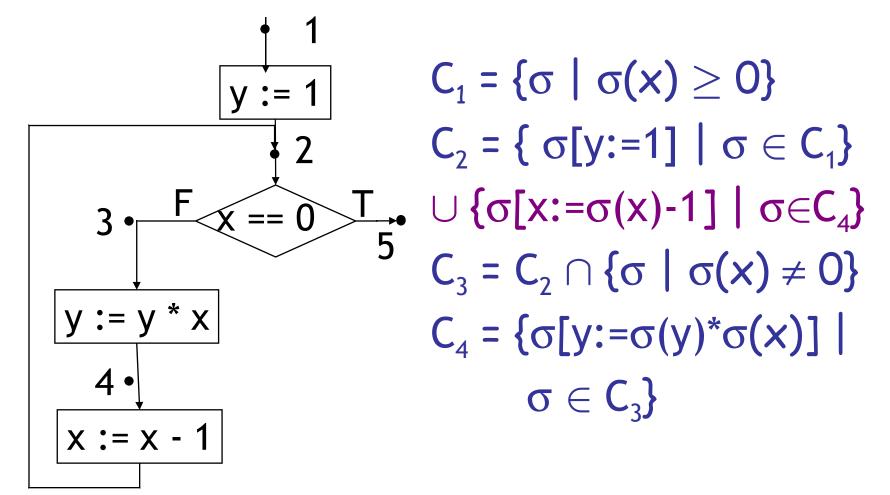
Assume x ≥ 0 initially (explain this?)

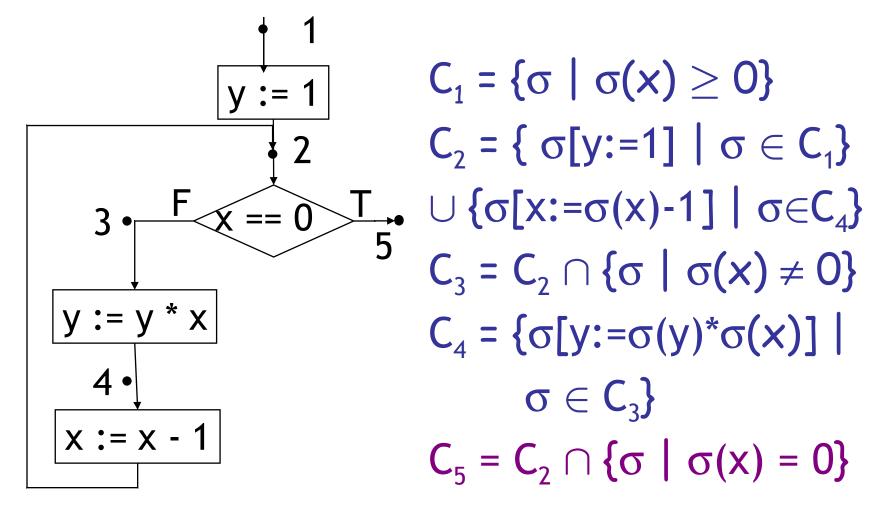












Why Does This Work?

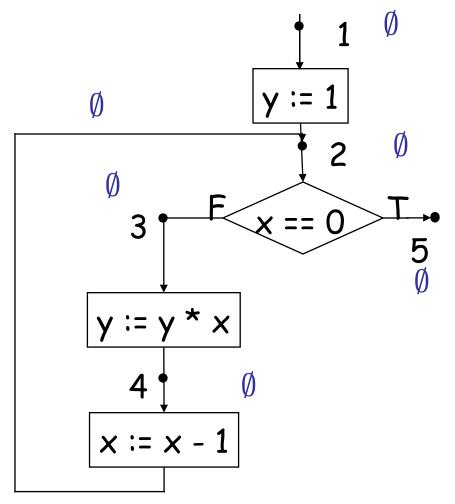
 We just made a system of recursive equations that are defined largely in terms of themselves

- e.g.,
$$C_2 = F(C_4)$$
, $C_4 = G(C_3)$, $C_3 = H(C_2)$

• Why do we have any reason to believe that this will get us what we want?

The Collecting Semantics

- We have an equation with the unknown C
 - The equation is defined by a monotonic and continuous function on domain Labels $\rightarrow \mathcal{P}(\Sigma)$
- We can use the least fixed-point theorem
 - Start with $C^{0}(L) = \emptyset$ (aka $C^{0} = \lambda L.\emptyset$)
 - Apply the relations between C_{i} and C_{j} to get $C^{1}_{\ i}$ from $C^{0}_{\ j}$
 - Stop when all $C^k = C^{k-1}$
 - Problem: we'll go on forever for most programs
 - But we know the fixed point exists



$$C_{1} = \{ \sigma \mid \sigma(x) \ge 0 \}$$

$$C_{2} = \{ \sigma[\gamma:=1] \mid \sigma \in C_{1} \}$$

$$\cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_{4} \}$$

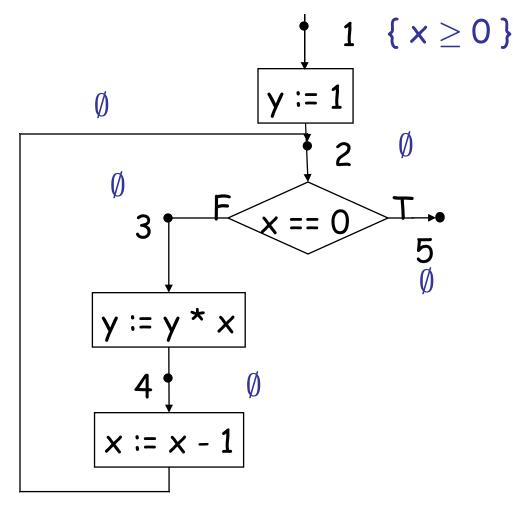
$$C_{3} = C_{2} \cap \{ \sigma \mid \sigma(x) \neq 0 \}$$

$$C_{5} = C_{2} \cap \{ \sigma \mid \sigma(x) = 0 \}$$

$$C_{4} = \{ \sigma[\gamma:=\sigma(\gamma)^{*}\sigma(x) \mid \sigma \in C_{3} \}$$

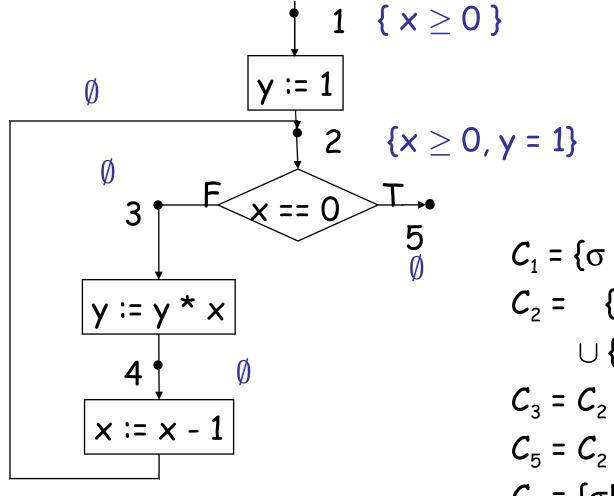
$$\#24$$

• (assume $x \ge 0$ initially)

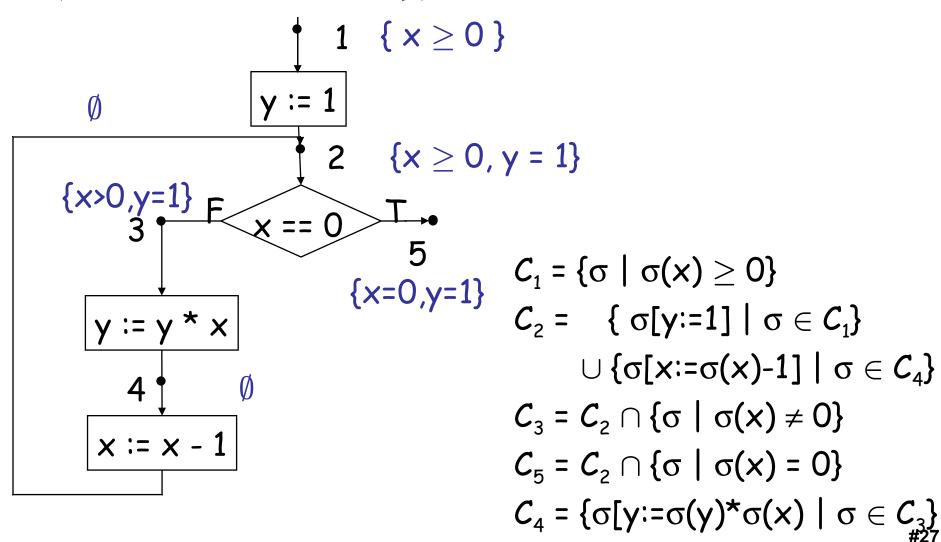


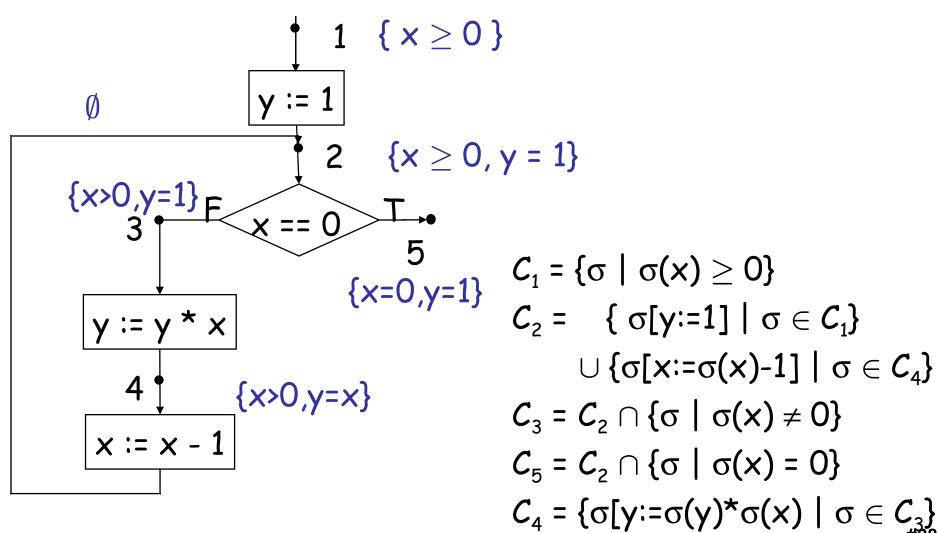
 $C_{1} = \{ \sigma \mid \sigma(x) \ge 0 \}$ $C_{2} = \{ \sigma[\gamma:=1] \mid \sigma \in C_{1} \}$ $\cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_{4} \}$ $C_{3} = C_{2} \cap \{ \sigma \mid \sigma(x) \neq 0 \}$ $C_{5} = C_{2} \cap \{ \sigma \mid \sigma(x) = 0 \}$ $C_{4} = \{ \sigma[\gamma:=\sigma(\gamma)^{*}\sigma(x) \mid \sigma \in C_{3} \}$

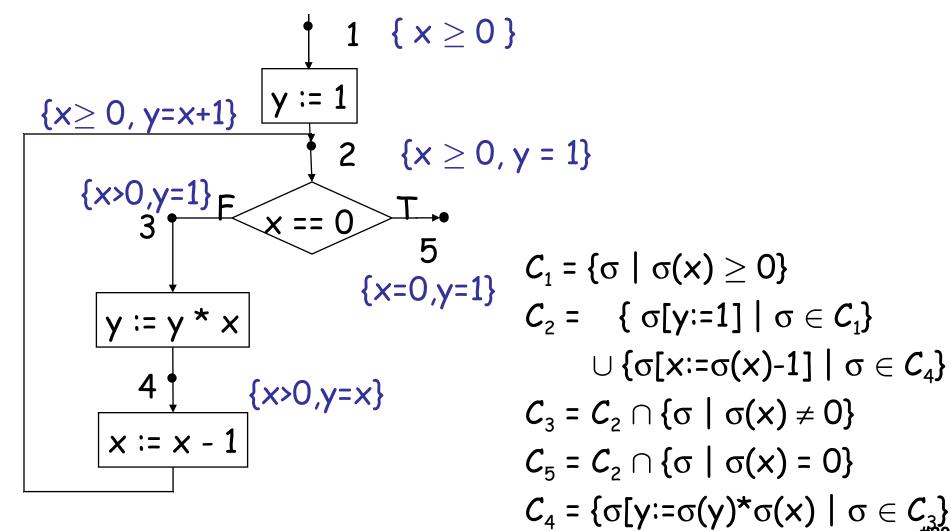
• (assume $x \ge 0$ initially)

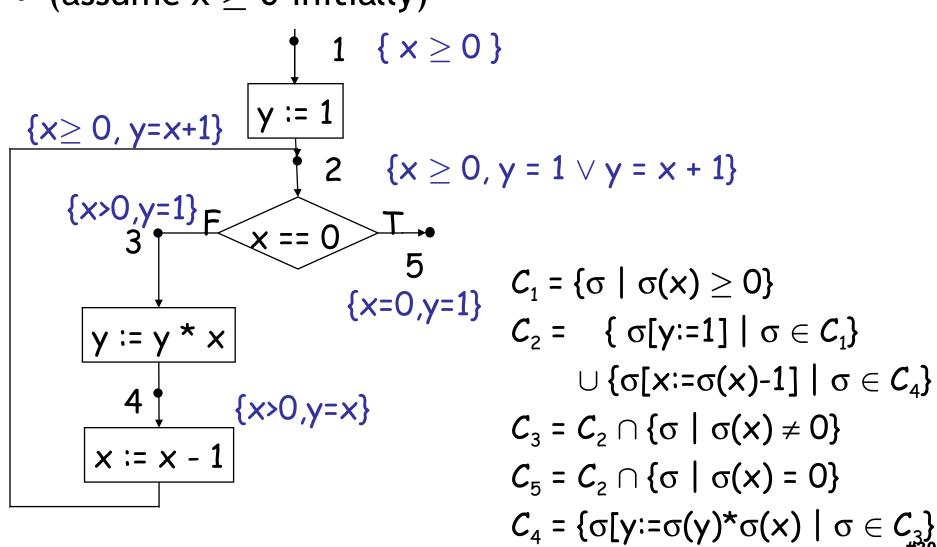


 $C_{1} = \{ \sigma \mid \sigma(x) \ge 0 \}$ $C_{2} = \{ \sigma[\gamma:=1] \mid \sigma \in C_{1} \}$ $\cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_{4} \}$ $C_{3} = C_{2} \cap \{ \sigma \mid \sigma(x) \neq 0 \}$ $C_{5} = C_{2} \cap \{ \sigma \mid \sigma(x) = 0 \}$ $C_{4} = \{ \sigma[\gamma:=\sigma(\gamma)^{*}\sigma(x) \mid \sigma \in C_{3} \}$









Q: Theatre (006 / 842)

- Name the 1879 Gilbert & Sullivan operetta parodied by the following quote:
 - I am the very model of a Newsgroup personality.
 - I intersperse obscenity with tedious banality.
 - Addresses I have plenty of, both genuine and ghosted too,
 - On all the countless newsgroups that my drivel is cross-posted to.

Q: TV Music (040 / 842)

- Fill in the three blanks in this **Flintstones** theme song snippet:
 - Let's ride with the family down the street
 - Through the courtesy of <u>blank</u> <u>blank</u> <u>blank</u>
 - When you're with the Flintstones
 - Have a yabba dabba doo time

Abstract Interpretation

- Pick a complete lattice A (abstractions for $\mathcal{P}(\Sigma)$)
 - Along with a monotonic abstraction α : $\mathcal{P}(\Sigma) \to \mathsf{A}$
 - Alternatively, pick $\beta:\Sigma\to \mathsf{A}$
 - This uniquely defines its Galois connection γ
- Take the relations between C_i and move them to the abstract domain:

 $a:Label \to A$

• Assignment

 $\begin{array}{l} \text{Concrete: } \mathsf{C}_{\mathsf{j}} = \{\sigma[\mathsf{x} := \mathsf{n}] \ | \ \sigma \in \mathsf{C}_{\mathsf{i}} \land \llbracket \mathsf{e} \rrbracket \sigma = \mathsf{n} \} \\ \text{Abstract: } \mathsf{a}_{\mathsf{j}} = \alpha \ \{\sigma[\mathsf{x} := \mathsf{n}] \ | \ \sigma \in \gamma(\mathsf{a}_{\mathsf{i}}) \land \llbracket \mathsf{e} \rrbracket \sigma = \mathsf{n} \} \end{array}$

Abstract Interpretation

Conditional

 $\begin{array}{l} \text{Concrete: } \mathsf{C}_{\mathsf{j}} = \{ \ \sigma \ \mid \ \sigma \in \mathsf{C}_{\mathsf{i}} \land \llbracket b \rrbracket \sigma = \mathsf{false} \} \text{ and} \\ \mathsf{C}_{\mathsf{k}} = \{ \ \sigma \ \mid \ \sigma \in \mathsf{C}_{\mathsf{i}} \land \llbracket b \rrbracket \sigma = \mathsf{true} \} \\ \text{Abstract: } \mathsf{a}_{\mathsf{j}} = \alpha \ \{ \ \sigma \ \mid \ \sigma \in \gamma(\mathsf{a}_{\mathsf{i}}) \land \llbracket b \rrbracket \sigma = \mathsf{false} \} \text{ and} \\ \mathsf{a}_{\mathsf{k}} = \alpha \ \{ \ \sigma \ \mid \ \sigma \in \gamma(\mathsf{a}_{\mathsf{i}}) \land \llbracket b \rrbracket \sigma = \mathsf{true} \} \end{array}$

• Join

Concrete:
$$C_k = C_i \cup C_j$$
Abstract: $a_k = \alpha (\gamma(a_i) \cup \gamma(a_j)) = lub \{a_i, a_j\}$

Least Fixed Points In The Abstract Domain

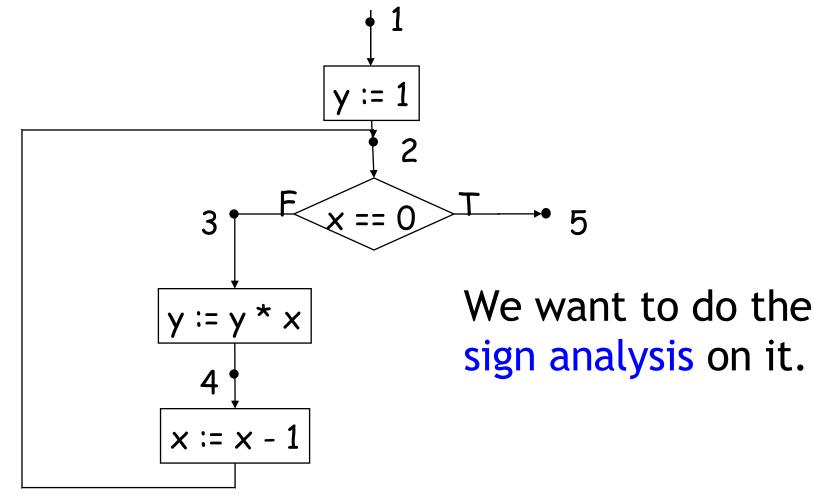
- We have a recursive equation with unknown "a"
 - Defined by a monotonic and continuous function on the domain Labels \rightarrow A
- We can use the least fixed-point theorem:
 - Start with $a^0 = \lambda L. \bot$ (aka: $a^0(L) = \bot$)
 - Apply the monotonic function to compute a^{k+1} from a^k
 - Stop when $a^{k+1} = a^k$
- Exactly the same computation as for the collecting semantics
 - What is new?
 - "There is nothing new under the sun but there are lots of old things we don't know." Ambrose Bierce

Least Fixed Points In The Abstract Domain

- We have a hope of termination!
- Classic setup: A has only <u>uninteresting</u> chains (finite number of elements in each chain)
 - A has finite height h (= "<u>finite-height lattice</u>")
- The computation takes $O(h \times |Labels|^2)$ steps
 - At each step "a" makes progress on at least one label
 - We can only make progress h times
 - And each time we must compute |Labels| elements
- This is a quadratic analysis: good news
 - This is exactly the same as Kildall's 1973 analysis of dataflow's polynomial termination given a finite-height lattice and monotonic transfer functions.

Abstract Interpretation: Example

• Consider the following program, x>0



Abstract Domain for Sign Analysis

Invent the complete sign lattice

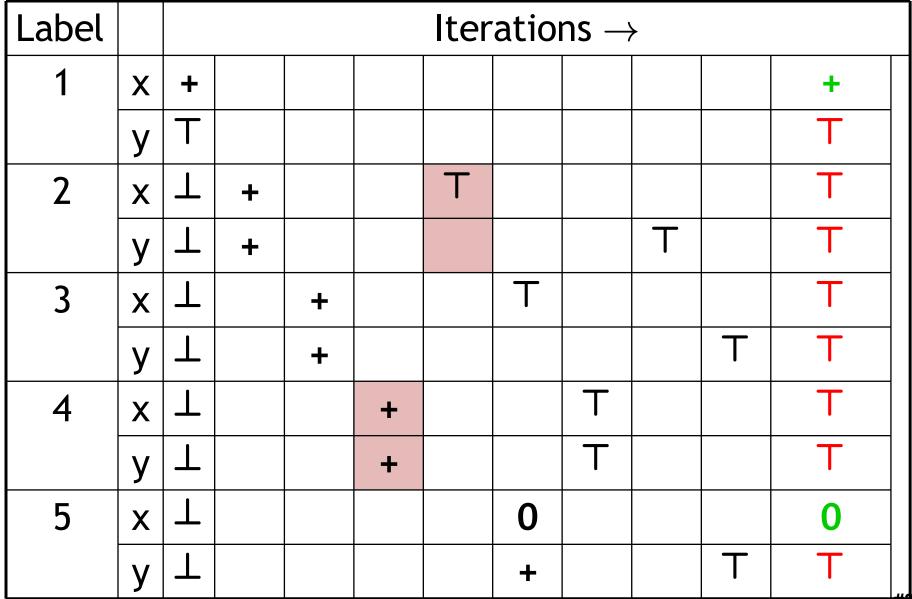
 $S = \{ \perp, -, 0, +, \top \}$

Construct the complete lattice

 $A = \{x, \ y\} \rightarrow S$

- With the usual point-wise ordering
- Abstract state gives the sign for x and y
- We start with $a^0 = \lambda L.\lambda v \in \{x,y\}. \perp$

Let's Do It!



Notes, Weaknesses, Solutions

• We abstracted the state of each variable independently

 $\mathsf{A} = \{\mathsf{x}, \mathsf{y}\} \rightarrow \{\bot, \mathsf{-}, \mathsf{0}, \mathsf{+}, \top\}$

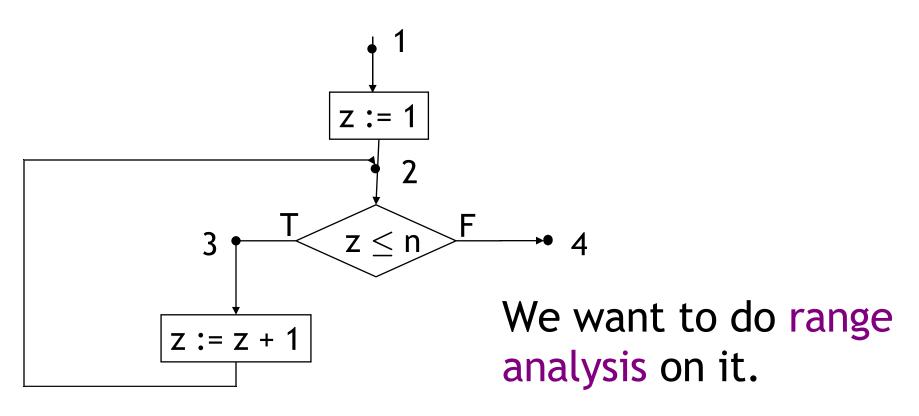
- We lost relationships between variables
 - E.g., at a point x and y may always have the same sign
 - In the previous abstraction we get {x := ⊤, y := ⊤}
 at label 2 (when in fact y is always positive!)
- We can also abstract the state as a whole $A = \mathcal{P}(\{\bot, -, 0, +, \top\} \times \{\bot, -, 0, +, \top\})$

Other Abstract Domains

- Range analysis
 - Lattice of ranges: R ={ \perp , [n..m], (- ∞ , m], [n, + ∞), \top }
 - It is a complete lattice
 - [n..m] ⊔ [n'..m'] = [min(n, n')..max(m,m')]
 - [n..m] □ [n'..m'] = [max(n, n')..min(m, m')]
 - With appropriate care in dealing with ∞
 - $\beta : \mathbb{Z} \to R$ such that $\beta(n) = [n..n]$
 - $\alpha : \mathcal{P}(\mathbb{Z}) \to R$ such that $\alpha(S) = lub \{\beta(n) \mid n \in S\} = [min(S)..max(S)]$
 - $\gamma : \mathbb{R} \to \mathcal{P}(\mathbb{Z})$ such that $\gamma(r) = \{ n \mid n \in r \}$
- This lattice has infinite-height chains
 - So the abstract interpretation might not terminate!

Example of Non-Termination

• Consider this (common) program fragment



Example of Non-Termination

- Consider the sequence of abstract states at point 2
 - [1..1], [1..2], [1..3], ...
 - The analysis never terminates
 - Or terminates very late if the loop bound is known statically
- It is time to approximate even more: widening
- We redefine the join (lub) operator of the lattice to ensure that from [1..1] upon union with [2..2] the result is $[1..+\infty)$ and not [1..2]
- Now the sequence of states is
 - [1..1], [1, + ∞), [1, + ∞) Done (no more infinite chains)

Formal Definition of Widening (Cousot 16.399 "Abstract Interpretation", 2005)

- A widening \bigtriangledown : (P × P) \rightarrow P on a poset $\langle P, \sqsubseteq \rangle$ satisfies:
 - $\forall x, y \in \mathsf{P} . \quad x \sqsubseteq (x \bigtriangledown y) \land y \sqsubseteq (x \bigtriangledown y)$
 - For all increasing chains $x^0 \sqsubseteq x^1 \sqsubseteq ...$ the increasing chain $y^0 = {}^{def} x^0, ..., y^{n+1} = {}^{def} y^n \bigtriangledown x^{n+1}, ...$ is <u>not</u> strictly increasing.
- Two different main uses:
 - Approximate missing lubs. (Not for us.)
 - Convergence acceleration. (This is the real use.)
 - A widening operator can be used to effectively compute an upper approximation of the least fixpoint of $F \in L \bigtriangledown L$ starting from below when L is computer-representable but does not satisfy the ascending chain condition.

Formal Widening Example [1,1] ∇ $[1,2] = [1,+\infty)$

 Range Analysis on z: 	Original x ⁱ	Widened y ⁱ
LO: z := 1;	x ^{L0} ₀ = ⊥	$y_{0}^{L0} = \bot$
L1: while z<99 do	$x^{L_{0}} = [1, 1]$	$y_{0}^{L_{0}} = [1, 1]$
L2: z := z+1	$x_{0}^{L2} = [1, 1]$	$y_{0}^{L2} = [1, 1]$
L3: done /* $z \ge 99 */$	$x_{0}^{L_{3}} = [2,2]$	$y_{0}^{L_{0}} = [2,2]$
L4:	$x^{L2}_{1} = [1,2]$	$y_{1}^{L2} = [1, +\infty)$
$x_{j}^{Li} = def}$ the jth iterative attempt	$x^{L_{1}} = [2, +\infty)$	$y_{1}^{L_{1}} = [2, +\infty)$
to compute an abstract value for z at label Li	$X^{L4}_{0} = [99, +\infty)$	$y_{0}^{L4} = [99, +\infty)$
Recall lub S = [min(S)max(S)]	stable (fewer than 99 iterations!)	
$\frac{1}{1} = \frac{1}{1} = \frac{1}$		

 $\{1, +\infty\} = \{[1, +\infty]\}$

Other Abstract Domains

- Linear relationships between variables
 - A convex <u>polyhedron</u> is a subset of \mathbb{Z}^k whose elements satisfy a number of inequalities:

 $a_1x_1 + a_2x_2 + \dots + a_kx_k \ge c_i$

- This is a complete lattice; linear programming methods compute lubs
- Linear relationships with at most two variables
 - Convex polyhedra but with \leq 2 variables per constraint
 - Octagons (x \pm y \geq c) have efficient algorithms
- Modulus constraints (e.g. even and odd)

Abstract Chatter

- AI, Dataflow and Software Model Checking
 - The big three (aside from flow-insensitive type systems) for program analyses
- Are in fact quite related:
 - David Schmidt. *Data flow analysis is model checking of abstract interpretation*. POPL '98.
- AI is usually flow-sensitive (per-label answer)
- AI can be path-sensitive (if your abstract domain includes V, for example), which is just where model checking uses BDD's
- Metal, SLAM, ESP, ... can all be viewed as AI

Abstract Interpretation Conclusions

- Al is a very powerful technique that underlies a large number of program analyses
- AI can also be applied to functional and logic programming languages
- There are a few success stories
 - Strictness analysis for lazy functional languages
 - PolySpace for linear constraints
- In most other cases however AI is still slow
- When the lattices have infinite height and widening heuristics are used the result becomes unpredictable