Monomorphic Type Systems

Type Soundness for F_{1}

What does

this mean?

- Theorem: If $\cdot \vdash e: \tau$ and $e \Downarrow v$ then $\cdot \vdash v: \tau$
- Also called, subject reduction theorem, type preservation theorem
- This is one of the most important sorts of theorems in PL
- Whenever you make up a new safe language you are expected to prove this
- Examples: Vault, TAL, CCured, ...

How Might We Prove It?

- Theorem: If $\cdot \vdash \mathrm{e}: \tau$ and $\mathrm{e} \Downarrow \mathrm{v}$ then $\cdot \vdash \mathrm{v}: \tau$

Today's Lesson: Wo or "Witten's Dog"

Proof Approaches To Type Safety

- Theorem: If $\cdot \vdash \mathrm{e}: \tau$ and $\mathrm{e} \Downarrow \mathrm{v}$ then $\cdot \vdash \mathrm{v}: \tau$
- Try to prove by induction on e
- Won't work because [$\left.v_{2} / x\right] e^{\prime}{ }_{1}$ in the evaluation of $e_{1} e_{2}$
- Same problem with induction on $\cdot \vdash \mathrm{e}: \tau$
- Try to prove by induction on τ
- Won't work because e_{1} has a "bigger" type than $e_{1} e_{2}$
- Try to prove by induction on $\mathrm{e} \Downarrow \mathrm{v}$
- To address the issue of $\left[v_{2} / x\right]{ }^{\prime}{ }_{1}$
- This is it!

Type Soundness Proof

- Consider the function application case

$$
\mathcal{E}:: \frac{e_{1} \Downarrow \lambda x: \tau_{2} \cdot e_{1}^{\prime} \quad e_{2} \Downarrow v_{2} \quad\left[v_{2} / x\right] e_{1}^{\prime} \Downarrow v}{e_{1} e_{2} \Downarrow v}
$$

and by inversion on the derivation of $e_{1} e_{2}: \tau$

$$
\left.\mathcal{D}:: \vdash e_{1}: \tau_{2} \longrightarrow \tau \cdot \vdash e_{2}: \tau_{2}\right)
$$

- From IH on $\mathrm{e}_{1} \Downarrow \ldots$ we have $, \mathrm{x}: \tau_{2} \vdash \mathrm{e}_{1}{ }^{\prime}: \tau$
- From IH on $\mathrm{e}_{2} \Downarrow \ldots$ we have $\cdot \vdash \mathrm{v}_{2}: \tau_{2}$
- Need to infer that $\cdot \vdash\left[\mathrm{v}_{2} / \mathrm{x}\right] \mathrm{e}_{1}{ }^{\prime}: \tau$ and use the IH
- We need a substitution lemma (by induction on e_{1})

Significance of Type Soundness

- The theorem says that the result of an evaluation has the same type as the initial expression
- The theorem does not say that
- The evaluation never gets stuck (e.g., trying to apply a non-function, to add non-integers, etc.), nor that
- The evaluation terminates
- Even though both of the above facts are true of F_{1}
- What formal system of semantics do we use to reason about programs that might not terminate?

Significance of Type Soundness

- The theorem says that the result of an evaluation has the same type as the initial expression
- The theorem does not say that
- The evaluation never gets stuck (e.g., trying to apply a non-function, to add non-integers, etc.), nor that
- The evaluation terminates
- Even though both of the above facts are true of F_{1}
- We need a small-step semantics to prove that the execution never gets stuck
- I Assert: the execution always terminates in F_{1}
- When does the base lambda calculus ever not terminate?

Small-Step Contextual Semantics

for F_{1}

- We define redexes

$$
r::=n_{1}+n_{2} \mid \text { if } b \text { then } e_{1} \text { else } e_{2} \mid\left(\lambda x: \tau . e_{1}\right) v_{2}
$$

- and contexts

$$
\begin{array}{lll}
H::=H_{1}+e_{2} & \mid n_{1}+H_{2} & \mid \text { if } H \text { then } e_{1} \text { else } e_{2} \\
& \mid H_{1} e_{2} & \mid\left(\lambda x: \tau . e_{1}\right) H_{2}
\end{array}
$$

- and local reduction rules
$\mathrm{n}_{1}+\mathrm{n}_{2}$
if true then e_{1} else $e_{2} \quad \rightarrow e_{1}$
if false then e_{1} else e_{2}
$\left(\lambda x: \tau . e_{1}\right) v_{2}$
$\rightarrow \mathrm{n}_{1}$ plus n_{2}
$\rightarrow \mathrm{e}_{2}$
$\rightarrow\left[\mathrm{v}_{2} / \mathrm{x}\right] \mathrm{e}_{1}$
- and one global reduction rule
$\mathrm{H}[\mathrm{r}] \rightarrow \mathrm{H}[\mathrm{e}]$ iff $\mathrm{r} \rightarrow \mathrm{e}$

Decomposition Lemmas for F_{1}

- If $. \vdash \mathrm{e}: \tau$ and e is not a (final) value then there exist (unique) H and r such that $\mathrm{e}=\mathrm{H}[\mathrm{r}]$
- any well typed expression can be decomposed
- any well-typed non-value can make progress
- Furthermore, there exists τ^{\prime} such that $\cdot \vdash \mathrm{r}: \tau^{\prime}$
- the redex is closed and well typed
- Furthermore, there exists e' such that $r \rightarrow e$ ' and . $\vdash \mathrm{e}^{\prime}: \tau^{\prime}$
- local reduction is type preserving
- Furthermore, for any $e^{\prime}, \cdot \vdash e^{\prime}: \tau^{\prime}$ implies
- $\vdash \mathrm{H}[\mathrm{e} ’]: \tau$
- the expression preserves its type if we replace the redex with an expression of same type

Type Safety of F_{1}

- Type preservation theorem
- If $\cdot \vdash \mathrm{e}: \tau$ and $\mathrm{e} \rightarrow \mathrm{e}^{\prime}$ then $\cdot \vdash \mathrm{e}^{\prime}: \tau$
- Follows from the decomposition lemma
- Progress theorem
- If . $\vdash \mathrm{e}: \tau$ and e is not a value then there exists e ' such that e can make progress: $\mathrm{e} \rightarrow \mathrm{e}$ '
- Progress theorem says that execution can make progress on a well typed expression
- From type preservation we know the execution of well typed expressions never gets stuck
- This is a (very!) common way to state and prove type safety of a language

What's Next?

- We've got the basic simply-typed monomorphic lambda calculus
- Now let's make it more complicated ...
- By adding features!

Product Types: Static Semantics

- Extend the syntax with (binary) tuples

$$
\begin{array}{ll}
\mathrm{e} & ::=\ldots\left|\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)\right| \text { st } \mathrm{e} \mid \text { sid } \mathrm{e} \\
\tau & ::=\ldots \mid \tau_{1} \times \tau_{2}
\end{array}
$$

- This language is sometimes called $\mathrm{F}_{1} \times$
- Same typing judgment $\Gamma \vdash \mathrm{e}: \tau$

$$
\begin{gathered}
\frac{\Gamma \vdash e_{1}: \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): \tau_{1} \times \tau_{2}} \\
\frac{\Gamma \vdash e: \tau_{1} \times \tau_{2}}{\Gamma \vdash \mathrm{fst} e: \tau_{1}} \quad \frac{\Gamma \vdash e: \tau_{1} \times \tau_{2}}{\Gamma \vdash \operatorname{snd} e: \tau_{2}}
\end{gathered}
$$

Dynamic Semantics and Soundness

- New form of values: $\mathrm{v}::=\ldots \mid\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$
- New (big step) evaluation rules:

$$
\begin{gathered}
\frac{e_{1} \Downarrow v_{1}}{\left(e_{1}, e_{2}\right) \Downarrow\left(v_{1}, v_{2}\right)} \\
\frac{e \Downarrow\left(v_{1}, v_{2}\right)}{\text { fst } e \Downarrow v_{1}} \quad \frac{e \Downarrow\left(v_{1}, v_{2}\right)}{\text { snd } e \Downarrow v_{2}}
\end{gathered}
$$

- New contexts: $H::=\ldots\left|\left(H_{1}, e_{2}\right)\right|\left(v_{1}, H_{2}\right) \mid$ fst $H \mid$ snd H
- New redexes:

$$
\begin{aligned}
& \text { fst }\left(v_{1}, v_{2}\right) \rightarrow v_{1} \\
& \text { snd }\left(v_{1}, v_{2}\right) \rightarrow v_{2}
\end{aligned}
$$

- Type soundness holds just as before

Q: General (454 / 842)

- In traditional logic this is an inference in which one proposition (the conclusion) necessarily follows from two others (the premises). An overused example is: "All men are mortal. Socrates is a man. Therefore, Socrates is a mortal."

Q: General (473 / 842)

- Which of the following chemical processes or reactions would be the most difficult to conduct in a high school chemistry lab?
- Hall-Heroult (Aluminum Extraction) Process
- Making Nitrocellulose (Guncotton)
- Making Slime
- Thermite Reaction (which reaches 5000(F))
Q: Games (534 / 842)
- Each face of this 1974 six-sided plastic puzzle is subdivided into nine smaller faces, each of which can be one of six colors.

Q: Games (547 / 842)

- This viscoelastic silicone plastic "clay" came out of efforts to find a rubber substitute in World War II. It is now sold in plastic eggs as a toy for children. It bounces and can absorb the ink from newsprint. It was also used by the crew of Apollo 8 to secure tools in zero gravity.

Q: Events (595 / 842)

- Identify 3 of the following 5 world leaders based on the time and place they came to power.
- France, May 7, 1995
- Haiti, December 16, 1990
- Russia, July 10, 1991
- Serbia, December 9, 1990
- South Africa, May 9, 1994

A: Events (595 / 842)

- Jacques Chirac
- Jean-Bertrand Aristide (ending three decades of military rule)
- Boris Yeltsin (first elected president of Russia)
- Slobodan Milosevic
- Nelson Mandela (South Africa's first black president)

General PL Feature Plan

- The general plan for language feature design
- You invent a new feature (tuples)
- You add it to the lambda calculus
- You invent typing rules and opsem rules
- You extend the basic proof of type safety
- You declare moral victory, and milling throngs of cheering admirers wait to carry you on their shoulders to be knighted by the Queen, etc.

Records

- Records are like tuples with labels (w00t!)
- New form of expressions

$$
e::=\ldots\left|\left\{L_{1}=e_{1}, \ldots, L_{n}=e_{n}\right\}\right| e . L
$$

- New form of values

$$
v::=\left\{L_{1}=v_{1}, \ldots, L_{n}=v_{n}\right\}
$$

- New form of types

$$
\tau::=\ldots \mid\left\{L_{1}: \tau_{1}, \ldots, L_{n}: \tau_{n}\right\}
$$

- ... follows the model of $F_{1}{ }^{\times}$
- typing rules
- derivation rules

On the board!

- type soundness

Sum Types

- We need disjoint union types of the form:
- either an int or a float
- either 0 or a pointer
- either a (binary tree node with two children) or a (leaf)
- New expressions and types
e ::= ... | injl e | injr e |

$$
\text { case e of injl } x \rightarrow e_{1} \mid \text { injr } y \rightarrow e_{2}
$$

$\tau::=\ldots \quad \mid \tau_{1}+\tau_{2}$

- A value of type $\tau_{1}+\tau_{2}$ is either a τ_{1} or a τ_{2}
- Like union in C or Pascal, but safe
- distinguishing between components is under compiler control
- case is a binding operator (like "let"): x is bound in e_{1} and y is bound in e_{2} (like OCaml's "match ... with")

Examples with Sum Types

- Consider the type unit with a single element called * or ()
- The type integer option defined as "unit + int"
- Useful for optional arguments or return values
- No argument:
injl *
(OCaml's "None")
- Argument is 5:
injr 5
(OCaml's "Some(5)")
- To use the argument you must test the kind of argument
- case arg of injl $x \Rightarrow$ "no_arg_case" | injry \Rightarrow "...y..."
- injl and injr are tags and case is tag checking
- bool is the union type "unit + unit"
- true is injl*
- false is injr*
- if e then e_{1} else e_{2} is case e of injl $x \Rightarrow e_{1} \mid$ injr $y \Rightarrow e_{2}$

Static Semantics of Sum Types

- New typing rules

$$
\begin{gathered}
\frac{\Gamma \vdash e: \tau_{1}}{\Gamma \vdash \operatorname{injle}: \tau_{1}+\tau_{2}} \frac{\Gamma \vdash e: \tau_{2}}{\Gamma \vdash \operatorname{injr} e: \tau_{1}+\tau_{2}} \\
\frac{\Gamma \vdash e_{1}: \tau_{1}+\tau_{2} \quad \Gamma, x: \tau_{1} \vdash e_{l}: \tau \quad \Gamma, y: \tau_{2} \vdash e_{r}: \tau}{\Gamma \vdash \operatorname{case} e_{1} \text { of injl } x \Rightarrow e_{l} \mid \operatorname{injr} y \Rightarrow e_{r}: \tau}
\end{gathered}
$$

- Types are not unique anymore

$$
\begin{aligned}
& \text { injl } 1 \text { : int + bool } \\
& \text { injl } 1: \text { int }+ \text { (int } \rightarrow \text { int }
\end{aligned}
$$

- this complicates type checking, but it is still doable

Dynamic Semantics of Sum Types

- New values
v ::= ... | injl v | injr v
- New evaluation rules

$$
\begin{aligned}
\frac{e \Downarrow v}{\text { injl } e \Downarrow \operatorname{injl} v} & \frac{e \Downarrow v}{\operatorname{injr} e \Downarrow \operatorname{injr} v} \\
e \Downarrow \operatorname{injl} v & {[v / x] e_{l} \Downarrow v^{\prime} }
\end{aligned}
$$

case e of injl $x \Rightarrow e_{l} \mid \operatorname{injr} y \Rightarrow e_{r} \Downarrow v^{\prime}$

$$
e \Downarrow \operatorname{injr} v \quad[v / y] e_{r} \Downarrow v^{\prime}
$$

case e of injl $x \Rightarrow e_{l} \mid \operatorname{injr} y \Rightarrow e_{r} \Downarrow v^{\prime}$

Type Soundness for $\mathrm{F}_{1}{ }^{+}$

- Type soundness still holds
- No way to use a $\tau_{1}+\tau_{2}$ inappropriately
- The key is that the only way to use a $\tau_{1}+\tau_{2}$ is with case, which ensures that you are not using a τ_{1} as a τ_{2}
- In C or Pascal checking the tag is the responsibility of the programmer!
- Unsafe

Types for Imperative Features

- So far: types for pure functional languages
- Now: types for imperative features
- Such types are used to characterize non-local effects
- assignments
- exceptions
- typestate
- Contextual semantics is useful here
- Just when you thought it was safe to forget it ...

Reference Types

- Such types are used for mutable memory cells
- Syntax (as in ML)

Why do I need : τ ?

$$
\begin{aligned}
& \mathrm{e}::=\ldots \mid \text { ref } \mathrm{e}: \stackrel{\tau}{\mathrm{e}} \mathrm{e}_{1}:=\mathrm{e}_{2} \mid!\mathrm{e} \\
& \tau::=\ldots \mid \tau \text { ref }
\end{aligned}
$$

- ref e: τ - evaluates e, allocates a new memory cell, stores the value of e in it and returns the address of the memory cell
- like malloc + initialization in C, or new in C++ and Java
- $e_{1}:=e_{2}$, evaluates e_{1} to a memory cell and updates its value with the value of e_{2}
- ! e - evaluates e to a memory cell and returns its contents

Global Effects, Reference Cells

- A reference cell can escape the static scope where it was created

$$
(\lambda f: \text { int } \rightarrow \text { int ref. !(f 5)) } \quad(\lambda x: \text { int. ref } x: \text { int })
$$

- The value stored in a reference cell must be visible from the entire program
- The "result" of an expression must now include the changes to the heap that it makes (cf. IMP's opsem)
- To model reference cells we must extend the evaluation model

Modeling References

- A heap is a mapping from addresses to values

$$
\mathrm{h}::=\cdot \mid \mathrm{h}, \mathrm{a} \leftarrow \mathrm{v}: \tau
$$

- $\mathrm{a} \in$ Addresses
(Addresses $\neq \mathbb{Z}$?)
- We tag the heap cells with their types
- Types are useful only for static semantics. They are not needed for the evaluation \Rightarrow are not a part of the implementation
- We call a program an expression with a heap $\mathrm{p}::=$ heap h in e
- The initial program is "heap • in e"
- Heap addresses act as bound variables in the expression
- This is a trick that allows easy reuse of properties of local variables for heap addresses
- e.g., we can rename the address and its occurrences at will

Static Semantics of References

- Typing rules for expressions:

$$
\begin{gathered}
\frac{\Gamma \vdash e: \tau}{\Gamma \vdash(\text { ref } e: \tau): \tau \text { ref }} \quad \frac{\Gamma \vdash e: \tau \text { ref }}{\Gamma \vdash!e: \tau} \\
\frac{\Gamma \vdash e_{1}: \tau \text { ref } \quad \Gamma \vdash e_{2}: \tau}{\Gamma \vdash e_{1}:=e_{2}: \text { unit }}
\end{gathered}
$$

- and for programs

$$
\frac{\Gamma \vdash v_{i}: \tau_{i}(i=1 \ldots n) \quad \Gamma \vdash e: \tau}{\vdash \text { heap } h \text { in } e: \tau}
$$

where $\Gamma=a_{1}: \tau_{1}$ ref $, \ldots, a_{n}: \tau_{n}$ ref
and $h=a_{1} \leftarrow v_{1}: \tau_{1}, \ldots, a_{n} \leftarrow v_{n}: \tau_{n}$

Contextual Semantics for References

- Addresses are values: v ::= ... | a
- New contexts: $\mathrm{H}::=$ ref $\mathrm{H}\left|\mathrm{H}_{1}:=\mathrm{e}_{2}\right| \mathrm{a}_{1}:=\mathrm{H}_{2} \mid$! H
- No new local reduction rules
- But some new global reduction rules
- heap h in $\mathrm{H}[$ ref $\mathrm{v}: \tau] \rightarrow$ heap $\mathrm{h}, \mathrm{a} \leftarrow \mathrm{v}: \tau$ in $\mathrm{H}[\mathrm{a}]$
- where a is fresh (this models allocation - the heap is extended)
- heap h in $\mathrm{H}[!$ a] \rightarrow heap h in $\mathrm{H}[\mathrm{v}]$
- where $\mathrm{a} \leftarrow \mathrm{v}: \tau \in \mathrm{h}$ (heap lookup - can we get stuck?)
- heap h in $\mathrm{H}[\mathrm{a}:=\mathrm{v}] \rightarrow$ heap $\mathrm{h}[\mathrm{a} \leftarrow \mathrm{v}]$ in $\left.\mathrm{H}^{*}\right]$
- where $\mathrm{h}[\mathrm{a} \leftarrow \mathrm{v}]$ means a heap like h except that the part " $\mathrm{a} \leftarrow \mathrm{v}_{1}$ $: \tau$ " in h is replaced by " $\mathrm{\leftarrow} \leftarrow \mathrm{v}: \tau$ " (memory update)
- Global rules are used to propagate the effects of a write to the entire program (eval order matters!)

Example with References

- Consider these (the redex is underlined)
- heap • in ($\lambda \mathrm{f}$:int \rightarrow int ref. !(f 5)) ($\lambda \mathrm{x}:$ int. ref x : int)
- heap • in !(($\lambda x:$ int. ref x : int) 5)
- heap .in!(ref 5 : int)
- heap $\mathrm{a}=5$: int in !a
- heap a = 5 : int in 5
- The resulting program has a useless memory cell
- An equivalent result would be heap . in 5
- This is a simple way to model garbage collection

Homework

- Read Wright and Felleisen article
- ... that you didn't read on Tuesday.
- Or that optional Goodenough one ...
- Work on your projects!

