Type Systems For: Exceptions, Continuations, and Recursive Types

AS FAR AS IM CONCERNED, IF SOMETHING IS SO COMPLICATED THAT YOU CANT EXPLAIN IT IN $1 O$ SECONDS, THEN IIS PROBABLY NOT WORTH KNOWING ANYWAY.

MY TIME IS VALUABLE. I cant go thinking about ONE SUBJECT FOR MINUTES ON END. I'M A BUSY MAN.

Exceptions

- A mechanism that allows non-local control flow
- Useful for implementing the propagation of errors to caller
- Exceptions ensure* that errors are not ignored
- Compare with the manual error handling in C
- Languages with exceptions:
- C++, ML, Modula-3, Java, C\#, ...
- We assume that there is a special type exn of exceptions
- exn could be int to model error codes
- In Java or C++, exn is a special object types

Modeling Exceptions

- Syntax

$$
\begin{aligned}
& \text { e }::=\ldots \text { | raise e | try } e_{1} \text { handle } x \Rightarrow e_{2} \\
& \tau::=\ldots \text { | exn }
\end{aligned}
$$

- We ignore here how exception values are created
- In examples we will use integers as exception values
- The handler binds x in e_{2} to the actual exception value
- The "raise" expression never returns to the immediately enclosing context
- 1 + raise 2 is well-typed
- if (raise 2) then 1 else 2 is also well-typed
- (raise 2) 5 is also well-typed
- What should be the type of raise?

Example with Exceptions

- A (strange) factorial function let $f=\lambda x$:int. λ res:int. if $x=0$ then raise res
else

$$
f(x-1)\left(\operatorname{res}^{*} x\right)
$$

in try f 51 handle $x \Rightarrow x$

- The function returns in one step from the recursion
- The top-level handler catches the exception and turns it into a regular result

Typing Exceptions

- New typing rules

$$
\begin{gathered}
\frac{\Gamma \vdash e: \operatorname{exn}}{\Gamma \vdash \text { raise } e: \tau} \\
\frac{\Gamma \vdash e_{1}: \tau \quad \Gamma, x: \operatorname{exn} \vdash e_{2}: \tau}{\Gamma \vdash \operatorname{try} e_{1} \text { handle } x \Longrightarrow e_{2}: \tau}
\end{gathered}
$$

- A raise expression has an arbitrary type
- This is a clear sign that the expression does not return to its evaluation context
- The type of the body of try and of the handler must match
- Just like for conditionals

Dynamics of Exceptions

- The result of evaluation can be an uncaught exception
- Evaluation answers: a ::= v | uncaught v
- "uncaught v" has an arbitrary type
- Raising an exception has global effects
- It is convenient to use contextual semantics
- Exceptions propagate through some contexts but not through others
- We distinguish the handling contexts that intercept exceptions (this will be new)

Contexts for Exceptions

- Contexts
- H :: = • | He|vH|raise H|try Handle $x \Rightarrow$ e
- Propagating contexts
- Contexts that propagate exceptions to their own enclosing contexts
- $\mathrm{P}::=$ •| $\mathrm{Pe} \mid \mathrm{V}$ P|raise P
- Decomposition theorem
- If e is not a value and e is well-typed then it can be decomposed in exactly one of the following ways:
- $\mathrm{H}[(\lambda \mathrm{x}: \tau$. e) v$]$
- H[try v handle $x \Rightarrow$ e]
- H[try P[raise v] handle $x \Rightarrow$ e]
- P[raise v]
(normal lambda calculus)
(handle it or not)
(propagate!)
(uncaught exception)

Contextual Semantics for Exceptions

- Small-step reduction rules
$H[(\lambda x: \tau$. e) v]
$H[$ try v handle $x \Rightarrow e$]
H [try P[raise v] handle $x \Rightarrow e$]
P[raise v]
$\rightarrow \mathrm{H}[[\mathrm{v} / \mathrm{x}] \mathrm{e}]$
$\rightarrow \mathrm{H}[\mathrm{v}]$
$\rightarrow \mathrm{H}[\mathrm{lv} / \mathrm{x}] \mathrm{e}]$
\rightarrow uncaught v
- The handler is ignored if the body of try completes normally
- A raised exception propagates (in one step) to the closest enclosing handler or to the top of the program

Exceptional Commentary

- The addition of exceptions preserves type soundness
- Exceptions are like non-local goto
- However, they cannot be used to implement recursion
- Thus we still cannot write (well-typed) nonterminating programs
- There are a number of ways to implement exceptions (e.g., "zero-cost" exceptions)

Continuations

- Some languages have a mechanism for taking a snapshot of the execution and storing it for later use
- Later the execution can be reinstated from the snapshot
- Useful for implementing threads, for example
- Examples: Scheme, LISP, ML, C (yes, really!)
- Consider the expression: $\mathrm{e}_{1}+\mathrm{e}_{2}$ in a context C
- How to express a snapshot of the execution right after evaluating e_{1} but before evaluating e_{2} and the rest of C ?
- Idea: as a context $\mathrm{C}_{1}=C\left[\bullet+\mathrm{e}_{2}\right]$
- Alternatively, as $\lambda x_{1} . C\left[x_{1}+e_{2}\right]$
- When we finish evaluating e_{1} to v_{1}, we fill the context and continue with $C\left[v_{1}+e_{2}\right]$
- But the C_{1} continuation is still available and we can continue several times, with different replacements for e_{1}

Continuation Uses in "Real Life"

- You're walking and come to a fork in the road
- You save a continuation "right" for going right
- But you go left (with the "right" continuation in hand)
- You encounter Bender. Bender coerces you into joining his computer dating service.
- You save a continuation "bad-date" for going on the date.
- You decide to invoke the "right" continuation
- So, you go right (no evil date obligation, but with the "baddate" continuation in hand)
- A train hits you!
- On your last breath, you invoke the "bad-date" continuation

Continuations

- Syntax:

$$
\begin{aligned}
& \mathrm{e}::=\text { callcc } \mathrm{k} \text { in } \mathrm{e} \mid \text { throw } \mathrm{e}_{1} \mathrm{e}_{2} \\
& \tau::=\ldots \mid \tau \text { cont }
\end{aligned}
$$

$\forall \tau$ cont - the type of a continuation that expects a τ

- callcc k in $\mathrm{e}-$ sets k to the current context of the execution and then evaluates expression e
- when e terminates, the whole callcc terminates
- e can invoke the saved continuation (many times even)
- when e invokes k it is as if "callcc k in e" returns
- k is bound in e
- throw $e_{1} e_{2}$ - evaluates e_{1} to a continuation, e_{2} to a value and invokes the continuation with the value of e_{2} (just wait, we'll explain it!)

Example with Continuations

- Example: another strange factorial callcc k in
let $f=\lambda x$:int. λ res:int. if $x=0$ then throw k res

$$
\text { else f }(x-1)(x \text { * res })
$$

in f 51

- First we save the current context
- This is the top-level context
- A throw to k of value v means "pretend the whole callcc evaluates to v "
- This simulates exceptions
- Continuations are strictly more powerful that exceptions
- The destination is not tied to the call stack

Q: Movies (364 / 842)

- According to Vizzini in the movie The Princess Bride, what are two classic blunders?

Q: Books (702 / 842)

- This 1953 dystopian novel by Ray Bradbury has censorship as a major theme. The main
character, Guy Montag, is a fireman.

Q: Advertising (812 / 842)

- This corporation has

 manufactured Oreo cookies since 1912. Originally, Oreos were mound-shaped; hence the name "oreo" (Greek for "hill").Static Semantics of Continuations

$$
\begin{gathered}
\frac{\Gamma, k: \tau \operatorname{cont} \vdash e: \tau}{\Gamma \vdash \operatorname{callcc} k \text { in } e: \tau} \\
\frac{\Gamma \vdash e_{1}: \tau \operatorname{cont} \quad \Gamma \vdash e_{2}: \tau}{\Gamma \vdash \operatorname{throw} e_{1} e_{2}: \tau^{\prime}}
\end{gathered}
$$

- Note that the result of callcc is of type τ "callcc k in e" returns in two possible situations
- e throws to k a value of type τ, or
- e terminates normally with a value of type τ
- Note that throw has any type τ '
- Since it never returns to its enclosing context

Dynamic Semantics of Continuations

- Use contextual semantics (wow, again!)
- Contexts are now manipulated directly
- Contexts are values of type τ cont
- Contexts
$\mathrm{H}::=\bullet|\mathrm{He}| \mathrm{vH} \mid$ throw $\mathrm{H}_{1} \mathrm{e}_{2} \mid$ throw $\mathrm{v}_{1} \mathrm{H}_{2}$
- Evaluation rules
- H[(גx.e) v]
- H[callcc k in e]
- H[throw $\mathrm{H}_{1} \mathrm{v}_{2}$]
$\rightarrow \mathrm{H}[[\mathrm{v} / \mathrm{x}] \mathrm{e}]$
$\rightarrow \mathrm{H}[[\mathrm{H} / \mathrm{k}] \mathrm{e}]$
$\rightarrow \mathrm{H}_{1}\left[\mathrm{~V}_{2}\right]$
- callcc duplicates the current continuation
- Note that throw abandons its own context

Implementing Coroutines with Continuations

- Example:
let client $=\lambda k$. let res $=$ callcc k^{\prime} in throw $k k^{\prime}$ in
print (fst res);
client (snd res)
- "client k" will invoke "k" to get an integer and a continuation for obtaining more integers (for now, assume the list \& recursion work)
let getnext =
$\lambda L . \lambda k$. if $L=$ nil then raise 999
else getnext (cdr L) (callcc k' in throw k (car L, k'))
- "getnext $L k$ " will send to " k " the first element of L along with a continuation that can be used to get more elements of L
getnext $[0 ; 1 ; 2 ; 3 ; 4 ; 5]$ (callcc k in client k)

Continuation Comments

- In our semantics the continuation saves the entire context: program counter, local variables, call stack, and the heap!
- In actual implementations the heap is not saved!
- Saving the stack is done with various tricks, but it is expensive in general
- Few languages implement continuations
- Because their presence complicates the whole compiler considerably
- Unless you use a continuation-passing-style of compilation (more on this next)

Continuation Passing Style

- A style of compilation where evaluation of a function never returns directly: instead the function is given a continuation to invoke with its result.
- Instead of f(int a) \{return h(g(e); \}
- we write
$f($ int a, cont $k)\{g(e, \lambda r . h(r, k))\}$
- Advantages:
- interesting compilation scheme (supports callcc easily)
- no need for a stack, can have multiple return addresses (e.g., for an error case)
- fast and safe (non-preemptive) multithreading

Continuation Passing Style

- Let $e::=x|n| e_{1}+e_{2} \mid$ if e_{1} then e_{2} else e_{3}

$$
|\lambda x . e| e_{1} e_{2}
$$

- Define cps(e,k) as the code that computes e in CPS and passes the result to continuation k

$$
\begin{aligned}
& \operatorname{cps}(x, k)=k x \\
& \operatorname{cps}(n, k)=k n \\
& \operatorname{cps}\left(e_{1}+e_{2}, k\right)= \\
& \operatorname{cps}\left(e_{1}, \lambda n_{1} \cdot \operatorname{cps}\left(e_{2}, \lambda n_{2} \cdot k\left(n_{1}+n_{2}\right)\right)\right) \\
& \operatorname{cps}(\lambda x \cdot e, k)=k\left(\lambda x \lambda k^{\prime} \cdot \operatorname{cps}\left(e, k^{\prime}\right)\right) \\
& \operatorname{cps}\left(e_{1} e_{2}, k\right)=\operatorname{cps}\left(e_{1}, \lambda f_{1} \cdot \operatorname{cps}\left(e_{2}, \lambda v_{2} \cdot f_{1} v_{2} k\right)\right)
\end{aligned}
$$

- Example: cps (h(g(5)), k) = g(5, $\lambda x . h \times k)$
- Notice the order of evaluation being explicit

Transtion! Recursive Types: Lists

- We want to define recursive data structures
- Example: lists
- A list of elements of type τ (a τ list) is either empty or it is a pair of a τ and a τ list

$$
\tau \text { list }=\text { unit }+(\tau \times \tau \text { list })
$$

- This is a recursive equation. We take its solution to be the smallest set of values L that satisfies the equation

$$
L=\{*\} \cup(T \times L)
$$

where T is the set of values of type τ

- Another interpretation is that the recursive equation is taken up-to (modulo) set isomorphism

Recursive Types

- We introduce a recursive type constructor $\mu(\mathrm{mu})$:

$\mu t . \tau$

- The type variable t is bound in τ
- This stands for the solution to the equation

$$
\mathrm{t} \simeq \tau \quad(\mathrm{t} \text { is isomorphic with } \tau)
$$

- Example: τ list $=\mu$ t. $($ unit $+\tau \times \mathrm{t})$
- This also allows "unnamed" recursive types
- We introduce syntactic (sugary) operations for the conversion between $\mu \mathrm{t} . \tau$ and $[\mu \mathrm{t} . \tau / \mathrm{t}] \tau$
- e.g. between " τ list" and "unit $+(\tau \times \tau$ list)"

$$
\begin{array}{ll}
\mathrm{e}::=\ldots & \mid \text { fold }_{\mu \mathrm{t} . \tau} \mathrm{e} \mid \text { unfold }_{\mu \mathrm{t} . \tau} \mathrm{e} \\
\tau::=\ldots & |\mathrm{t}| \mu \mathrm{t} . \tau
\end{array}
$$

Example with Recursive Types

- Lists
τ list $=\mu \mathrm{t}$. (unit $+\tau \times \mathrm{t}$)
nil $_{\tau} \quad=$ fold $_{\tau \text { list }}\left(\mathbf{i n j l}{ }^{*}\right)$
cons $_{\tau}=\lambda \mathrm{x}: \tau . \lambda \mathrm{L}: \tau$ list. fold $_{\tau}$ list $\mathrm{injr}(\mathrm{x}, \mathrm{L})$
- A list length function length $_{\tau}=\lambda L: \tau$ list. case (unfold ${ }_{\tau \text { list }} \mathrm{L}$) of injl $\mathrm{x} \Rightarrow 0$

$$
\text { | injr } y \Rightarrow 1 \text { + length }{ }_{\tau} \text { (snd } y \text {) }
$$

- (At home ...) Verify that
- nil $\quad: \tau$ list
- cons $_{\tau}: \tau \rightarrow \tau$ list $\rightarrow \tau$ list
- length $_{\tau}: \tau$ list \rightarrow int

Type Rules for Recursive Types

$$
\Gamma \vdash e: \mu t . \tau
$$

$\Gamma \vdash \operatorname{unfold}_{\mu t . \tau} e:[\mu t . \tau / t] \tau$

$$
\frac{\Gamma \vdash e:[\mu t . \tau / t] \tau}{\Gamma \vdash \mathrm{fold}_{\mu t . \tau} e: \mu t . \tau}
$$

- The typing rules are syntax directed
- Often, for syntactic simplicity, the fold and unfold operators are omitted
- This makes type checking somewhat harder

Dynamics of Recursive Types

- We add a new form of values

$$
\mathrm{v}::=\ldots \mid \text { fold }_{\mu \mathrm{t}, \mathrm{\tau}} \mathrm{v}
$$

- The purpose of fold is to ensure that the value has the recursive type and not its unfolding
- The evaluation rules:

$$
e \Downarrow v
$$

$\operatorname{fold}_{\mu t . \tau} e \Downarrow \mathrm{fold}_{\mu t . \tau} v$

$$
e \Downarrow \mathrm{fold}_{\mu t . \tau} v
$$

$$
\operatorname{unfold}_{\mu t . \tau} e \Downarrow v
$$

- The folding annotations are for type checking only
- They can be dropped after type checking

Recursive Types in ML

- The language ML uses a simple syntactic trick to avoid having to write the explicit fold and unfold
- In ML recursive types are bundled with union types type $t=C_{1}$ of $\tau_{1} \mid C_{2}$ of $\tau_{2}|\ldots| C_{n}$ of τ_{n} (* t can appear in $\tau_{\mathrm{i}}{ }^{*}$)
- e.g., "type intlist = Nil of unit | Cons of int * intlist"
- When the programmer writes
- the compiler treats it as
- When the programmer writes
- case e of $\mathrm{Nil} \Rightarrow$... | Cons (h, t) \Rightarrow...
the compiler treats it as
- case unfold ${ }_{\text {intlist }} \mathrm{e}$ of $\mathrm{Nil} \Rightarrow \ldots$ | Cons $(\mathrm{h}, \mathrm{t}) \Rightarrow \ldots$

Encoding Call-by-Value λ-calculus in $F_{1}{ }^{\mu}$

- So far, F_{1} was so weak that we could not encode non-terminating computations
- Cannot encode recursion
- Cannot write the $\lambda x . x \times$ (self-application)
- The addition of recursive types makes typed λ-calculus as expressive as untyped λ calculus!
- We could show a conversion algorithm from call-by-value untyped λ-calculus to call-byvalue $F_{1}{ }^{\mu}$

Untyped Programming in $\mathrm{F}_{1}{ }^{\mu}$

- We write \underline{e} for the conversion of the term e to $F_{1}{ }^{\mu}$
- The type of \underline{e} is $V=\mu t . t \rightarrow t$
- The conversion rules

$$
\begin{array}{ll}
\underline{x} & =x \\
\underline{\lambda x} \cdot \mathrm{e} & =\text { fold }_{v}(\lambda x: V . \underline{e}) \\
\underline{e}_{1} \underline{e}_{2} & =\left(\operatorname{unfold}_{v} \underline{e}_{4}\right) \underline{e}_{2}
\end{array}
$$

- Verify that
- . \vdash e: V
- $e \Downarrow_{\text {v }}$ if and only if $\underline{e} \Downarrow \underline{v}$
- We can express non-terminating computation

D = (unfold ${ }_{v}\left(\right.$ fold $_{v}\left(\lambda x\right.$:V. $\left(\right.$ unfold $\left.\left.\left._{v} x\right) x\right)\right)$) (fold ${ }_{v}\left(\lambda x: V\right.$. (unfold $\left.\left.\left.{ }_{v} x\right) x\right)\right)$) or, equivalently
$D=\left(\lambda x: V .\left(\right.\right.$ unfold $\left.\left._{v} x\right) x\right)\left(\right.$ fold $_{v}\left(\lambda x: V .\left(\right.\right.$ unfold $\left.\left.\left._{v} x\right) x\right)\right)$

Homework

- Read Goodenough article
- Optional, perspectives on exceptions
- Work on your projects!

