Type Systems For: Exceptions, Continuations, and Recursive Types

Exceptions

- A mechanism that allows non-local control flow
 - Useful for implementing the propagation of errors to caller
- Exceptions ensure* that errors are not ignored
 - Compare with the manual error handling in C
- Languages with exceptions:
 - C++, ML, Modula-3, Java, C#, ...
- We assume that there is a special type <u>exn</u> of exceptions
 - exn could be int to model error codes
 - In Java or C++, exn is a special object types

* Supposedly.

Modeling Exceptions

- Syntax
 - $e ::= \dots \ | \ raise \ e \ | \ try \ e_1 \ handle \ x \Rightarrow e_2$

 $\tau ::= \dots | exn$

- We ignore here how exception values are created
 - In examples we will use integers as exception values
- The handler binds x in e_2 to the actual exception value
- The "raise" expression never returns to the immediately enclosing context
 - 1 + raise 2 is well-typed
 - if (raise 2) then 1 else 2 is also well-typed
 - (raise 2) 5 is also well-typed
 - What should be the type of raise?

Example with Exceptions

• A (strange) factorial function

let $f = \lambda x:int.\lambda res:int.$ if x = 0 then


```
raise res
else
```

```
f (x - 1) (res * x)
```

in try f 5 1 handle $x \Rightarrow x$

- The function returns in one step from the recursion
- The top-level handler catches the exception and turns it into a regular result

Typing Exceptions

• New typing rules

 $\mathsf{\Gamma} \vdash e : \mathtt{exn}$

 $\Gamma \vdash \texttt{raise} \ e \ : \tau$

$$\label{eq:relation} \mathsf{\Gamma} \vdash e_1 : \tau \quad \mathsf{\Gamma}, x : \mathsf{exn} \vdash e_2 : \tau$$

$$\neg \vdash \texttt{try} \ e_1 \ \texttt{handle} \ x \Longrightarrow e_2 : \tau$$

- A raise expression has an *arbitrary type*
 - This is a clear sign that the expression does not return to its evaluation context
- The type of the body of try and of the handler must match
 - Just like for conditionals

Dynamics of Exceptions

- The result of evaluation can be an uncaught exception
 - Evaluation answers: a ::= v | uncaught v
 - "uncaught v" has an arbitrary type
- Raising an exception has global effects
- It is convenient to use contextual semantics
 - Exceptions propagate through some contexts but not through others
 - We *distinguish* the handling contexts that intercept exceptions (this will be new)

Contexts for Exceptions

- Contexts
 - H :: = | H e | v H | raise H | try H handle $x \Rightarrow e$
- Propagating contexts
 - Contexts that propagate exceptions to their own enclosing contexts
 - P ::= | P e | v P | raise P
- Decomposition theorem
 - If e is not a value and e is well-typed then it can be decomposed in exactly one of the following ways:
 - H[(λx:τ. e) v]
 - H[try v handle $x \Rightarrow e$]
 - H[try P[raise v] handle $x \Rightarrow e$]
 - P[raise v]

(normal lambda calculus)
(handle it or not)
(propagate!)

(uncaught exception)

Contextual Semantics for Exceptions

- Small-step reduction rules
 - $\begin{array}{ll} \mathsf{H}[(\lambda x : \tau. \ e) \ v] & \to \mathsf{H}[[v/x] \ e] \\ \mathsf{H}[try \ v \ handle \ x \Rightarrow e] & \to \mathsf{H}[v] \\ \mathsf{H}[try \ \mathsf{P}[raise \ v] \ handle \ x \Rightarrow e] & \to \mathsf{H}[[v/x] \ e] \\ \mathsf{P}[raise \ v] & \to \mathsf{uncaught} \ v \end{array}$
- The handler is ignored if the body of try completes normally
- A raised exception propagates (in one step) to the closest enclosing handler or to the top of the program

Exceptional Commentary

- The addition of exceptions preserves type soundness
- Exceptions are like *non-local goto*
- However, they cannot be used to implement recursion
 - Thus we still cannot write (well-typed) nonterminating programs
- There are a number of ways to implement exceptions (e.g., "zero-cost" exceptions)

Continuations

- Some languages have a mechanism for taking a snapshot of the execution and storing it for later use
 - Later the execution can be reinstated from the snapshot
 - Useful for implementing threads, for example
 - Examples: Scheme, LISP, ML, C (yes, really!)
- Consider the expression: $e_1 + e_2$ in a context C
 - How to express a snapshot of the execution right after evaluating e_1 but before evaluating e_2 and the rest of C?
 - Idea: as a context $C_1 = C [\bullet + e_2]$
 - Alternatively, as λx_1 . C [$x_1 + e_2$]
 - When we finish evaluating e_1 to v_1 , we fill the context and continue with $C[v_1 + e_2]$
 - But the C_1 continuation is still available and we can continue several times, with different replacements for e_1

Continuation Uses in "Real Life"

- You're walking and come to a fork in the road
- You save a continuation "right" for going right
- But you go left (with the "right" continuation in hand)
- You encounter Bender. Bender coerces you into joining his computer dating service.
- You save a continuation "bad-date" for going on the date.
- You decide to invoke the "right" continuation
- So, you go right (no evil date obligation, but with the "baddate" continuation in hand)
- A train hits you!
- On your last breath, you invoke the "bad-date" continuation

Continuations

• Syntax:

e ::= callcc k in e | throw $e_1 e_2$

 $\tau ::= ... | \tau \text{ cont}$

 $\forall \ \tau \ cont$ - the type of a continuation that expects a τ

- callcc k in e sets k to the current context of the execution and then evaluates expression e
 - when e terminates, the whole callcc terminates
 - e can invoke the saved continuation (many times even)
 - when e invokes k it is as if "callcc k in e" returns
 - k is bound in e
- throw e₁ e₂ evaluates e₁ to a continuation, e₂ to a value and invokes the continuation with the value of e₂ (just wait, we'll explain it!)

Example with Continuations

 Example: another strange factorial callcc k in

```
let f = \lambda x:int.\lambda res:int. if x = 0 then throw k res
else f (x - 1) (x * res)
```

in f 5 1

- First we save the current context
 - This is the top-level context
 - A throw to k of value v means "pretend the whole callcc evaluates to v"
- This simulates exceptions
- Continuations are *strictly more powerful* that exceptions
 - The destination is not tied to the call stack

Q: Movies (364 / 842)

 According to Vizzini in the movie
 The Princess Bride, what are two classic blunders?

Q: Books (702 / 842)

 This 1953 dystopian novel by Ray Bradbury has censorship as a major theme. The main character, Guy Montag, is a fireman.

Q: Advertising (812 / 842)

 This corporation has manufactured Oreo cookies since 1912. Originally, Oreos were mound-shaped; hence the name "oreo" (Greek for "hill").

Static Semantics of Continuations $\Gamma, k : \tau \text{ cont} \vdash e : \tau$

 $\mathsf{\Gamma}\vdash \texttt{callcc}\;k\;\texttt{in}\;e \mathrel{:} \tau$

- Note that the result of callcc is of type τ "callcc k in e" returns in two possible situations
 - e *throws* to k a value of type τ , or
 - e *terminates normally* with a value of type τ
- Note that throw has any type τ '
 - Since it never returns to its enclosing context

Dynamic Semantics of Continuations

- Use contextual semantics (wow, again!)
 - Contexts are now manipulated directly
 - Contexts are values of type τ cont
- Contexts

 $H ::= \bullet | H e | v H | throw H_1 e_2 | throw v_1 H_2$

- Evaluation rules
 - $H[(\lambda x.e) v] \rightarrow H[[v/x] e]$
 - H[callcc k in e] \rightarrow H[[H/k] e]
 - $H[throw H_1 v_2] \rightarrow H_1[v_2]$
- callcc duplicates the current continuation
- Note that throw abandons its own context

Implementing Coroutines with Continuations

- Example:
- - "client k" will invoke "k" to get an integer and a continuation for obtaining more integers (for now, assume the list & recursion work)

let getnext =

 $\lambda L.\lambda k.$ if L = nil then raise 999

else getnext (cdr L) (callcc k' in throw k (car L, k'))

- "getnext L k" will send to "k" the first element of L along with a continuation that can be used to get more elements of L

getnext [0;1;2;3;4;5] (callcc k in client k)

Continuation Comments

- In our semantics the continuation saves the entire context: program counter, local variables, call stack, and the heap!
- In actual implementations the *heap is not saved!*
- Saving the stack is done with various tricks, but it is expensive in general
- Few languages implement continuations
 - Because their presence complicates the whole compiler considerably
 - Unless you use a continuation-passing-style of compilation (more on this next)

Continuation Passing Style

- A style of compilation where evaluation of a function *never returns directly*: instead the function is *given a continuation to invoke with its result*.
- Instead of f(int a) { return h(g(e); }
- we write $f(int a, cont k) \{ g(e, \lambda r. h(r, k)) \}$
- Advantages:
 - interesting compilation scheme (supports callcc easily)
 - no need for a stack, can have multiple return addresses (e.g., for an error case)
 - fast and safe (non-preemptive) multithreading

Continuation Passing Style

- Let $e ::= x | n | e_1 + e_2 |$ if e_1 then e_2 else $e_3 | \lambda x.e | e_1 e_2$
- Define cps(e, k) as the code that computes e in CPS and passes the result to continuation k

cps(x, k) = k x
cps(n, k) = k n
cps(e₁ + e₂, k) =
cps(e₁,
$$\lambda n_1.cps(e_2, \lambda n_2.k (n_1 + n_2)))$$

cps($\lambda x.e, k$) = k ($\lambda x \lambda k'$. cps(e,k'))
cps(e₁ e₂, k) = cps(e₁, $\lambda f_1.cps(e_2, \lambda v_2. f_1 v_2 k))$

- Example: cps $(h(g(5)), k) = g(5, \lambda x.h x k)$
 - Notice the order of evaluation being explicit

Transition! Recursive Types: Lists

- We want to define recursive data structures
- Example: <u>lists</u>
 - A list of elements of type τ (a τ list) is *either* empty *or* it is a pair of a τ and a τ list

 τ list = unit + ($\tau \times \tau$ list)

- This is a recursive equation. We take its solution to be the smallest set of values L that satisfies the equation

 $\mathsf{L} = \{ * \} \cup (\mathsf{T} \times \mathsf{L})$

where T is the set of values of type $\boldsymbol{\tau}$

- Another interpretation is that the recursive equation is taken up-to (modulo) set isomorphism

Recursive Types

• We introduce a recursive type constructor μ (mu):

μt. τ

- The type variable t is bound in $\boldsymbol{\tau}$
- This stands for the solution to the equation $t = \frac{1}{2} \int \frac{1}{2} dt$

 $t\simeq \tau$ (t is isomorphic with τ)

- Example: τ list = μt . (unit + $\tau \times t$)
- This also allows "unnamed" recursive types
- We introduce syntactic (sugary) operations for the conversion between $\mu t.\tau$ and $[\mu t.\tau/t]\tau$
- e.g. between " τ list" and "unit + ($\tau \times \tau$ list)"

e ::= ... | fold_{$$\mu t.\tau$$} e | unfold _{$\mu t.\tau$} e

 $\tau ::= \dots \qquad | t | \mu t.\tau$

Example with Recursive Types

• Lists

 $\tau \text{ list } = \mu t. (\text{unit } + \tau \times t)$ $\operatorname{nil}_{\tau} = \operatorname{fold}_{\tau \text{ list }} (\operatorname{injl}^{*})$ $\operatorname{cons}_{\tau} = \lambda x: \tau. \lambda L: \tau \text{ list. } \operatorname{fold}_{\tau \text{ list }} \operatorname{injr} (x, L)$ • A list length function $\operatorname{length}_{\tau} = \lambda L: \tau \text{ list.}$ $\operatorname{case} (\operatorname{unfold}_{\tau \text{ list }} L) \text{ of } \operatorname{injl} x \Rightarrow 0$

| injr y \Rightarrow 1 + length_{τ} (snd y)

- (At home ...) Verify that
 - nil_{τ} : τ list
 - $cons_{\tau}$: $\tau \rightarrow \tau$ list $\rightarrow \tau$ list
 - length_{τ} : τ list \rightarrow int

Type Rules for Recursive Types $\Gamma \vdash e : \mu t.\tau$

 $\mathsf{\Gamma} \vdash \texttt{unfold}_{\mu t.\tau} \ e \ \vdots \ [\mu t.\tau/t]\tau$

$$\Gamma \vdash e : [\mu t. \tau / t] \tau$$

$$\neg \vdash \texttt{fold}_{\mu t. \tau} \ e \ \vdots \ \mu t. \tau$$

- The typing rules are syntax directed
- Often, for syntactic simplicity, the fold and unfold operators are omitted
 - This makes type checking somewhat harder

Dynamics of Recursive Types

• We add a new form of values

 $\mathbf{v} ::= ... | fold_{\mu t.\tau} \mathbf{v}$

- The purpose of fold is to ensure that the value has the recursive type and not its unfolding
- The evaluation rules:

 $e \Downarrow v$

$$e \Downarrow \texttt{fold}_{\mu t. \tau} v$$

 $\operatorname{fold}_{\mu t.\tau} e \Downarrow \operatorname{fold}_{\mu t.\tau} v \quad \operatorname{unfold}_{\mu t.\tau} e \Downarrow v$

- The folding annotations are for type checking only
- They can be dropped after type checking

Recursive Types in ML

- The language ML uses a simple syntactic trick to avoid having to write the explicit fold and unfold
- In ML recursive types are bundled with union types type t = C₁ of τ₁ | C₂ of τ₂ | ... | C_n of τ_n (* t can appear in τ_i*)
 - e.g., "type intlist = Nil of unit | Cons of int * intlist"
- When the programmer writes Cons (5, l)
 the compiler treats it as fold_{intlist} (injr (5, l))
- When the programmer writes
 - case e of Nil \Rightarrow ... | Cons (h, t) \Rightarrow ...

the compiler treats it as

- case unfold_{intlist} e of Nil \Rightarrow ... | Cons (h,t) \Rightarrow ...

Encoding Call-by-Value λ -calculus in F_1^{μ}

- So far, F_1 was so weak that we could not encode non-terminating computations
 - Cannot encode recursion
 - Cannot write the $\lambda x.x x$ (self-application)
- The addition of recursive types makes typed λ-calculus as expressive as untyped λcalculus!
- We could show a conversion algorithm from call-by-value untyped $\lambda\text{-calculus to call-by-value }F_1^\mu$

Untyped Programming in $F_1{}^\mu$

- We write <u>e</u> for the conversion of the term e to F_1^{μ}
 - The type of <u>e</u> is V = $\mu t. t \rightarrow t$
- The conversion rules

$$\mathbf{X} = \mathbf{X}$$

$$\underline{\lambda x. e} = fold_v (\lambda x:V. \underline{e})$$

- $\underline{e_1 \ e_2} = (unfold_v \underline{e_1}) \underline{e_2}$
- Verify that
 - $\cdot \vdash \underline{e} : V$
 - $e \Downarrow v$ if and only if $\underline{e} \Downarrow \underline{v}$
- We can express non-terminating computation
 D = (unfold_v (fold_v (λx:V. (unfold_v x) x))) (fold_v (λx:V. (unfold_v x) x)))
 or, equivalently
 - $\mathsf{D} = (\lambda x: \mathsf{V}. (unfold_v x) x) (fold_v (\lambda x: \mathsf{V}. (unfold_v x) x)))$

Homework

- Read Goodenough article
 - Optional, perspectives on exceptions
- Work on your projects!