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Upcoming Lectures
• We’re now reaching the point where you have 

all of the tools and background to understand 
advanced topics. 

• Upcoming Topics:  
– Automated Theorem Proving + Proof Checking
– Model Checking
– Software Model Checking
– Types and Effects for Resource Management
– Region-Based Memory Management
– Object Calculi (OOP)
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The Limitations of F1

• In F1 a function works exactly for one type
• Example: the identity function

– id = λx:τ. x : τ ! τ
– We need to write one version for each type
– Worse:   sort : (τ ! τ ! bool) ! τ array ! unit

• The various sorting functions differ only in typing
– At runtime they perform exactly the same operations
– We need different versions only to keep the type checker 

happy
• Two alternatives:

– Circumvent the type system (see C, Java, ...), or
– Use a more flexible type system that lets us write only 

one sorting function (but use it on many types of objs)



#4

Cunning Plan

• Introduce Polymorphism (much vocab)
• It’s Strong: Encode Stuff
• It’s Too Strong: Restrict

– Still too strong … restrict more

• Final Answer:
– Polymorphism works “as expect”
– All the good stuff is handled
– No tricky decideability problems
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Polymorphism

• Informal definition
    A function is polymorphic if it can be applied to “many” 

types of arguments
• Various kinds of polymorphism depending on the 

definition of “many”
– subtype polymorphism (aka bounded polymorphism)

• “many” = all subtypes of a given type
– ad-hoc polymorphism

• “many” = depends on the function
• choose behavior at runtime (depending on types, e.g. sizeof)

– parametric predicative polymorphism
• “many” = all monomorphic types

– parametric impredicative polymorphism
• “many” = all types
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Parametric Polymorphism: 
Types as Parameters

• We introduce type variables and allow expressions to 
have variable types

• We introduce polymorphic types
          τ ::= b | τ1 ! τ2 | t | 8t. τ
          e ::= x | λx:τ.e | e1 e2 | Λt. e | e[τ]

� Λt. e is type abstraction (or generalization, “for all t”)
– e[τ] is type application (or instantiation)

• Examples:
– id = Λt.λx:t. x          :   8t.t ! t
– id[int] = λx:int. x      :   int ! int
– id[bool] = λx:bool. x :   bool ! bool
– “id 5” is invalid. Use “id[int] 5” instead
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Impredicative Typing Rules

• The typing rules:
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Impredicative Polymorphism

• Verify that “id[int] 5” has type int
• Note the side-condition in the rule for type 

abstraction
– Prevents ill-formed terms like: λx:t.Λt.x

• The evaluation rules are just like those of F1

– This means that type abstraction and application are all 
performed at compile time (no run-time cost)

– We do not evaluate under Λ (Λt. e is a value)
– We do not have to operate on types at run-time
– This is called phase separation: type checking is separate 

from execution
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(Aside:) Parametricity or 
“Theorems for Free” (P. Wadler)

• Can prove properties of a term just from its type
• There is only one value of type 8t.t!t

– The identity function

• There is no value of type 8t.t
• Take the function reverse : 8t. t List ! t List

– This function cannot inspect the elements of the list
– It can only produce a permutation of the original list

– If L1 and L2 have the same length and let “match” be a 
function that compares two lists element-wise according 
to an arbitrary predicate

– then “match L1 L2” ) “match (reverse L1) (reverse L2)” !
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Expressiveness of 
Impredicative Polymorphism

• This calculus is called
– F2

– system F
– second-order λ-calculus
– polymorphic λ-calculus

• Polymorphism is extremely expressive
• We can encode many base and structured 

types in F2
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Encoding Base Types in F2

• Booleans
– bool = 8t.t ! t ! t  (given any two things, select one)
– There are exactly two values of this type!
– true = Λt. λx:t.λy:t. x
– false = Λt. λx:t.λy:t. y
– not = λb:bool. Λt.λx:t.λy:t. b [t] y x

• Naturals
– nat = 8t. (t ! t) ! t ! t (given a successor and a zero 

element, compute a natural number)
– 0 = Λt. λs:t! t.λz:t. z
– n = Λt. λs:t! t.λz:t. s (s (s...s(n)))
– add = λn:nat. λm:nat. Λt. λs:t! t.λz:t. n [t] s (m [t] s z)
– mul = λn:nat. λm:nat. Λt. λs:t! t.λz:t. n [t] (m [t] s) z
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Expressiveness of F2

• We can encode similarly: 
� τ1 + τ2 as    8t. (τ1 ! t) ! (τ2 ! t) ! t

� τ1 £ τ2 as    8t. (τ1 ! τ2 ! t)  ! t

– unit as    8t. t ! t

• We cannot encode µt.τ
– We can encode primitive recursion but not full recursion

– All terms in F2 have a termination proof in second-order 
Peano arithmetic  (Girard, 1971)

• This is the set of naturals defined using zero, successor, 
induction along with quantification both over naturals and over 
sets of naturals 
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What’s Wrong with F2

• Simple syntax but very complicated semantics
– id can be applied to itself: “id [8t. t ! t] id”
– This can lead to paradoxical situations in a pure set-

theoretic interpretation of types
– e.g., the meaning of id is a function whose domain 

contains a set (the meaning of 8t.t! t) that contains id!
– This suggests that giving an interpretation to 

impredicative type abstraction is tricky
• Complicated termination proof (Girard)
• Type reconstruction (typeability) is undecidable

– If the type application and abstraction are missing
• How to fix it?

– Restrict the use of polymorphism
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Predicative Polymorphism

• Restriction: type variables can be instantiated only 
with monomorphic types

• This restriction can be expressed syntactically
 τ ::= b | τ1 ! τ2 | t // monomorphic types
 σ ::= τ | 8t. σ | σ1 ! σ2 // polymorphic types
 e ::= x | e1 e2 | λx:σ. e | Λt.e | e [τ]
– Type application is restricted to mono types
– Cannot apply “id” to itself anymore

• Same great typing rules
• Simple semantics and termination proof
• Type reconstruction still undecidable
• Must. Restrict. Further!
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Prenex Predicative Polymorphism
• Restriction: polymorphic type constructor at top 

level only
• This restriction can also be expressed syntactically

 τ ::= b | τ1 ! τ2 | t
 σ ::= τ | 8t. σ
 e ::= x | e1 e2 | λx:τ. e | Λt.e | e [τ]
– Type application is predicative
– Abstraction only on mono types
– The only occurrences of 8 are at the top level of a type

       (8t. t ! t) ! (8t. t ! t) is not a valid type

• Same typing rules (less filling!) 
• Simple semantics and termination proof
• Decidable type inference!
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Expressiveness of 
Prenex Predicative F2

• We have simplified too much!
• Not expressive enough to encode nat, bool

– But such encodings are only of theoretical interest 
anyway (cf. time wasting)

• Is it expressive enough in practice? Almost!
– Cannot write something like
(λs:8t.τ. ... s [nat] x ...   s [bool] y) 

    (Λt. ... code for sort)
– Formal argument s cannot be polymorphic
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What are we trying to do again?
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ML and the Amazing 
Polymorphic Let-Coat

• ML solution: slight extension of the predicative F2

– Introduce “let x : σ = e1 in e2”
– With the semantics of “(λx : σ.e2) e1”
– And typed as “[e1/x] e2” (result: “fresh each time”)

• This lets us write the polymorphic sort as
let 
     s : 8t.τ = Λt. ... code for  polymorphic sort ...
in 
    ... s [nat] x .... s [bool] y    

• We have found the sweet spot!
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ML and the Amazing 
Polymorphic Let-Coat

• ML solution: slight extension of the predicative F2

– Introduce “let x : σ = e1 in e2”
– With the semantics of “(λx : σ.e2) e1”
– And typed as “[e1/x] e2” (result: “fresh each time”)

• This lets us write the polymorphic sort as
let 
     s : 8t.τ = Λt. ... code for  polymorphic sort ...
in 
    ... s [nat] x .... s [bool] y    

• Surprise: this was a major ML design flaw!
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ML Polymorphism and References

• let is evaluated using call-by-value but is typed using 
call-by-name
– What if there are side effects?

• Example:
let    x : 8t. (t ! t) ref = Λt.ref (λx : t. x) 
in
   x [bool] := λx: bool. not x ; 
   (! x [int]) 5
– Will apply “not” to 5
– Recall previous lectures: invariant typing of references
– Similar examples can be constructed with exceptions

• It took 10 years to find and agree on a clean solution
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The Value Restriction in ML
• A type in a let is generalized only for syntactic 

values

• Since e1 is a value, its evaluation cannot have side-
effects

• In this case call-by-name and call-by-value are the 
same

• In the previous example ref (λx:t. x) is not a value
• This is not too restrictive in practice!
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Subtype Bounded Polymorphism

• We can bound the instances of a given type variable
8t < τ. σ

• Consider a function f : 8t < τ. t ! σ
• How is this different than f’ : τ ! σ

– We can also invoke f’ on any subtype of τ
• They are different if t appears in σ

– e.g, f : 8t<τ.t ! t and f : τ ! τ
– Take x : τ’ < τ
– We have f [τ] x : τ’
– And f’ x : τ
– We have lost information with f’
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Homework

• Project!


