CHECKERBOARD NIGHTMARE by Kristofer Straub

EMEX DEMYSTIFIES THE NEW
MARKETING TERMINOLOGY!

E-CClIC LATCHEEY

SOLVARLES: w-rnznw Hﬂ_ﬂ{.
METHODOLDGICAL APPROACH
VIRAL PRO-MARKETIVITY: INTEGRATING "SOFT PHRAMID”
A "WET STANDARDRZED" CONSLNER VISION SPACE AND PUNCTUATED

TASTE SPACE RESOLVER EMPOWERED
By C2C LATCHEEY SOLVABLES, y
GENERATIVELY E~CHCLlIC.

LIFECYCLE DEVELOPMENT IM
REAL-TIME.

Second-Order
Type Systems

i 2001 Kristofer Straub wiww, mightlightpress. com

H#1

Upcoming Lectures

 We’re now reaching the point where you have
all of the tools and background to understand
advanced topics.

e Upcoming Topics:
- Automated Theorem Proving + Proof Checking
- Model Checking
- Software Model Checking
- Types and Effects for Resource Management

- Region-Based Memory Management
- Object Calculi (OOP)

H#H2

The Limitations of F,

In F, a function works exactly for one type

Example: the identity function

- id=AXT.X:T—>T

- We need to write one version for each type

- Worse: sort: (t - 1 — bool) — T array — unit

The various sorting functions differ only in typing
- At runtime they perform exactly the same operations
- We need different versions only to keep the type checker
happy
Two alternatives:
- Circumvent the type system (see C, Java, ...), or

- Use a more flexible type system that lets us write only
one sorting function (but use it on many types of objs)

H#3

Cunning Plan

 Introduce Polymorphism (much vocab)
e It’s Strong: Encode Stuff

 [t’s Too Strong: Restrict
- Still too strong ... restrict more

 Final Answer:

- Polymorphism works “as expect”
- All the good stuff is handled
- No tricky decideability problems

Polymorphism

e |Informal definition

A function is polymorphic if it can be applied to “many”
types of arguments

e Various kinds of polymorphism depending on the
definition of “many”
- subtype polymorphism (aka bounded polymorphism)
 “many” = all subtypes of a given type
- ad-hoc polymorphism
 “many” = depends on the function
» choose behavior at runtime (depending on types, e.g. sizeof)

- parametric predicative polymorphism
 “many” = all monomorphic types

- parametric impredicative polymorphism
e “many” = all types

H#H5

Parametric Polymorphism:
Types as Parameters

 We introduce type variables and allow expressions to
have variable types

 We introduce polymorphic types
T:=b |1, -1 |t] VLT
e:=X| AxiT.e | e,e, | At. e | e[T]
At. e is type abstraction (or generalization, “for all t”)
- e[t] is type application (or instantiation)
e Examples:

- id = At.AX:t. X : Vit >t
- id[int] = Ax:int. X : int — int
- id[bool] = Ax:bool. x : bool — bool

- “id 5” is invalid. Use “id[int] 5” instead
H#H6

Impredicative Typing Rules

* The typing rules:

r rinT |_,.5L‘:7'|_€:T,

[Fax: T Xz :T17e.:7— 7/

|_|_€1:T%T, [Fes: T

[Feper: T

[Fe:T
[= At.e : Vt.7

eVt
[+ e[r] : [7/t]7

t does not occur in

H7

Impredicative Polymorphism

* Verify that “id[int] 5” has type int

* Note the side-condition in the rule for type
abstraction

- Prevents ill-formed terms like: Ax:t.At.x
« The evaluation rules are just like those of F,

This means that type abstraction and application are all
performed at compile time (no run-time cost)

We do not evaluate under A (At. e is a value)
We do not have to operate on types at run-time

This is called phase separation: type checking is separate
from execution

H#H8

(Aside:) Parametricity or
“Theorems for Free” (P. Wadler)

o Can prove properties of a term just from its type

* There is only one value of type Vt.t—t
- The identity function

e There is no value of type Vt.t

o Take the function reverse : Vt. t List — t List
This function cannot inspect the elements of the list
It can only produce a permutation of the original list

If L, and L, have the same length and let “match” be a

function that compares two lists element-wise according
to an arbitrary predicate

then “match L, L,” = “match (reverse L,) (reverse L,)” !
H#O

Expressiveness of

Impredicative Polymorphism
e This calculus is called
- F,
- system F

- second-order A-calculus
- polymorphic A-calculus

e Polymorphism is extremely expressive

 We can encode many base and structured
types in F,

#10

Encoding Base Types in F,

e Booleans
- bool = Vt.t -t — t (given any two things, select one)
There are exactly two values of this type!
true = At. AX:t.Ay:t. X
false = At. Ax:t.Ay:t. y
not = Ab:bool. At.Ax:t.Ay:t. b [t] y X

e Naturals

- nat=Vt. (t - t) -t — t (given a successor and a zero
element, compute a natural number)

- 0 =At. As:t— t.Az:t. Z

- n=At. As:t— t.Az:t. s (s (s...5(n)))

add = An:nat. Am:nat. At. As:t— t.Az:t. n[t] s (m [t] s 2)
mul = An:nat. Am:nat. At. As:t— t.Az:t. n [t] (m [t] s) z

H#11

Expressiveness of F,

 We can encode similarly:
T,+1, as V. (t,—=t)—=(,—=t) =t
T,XT, as Vt.(t,—=T1,—=>1t) =t
- unit as VvVt.t—t
 We cannot encode pt.t

- We can encode primitive recursion but not full recursion

- All terms in F, have a termination proof in second-order

Peano arithmetic (Girard, 1971)

e This is the set of naturals defined using zero, successor,
induction along with quantification both over naturals and over
sets of naturals

H#12

What’s Wrong with F,

Simple syntax but very complicated semantics
- id can be applied to itself: “id [Vt. t — t] id”

- This can lead to paradoxical situations in a pure set-
theoretic interpretation of types

- e.g., the meaning of id is a function whose domain
contains a set (the meaning of Vt.t— t) that contains id!

- This suggests that giving an interpretation to
impredicative type abstraction is tricky

Complicated termination proof (Girard)

Type reconstruction (typeability) is undecidable
- If the type application and abstraction are missing

How to fix it?
- Restrict the use of polymorphism

#13

Predicative Polymorphism

Restriction: type variables can be instantiated only
with monomorphic types

This restriction can be expressed syntactically

T:=b|t,—-1 |t // monomorphic types
o::=1|Vt.o| o, — 0, // polymorphic types
e::i=x]|e e | Ax:a.e | At.e | e [T]

- Type application is restricted to mono types
- Cannot apply “id” to itself anymore

Same great typing rules

Simple semantics and termination proof
Type reconstruction still undecidable
Must. Restrict. Further!

#14

Prenex Predicative Polymorphism

e Restriction: polymorphic type constructor at top
level only

o This restriction can also be expressed syntactically
T:=b|t,—-1 |t
o:=1|Vt.o
e::=x|e e | Axit. e | At.e | e[T1]
- Type application is predicative
- Abstraction only on mono types

- The only occurrences of V are at the top level of a type
(Vt.t > t) —» (Vt. t = t) is not a valid type

o Same typing rules (less filling!)
e Simple semantics and termination proof
e Decidable type inference!

#15

Expressiveness of

Prenex Predicative F,
 We have simplified too much!

* Not expressive enough to encode nat, bool

- But such encodings are only of theoretical interest
anyway (cf. time wasting)

e |s it expressive enough in practice? Almost!
- Cannot write something like
(As:Vt.T. ... s [nat] x ... s [bool]y)
(At. ... code for sort)
- Formal argument s cannot be polymorphic

#16

What are we trying to do again?

Counter-5trike 1.6 - InstallShield Wizard

FEEFVY P VEIIVEER? FIFIRIIYN?

x]

Installing components for Microsoft Office Word

fes] i Mo i

I

Installing: Spelling and Grammar [Style Chedker

| |

<[o

Preparing to instal

| Cancel |

Guestion 19 of 22

I

ez

il

Select the correct answer
The IDS monitars and collects network system information and anakyzes it to detect attacks or intrusions.

H#17

True

I don't know

ML and the Amazing
Polymorphic Let-Coat

« ML solution: slight extension of the predicative F,
- Introduce “let x: c = e, ine,”
- With the semantics of “(Ax : 0.e,) €,

- And typed as “[e,/x] e,” (result: “fresh each time”)
Fei1:0o T,xiokFex:!T

y

[Fletx:0 =eqines: T

e This lets us write the polymorphic sort as
let
s . Vt.T = At. ... code for polymorphic sort ...
in
... S[nat] x s [bool] y

 We have found the sweet spot!
#18

ML and the Amazing
Polymorphic Let-Coat

« ML solution: slight extension of the predicative F,
- Introduce “let x: c = e, ine,”
- With the semantics of “(Ax : 0.e,) €,

- And typed as “[e,/x] e,” (result: “fresh each time”)
Fei1:0o T,xiokFex:!T

b

[Fletx:0 =eqines: T

e This lets us write the polymorphic sort as
let
s . Vt.T = At. ... code for polymorphic sort ...
in
... S[nat] x s [bool] y

o Surprise: this was a major ML design flaw!
#19

ML Polymorphism and References

 let is evaluated using call-by-value but is typed using
call-by-name

- What if there are side effects?
o Example:

let x:Vt. (t — t)ref =At.ref (Ax: t. X)
in

X [bool] := Ax: bool. not x ;

(! x [int]) 5
- Will apply “not” to 5
- Recall previous lectures: invariant typing of references
- Similar examples can be constructed with exceptions

e It took 10 years to find and agree on a clean solution

#20

The Value Restriction in ML

e Atype in a let is generalized only for syntactic
values
[Fei:0 T@,x:obe>:7T €1 Is a syntactic

: value or o IS
[Fletx:0 =ejinex: T monomorphic

 Since e, is a value, its evaluation cannot have side-
effects

 In this case call-by-name and call-by-value are the
same

* |In the previous example ref (Ax:t. x) is not a value
* This is not too restrictive in practice!

H#21

Subtype Bounded Polymorphism

We can bound the instances of a given type variable
Vi<T.0

Consider a functionf : Vt<t.t — ©

How is this different thanf’ : T — o

- We can also invoke f’ on any subtype of 1

They are different if t appears in o
-eg, fiVictit>tandf:1 o1

- Takex : 1T’ <1

We have f [1] x: U

And f’ x : 1T

We have lost information with f’

H22

Homework

e Project!

#23

