

Second-Order Type Systems

www.nightlightpress.com

Upcoming Lectures

- We're now reaching the point where you have all of the tools and background to understand advanced topics.
- Upcoming Topics:
 - Automated Theorem Proving + Proof Checking
 - Model Checking
 - Software Model Checking
 - Types and Effects for Resource Management
 - Region-Based Memory Management
 - Object Calculi (OOP)

The Limitations of F_1

- In F₁ a function works exactly for one type
- Example: the identity function
 - id = $\lambda x:\tau$. $x:\tau \to \tau$
 - We need to write one version for each type
 - Worse: sort : ($\tau \rightarrow \tau \rightarrow bool$) $\rightarrow \tau$ array \rightarrow unit
- The various sorting functions differ only in typing
 - At runtime they *perform exactly the same operations*
 - We need different versions only to keep the type checker happy
- Two alternatives:
 - Circumvent the type system (see C, Java, ...), or
 - Use a *more flexible type system* that lets us write only one sorting function (but use it on many types of objs)

Cunning Plan

- Introduce Polymorphism (much vocab)
- It's Strong: Encode Stuff
- It's Too Strong: Restrict
 - Still too strong ... restrict more
- Final Answer:
 - Polymorphism works "as expect"
 - All the good stuff is handled
 - No tricky decideability problems

Polymorphism

• Informal definition

A function is <u>polymorphic</u> if it can be applied to "many" types of arguments

- Various kinds of polymorphism depending on the definition of *"many"*
 - <u>subtype polymorphism</u> (aka bounded polymorphism)
 - "many" = all subtypes of a given type
 - ad-hoc polymorphism
 - "many" = depends on the function
 - choose behavior at runtime (depending on types, e.g. sizeof)
 - parametric *predicative* polymorphism
 - "many" = all monomorphic types
 - parametric impredicative polymorphism
 - "many" = all types

Parametric Polymorphism: Types as Parameters

- We introduce <u>type variables</u> and allow expressions to have variable types
- We introduce polymorphic types

 $\tau ::= b \mid \tau_1 \to \tau_2 \mid t \mid \forall t. \tau$

e ::= x | λ x:τ.e | $e_1 e_2$ | Λ t. e | $e[\tau]$

At. e is type abstraction (or generalization, "for all t")

: int \rightarrow int

- $e[\tau]$ is type application (or instantiation)
- Examples:
 - id = $\Lambda t.\lambda x:t. x$: $\forall t.t \rightarrow t$
 - id[int] = λx :int. x
 - id[bool] = λx :bool. x : bool \rightarrow bool
 - "id 5" is invalid. Use "id[int] 5" instead

Impredicative Typing Rules

• The typing rules:

$$\frac{x:\tau \text{ in }\Gamma}{\Gamma \vdash x:\tau} \qquad \frac{\Gamma, x:\tau \vdash e:\tau'}{\Gamma \vdash \lambda x:\tau.e:\tau \to \tau'}$$
$$\frac{\Gamma \vdash e_1:\tau \to \tau' \quad \Gamma \vdash e_2:\tau}{\Gamma \vdash e_1 e_2:\tau'}$$

 $\frac{\Gamma \vdash e : \tau}{\Gamma \vdash \Lambda t.e : \forall t.\tau} \quad t \text{ does not occur in } \Gamma$

$$\frac{\Gamma \vdash e : \forall t.\tau'}{\Gamma \vdash e[\tau] : [\tau/t]\tau'}$$

Impredicative Polymorphism

- Verify that "id[int] 5" has type int
- Note the side-condition in the rule for type abstraction
 - Prevents ill-formed terms like: $\lambda x:t.\Lambda t.x$
- The evaluation rules are just like those of F_1
 - This means that type abstraction and application are all performed at compile time (*no run-time cost*)
 - We do not evaluate under Λ (Λ t. e is a value)
 - We do not have to operate on types at run-time
 - This is called <u>phase separation</u>: type checking is separate from execution

(Aside:) Parametricity or "Theorems for Free" (P. Wadler)

- Can prove properties of a term *just from its type*
- There is only one value of type $\forall t.t \rightarrow t$
 - The identity function
- There is no value of type $\forall t.t$
- Take the function reverse : $\forall t. \ t \ List \rightarrow t \ List$
 - This function cannot inspect the elements of the list
 - It can only produce a permutation of the original list
 - If L_1 and L_2 have the same length and let "match" be a function that compares two lists element-wise according to an arbitrary predicate
 - then "match $L_1 L_2$ " \Rightarrow "match (reverse L_1) (reverse L_2)"!

Expressiveness of Impredicative Polymorphism

- This calculus is called
 - **F**₂
 - system F
 - second-order λ -calculus
 - polymorphic λ -calculus
- Polymorphism is *extremely expressive*
- We can encode many base and structured types in $\rm F_2$

Encoding Base Types in F₂

• Booleans

- bool = $\forall t.t \rightarrow t \rightarrow t$ (given any two things, select one)
- There are exactly two values of this type!
- true = $\Lambda t. \lambda x:t.\lambda y:t. x$
- false = $\Lambda t. \lambda x: t. \lambda y: t. y$
- not = $\lambda b:bool. \Lambda t.\lambda x:t.\lambda y:t. b [t] y x$
- Naturals
 - nat = $\forall t. (t \rightarrow t) \rightarrow t \rightarrow t$ (given a successor and a zero element, compute a natural number)
 - 0 = $\Lambda t. \lambda s:t \rightarrow t.\lambda z:t. z$
 - $n = \Lambda t. \lambda s:t \rightarrow t.\lambda z:t. s (s (s...s(n)))$
 - add = λ n:nat. λ m:nat. Λ t. λ s:t \rightarrow t. λ z:t. n [t] s (m [t] s z)
 - mul = λ n:nat. λ m:nat. Λ t. λ s:t \rightarrow t. λ z:t. n [t] (m [t] s) z

Expressiveness of F₂

- We can encode similarly:
 - $\tau_1 + \tau_2$ as $\forall t. (\tau_1 \rightarrow t) \rightarrow (\tau_2 \rightarrow t) \rightarrow t$
 - $au_1 imes au_2$ as orall t. $(au_1 o au_2 o t) o t$
 - unit as $\forall t. t \rightarrow t$
- We cannot encode $\mu t.\tau$
 - We can encode primitive recursion but not full recursion
 - All terms in F_2 have a termination proof in second-order Peano arithmetic (Girard, 1971)
 - This is the set of naturals defined using zero, successor, induction along with quantification both over naturals and over sets of naturals

What's Wrong with F₂

- Simple syntax but very complicated semantics
 - id can be applied to itself: "id [$\forall t. t \rightarrow t$] id"
 - This can lead to paradoxical situations in a pure settheoretic interpretation of types
 - e.g., the meaning of id is a function whose domain contains a set (the meaning of $\forall t.t \rightarrow t$) that contains id!
 - This suggests that giving an interpretation to impredicative type abstraction is tricky
- Complicated termination proof (Girard)
- Type reconstruction (typeability) is *undecidable*
 - If the type application and abstraction are missing
- How to fix it?
 - Restrict the use of polymorphism

Predicative Polymorphism

- Restriction: type variables can be instantiated only with monomorphic types
- This restriction can be expressed syntactically $\tau ::= b | \tau_1 \rightarrow \tau_2 | t // monomorphic types$ $\sigma ::= \tau | \forall t. \sigma | \sigma_1 \rightarrow \sigma_2 // polymorphic types$
 - e ::= x | $e_1 e_2$ | $\lambda x: \sigma. e$ | $\Lambda t.e$ | **e** [τ]
 - Type application is restricted to mono types
 - Cannot apply "id" to itself anymore
- Same great typing rules
- Simple semantics and termination proof
- Type reconstruction still undecidable
- Must. Restrict. Further!

Prenex Predicative Polymorphism

- Restriction: polymorphic type constructor at top level only
- This restriction can also be expressed syntactically $\tau ::= b \mid \tau_1 \to \tau_2 \mid t$

 $\sigma ::= \tau \mid \forall t. \sigma$

- e ::= x | $e_1 e_2$ | λx :τ. e | $\Lambda t.e$ | e [τ]
- Type application is predicative
- Abstraction only on mono types
- The only occurrences of \forall are at the top level of a type $(\forall t. t \rightarrow t) \rightarrow (\forall t. t \rightarrow t)$ is <u>not</u> a valid type
- Same typing rules (less filling!)
- Simple semantics and termination proof
- Decidable type inference!

Expressiveness of Prenex Predicative F₂

- We have simplified too much!
- Not expressive enough to encode nat, bool
 - But such encodings are only of theoretical interest anyway (cf. time wasting)
- Is it expressive enough in practice? Almost!
 - Cannot write something like

 $(\lambda s: \forall t.\tau. ... s [nat] x ... s [bool] y)$

(At. ... code for sort)

- Formal argument s cannot be polymorphic

What are we trying to do again?

Select the correct answer.

The IDS monitors and collects network system information and analyzes it to detect attacks or intrusions.

True

I don't know

ML and the Amazing Polymorphic Let-Coat

- ML solution: slight extension of the predicative F₂
 - Introduce "let x : $\sigma = e_1$ in e_2 "
 - With the semantics of " $(\lambda x : \sigma.e_2) e_1$ "
 - And typed as " $[e_1/x] e_2$ " (result: "fresh each time") $\Gamma \vdash e_1 : \sigma \quad \Gamma, x : \sigma \vdash e_2 : \tau$

$$\sqcap \vdash \texttt{let} \ x : \sigma = e_1 \ \texttt{in} \ e_2 : \tau$$

• This lets us write the polymorphic sort as let

s : $\forall t.\tau = \Lambda t. \dots$ code for polymorphic sort ... in

... s [nat] x s [bool] y

• We have found the sweet spot!

ML and the Amazing Polymorphic Let-Coat

- ML solution: slight extension of the predicative F₂
 - Introduce "let x : $\sigma = e_1$ in e_2 "
 - With the semantics of " $(\lambda x : \sigma.e_2) e_1$ "
 - And typed as " $[e_1/x] e_2$ " (result: "fresh each time") $\Gamma \vdash e_1 : \sigma \quad \Gamma, x : \sigma \vdash e_2 : \tau$

$$\sqcap \vdash \texttt{let} \ x : \sigma = e_1 \ \texttt{in} \ e_2 : \tau$$

• This lets us write the polymorphic sort as let

s : $\forall t.\tau = \Lambda t. \dots$ code for polymorphic sort ... in

... s [nat] x s [bool] y

• Surprise: this was a major ML design flaw!

ML Polymorphism and References

- let is evaluated using call-by-value but is typed using call-by-name
 - What if there are side effects?
- Example:

let $x : \forall t. (t \rightarrow t) ref = \Lambda t.ref (\lambda x : t. x)$ in

- x [bool] := λx : bool. not x ;
- (! x [int]) 5
- Will apply "not" to 5
- Recall previous lectures: invariant typing of references
- Similar examples can be constructed with exceptions
- It took 10 years to find and agree on a clean solution

The Value Restriction in ML

A type in a let is generalized only for syntactic values

$$\begin{array}{lll} \Gamma \vdash e_1 : \sigma & \Gamma, x : \sigma \vdash e_2 : \tau & e_1 \text{ is a syntactic} \\ \hline \Gamma \vdash \operatorname{let} x : \sigma &= e_1 \operatorname{in} e_2 : \tau & \operatorname{monomorphic} \end{array}$$

- Since e₁ is a value, its evaluation cannot have sideeffects
- In this case call-by-name and call-by-value are the same
- In the previous example ref (λx :t. x) is not a value
- This is not too restrictive in practice!

Subtype Bounded Polymorphism

- We can bound the instances of a given type variable $\forall t < \tau. \sigma$
- Consider a function f : $\forall t < \tau. \ t \rightarrow \sigma$
- How is this different than $f':\tau\to\sigma$
 - We can also invoke f' on any subtype of $\boldsymbol{\tau}$
- They are different if t appears in $\boldsymbol{\sigma}$
 - e.g, $f: \forall t{<}\tau.t \rightarrow t \text{ and } f: \tau \rightarrow \tau$
 - Take x : τ ' < τ
 - We have f [τ] x : τ '
 - And f' x : τ
 - We have lost information with f'

Homework

• Project!