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Review
• We studied a variety of type systems

• We repeatedly made the type system more 
expressive to enable the type checker to catch more 
errors

• But we have steered clear of undecidable systems
– Thus there must still be many errors that are not caught

• Now we explore more complex type systems that 
bring type checking closer to program verification
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Dependent Types
• Say that we have the functions

zero : nat ! vector  (creates vector of requested length)
dotprod : vector ! vector ! real  (dot product)

• The types do not prevent using dotprod on vectors of 
different length
– If they did, we could catch more bugs!

• Idea: Make “vector” a type family annotated by a 
natural number
“vector n” is the type of vectors of length n
dotprod: vector n ! vector n ! real    (where is n bound?)
zero : nat ! vector ?    

Need a way to refer to 
the value of the first 
argument in the type!
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Dependent Type Notation
• How to write the type of zero : nat ! vector ? 
• Given two sets A and B verify the isomorphism

A ! B ' Πx 2 A B 
– The latter is the cartesian product of B with itself as 

many times as there are elements in A
– Also written as Πx:A.B (x plays no role so far!) 
– But now we can make B depend on x!

• Definition: Πx:A.B is the type of functions with 
argument in A and with the result type B (possibly 
depending on the value of the argument x in A)
– We write  “zero : Πx:nat. vector x”
– Special case when x∉B we abbreviate as A ! B
– We play “fast and loose” with the binding of Π
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Dependent Typing Rules

– Note that expressions are now part of types
– Have types like “vector 5” and “vector (2 + 3)”
– We need type equivalence
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Dependent Types 
and Program Specifications

• Types act as specifications
• With dependent types we can specify any property!
• For example, define the following types:

“eq e” - the type of values equal to “e”. 
             Also named “sng e” (the singleton type)
“ge e” – the type of values larger or equal to “e”
“lt e” – the type of values smaller than “e”
“and τ1 τ2” – the type of values having both type τ1 and τ2 

• Need appropriate typing rules for the new types
• The precondition for vector-accessing (cf. HW5)

– read: Πn:nat.vector n ! (and (ge 0) (lt n)) ! int
• The type checker must do program verification
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Dependent Type Commentary

• Type checking with Π types can be as hard as full 
program verification

• Type equivalence can be undecidable
– If types are dependent on expressions drawn from a 

powerful language (“powerful” = “arithmetic”)
– Then even type checking will be undecidable

• Dependent types play an important role in the 
formalization of logics
– Started with Per Martin-Lof
– Proof checking via type checking
– Proof-carrying code uses a dependent type checker to 

check proofs
– There are program specification tools based on Π types
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Dependent Sum Types
• We want to pack a vector with its length

– e = (n, v) where “v : vector n”
– The type of an element of a pair depends on the value of 

another element
– This is another form of dependency
– The type of e is “nat £ vector ?”

• Given two sets A and B verify the isomorphism
A £ B ' Σx 2 A B 

– The latter is the disjoint union of B with itself as many 
times as there are elements in A

– Also written as Σx:A.B   (x here plays no role) 
– But now we can make B depend on x!
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Dependent Sum Types
• Definition:  Σx:A.B is the type of pairs with first 

element of type A and second element of type B 
(possibly depending on the value of first element x)
– Now we can write e : Σx:nat. vector x

• Functions that compute the length of a vector
– vlength : Πn:nat.vector n ! nat     

• (the result is not constrained)
– slength : Πn:nat.vector n ! sng n

• “sng n” is a dependent type that contains only n
• called the singleton type (recall from 3 slides ago …) 

• What if the vector is packed with its length?
– pvlength : Σn:nat.vector n ! nat
– pslength : Σn:nat.vector n ! sng n
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Dependent Sum Types 
Static Semantics

– Note how this rule reduces to the usual rules for 
tuples when there is no dependency

• The evaluation rules are unchanged
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Weimeric Commentary
• Dependant types seem obscure: why care?
• Grand Unified Theory

– Type Checking = Verification (= Model Checking = 
Proof Checking = Abstract Interpretation …)

• CCured Project
– Rumor has it this project was successful
– The whole thing is dependant sum types

• SEQ = (pointer + lower bound + upper bound)
• FSEQ = (pointer + upper bound)
• WILD = (pointer + lower bound + upper bound + rtti)
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Types for Data Abstraction

What’s inside the implementation?
We don’t know!
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Data Abstraction

• Ability to hide (abstract) concrete 
implementation details

• Modularity builds on data abstraction
• Improves program structure and minimizes 

dependencies
• One of the most influential developments of 

the 1970’s
• Key element for much of the success of 

object orientation in the 1980’s
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Example of Abstraction
• Cartesian points (gotta love it!)
• Introduce the “abstype” language construct:

abstype point implements

     mk : real £ real ! point
     xc : point ! real

     yc  : point ! real
is
     < point = real £ real,
       mk = λx. x,
       xc = fst,

       yc  = snd >

• Shows a concrete 
implementation

• Allows the rest of the 
program to access the 
implementation through 
an abstract interface

• Only the interface need 
to be publicized

• Allows separate 
compilation
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Data Abstraction
• It is useful to separate the creation of the 

abstract type and its use (newsflash …)
• Extend the syntax (t = imp, σ = interface):

Terms ::= … | < t = τ, e : σ > | open ea as t, x : σ in eb

Types ::= … | 9t. σ
• The expression <t=τ, e : σ> takes the concrete 

implementation e and “packs it” as a value of an 
abstract type
– Alternative notation: “pack e as 9t. σ with t = τ”
– “existential types” – used to model the stack, etc. 

• The “open” expression allows eb to access the 
abstract type expression ea using the name x, the 
unknown type of the concrete implementation “t” 
and the interface σ
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Example with Abstraction
• C = {mk = λx.x, xc = fst, yc = snd } is a concrete 

implementation of points as real £ real
• We want to hide the type of the representation
    σ is the following type: 
        { mk : real £ real ! point, 

  xc : point ! real, yc : point ! real}
• Note that C : [real£real/point]σ
• A = <point=real£real, C : σ> is an expression of the 

abstract type 9point.σ
• We want clients to access only the second 

component of A and just use the abstract name 
“point” for the first component:

open A as point, P : σ in … P.xc(P.mk(1.0, 2.0)) …
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Typing Rules for Existential Types

• We add the following typing rules:

• The restriction in the rule for “open” ensures 
that t does not escape its scope
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Evaluation Rules 
for Abstract Types

• We add a new form of value
                  v ::= … | <t=τ, v : σ>
– This is just like v but with some type decorations that 

make it have an existential type

• At the time eb is evaluated, abstract-type variables 
are replaced with concrete values
– If we ignore the type issues “open ea as t, x : σ in eb” is 

like “let x : σ = ea in eb”
– Difference: eb cannot know statically what is the 

concrete type of x so it cannot take advantage of it
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Abstract Types 
as a Specification Mechanism

• Just like polymorphism, existential types are mostly 
a type checking mechanism

• A function of type 8t. t List ! int does not know 
statically what is the type of the list elements. 
Therefore no operations are allowed on them
– But it will have at run-time the actual value of t
– “There are no type variables at run-time”

• Same goes for existentials
• These type mechanisms are a very powerful (and 

widely used!) form of static checking
– Recall Wadler’s “Theorems for Free”



Q:  Movies  (387 / 842) 

•Name the movie quoted below 
and also name either character 
or either character's actor. In 
this 1987 Mel Brooks spoof, one 
character is revealed to be 
another character's "father's 
brother's nephew's cousin's 
former roommate."  



Q:  Games  (540 / 842) 

•This seminal 1991 turn-based 
strategy computer game by Sid 
Meier of Microprose spawned an 
entire genre about 
micromanaging exploration, 
expansion and conflict.  



Q:  Games  (543 / 842) 

•His genre-spawning 1993 game, 
"affectionately" referred to as 
"crack for gamers", was later 
inducted into the GAMES 
Magazine and Origins Halls of 
Fame. Name this game designer, 
who also holds a doctorate in 
mathematics.  



Q:  Books  (754 / 842) 

•Name the factory owner, the 
workers, and the newly-
developed form of unending 
suckable candy in the 1964 
children's book that features the 
title character finding a golden 
ticket and visiting the title 
chocolate factory.  
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Data Abstraction 
and the Real World

• Example: file descriptors
• Solution 1:

– Represent file descriptors as “int” and export the 
interface {open:string!int, read:int! data}

• An untrusted client of the interface calls 
“read”

• How can we know that “read” is invoked with 
a file descriptor that was obtained from 
“open”? Anyone?
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Data Abstraction 
and the Real World

• Example: file descriptors
• Solution 1:

– Represent file descriptors as “int” and export the 
interface {open:string!int, read:int! data}

• An untrusted client of the interface calls “read”
• How can we know that “read” is invoked with a file 

descriptor that was obtained from “open”?
– We must keep track of all integers that represent file 

descriptors
– We design the interface such that all such integers are 

small integers and we can essentially keep a bitmap
– This becomes expensive with more complex (e.g. 

pointer-based) representations
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Data Abstraction, Static Checking
• Solution 2: Use the same representation but export 

an abstraction of it. 
– 9fd. File    or
– 9fd. {open : string ! fd, read : fd ! data}
– A possible value: 
– Fd = < fd = int, { open = …, read = …} : File> : 9fd. File

• Now the untrusted client e
open Fd as fd, x :  File in e

• At run-time “e” can see that file descriptors are 
integers
– But cannot cast 187 as a file descriptor.
– Static checking with no run-time costs!
– Catch: you must be able to type check e!
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Modularity
• A module is a program fragment along with visibility 

constraints
• Visibility of functions and data

– Specify the function interface but hide its 
implementation

• Visibility of type definitions
– More complicated because the type might appear in 

specifications of the visible functions and data
– Can use data abstraction to handle this

• A module is represented as a type component and an 
implementation component

<t = τ, e : σ>    (where t can occur in e and σ)
– even though the specification (σ) refers to the 

implementation type we can still hide the latter
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Problems with Existentialists
• Existentialist types

– Assert that truth is subjectivity
– Oppose the rational tradition and positivism
– Are subject to an “absurd” universe

• Problems:
– "In so far as Existentialism is a philosophical doctrine, it 

remains an idealistic doctrine: it hypothesizes specific 
historical conditions of human existence into ontological 
and metaphysical characteristics. Existentialism thus 
becomes part of the very ideology which it attacks, and 
its radicalism is illusory." (Herbert Marcuse, "Sartre's 
Existentialism", p. 161) 
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Problems with Existentials
• Existential types

– Allow representation (type) hiding
– Allow separate compilation. Need to know only 

the type of a module to compile its client
– First-class modules. They can be selected at run-

time. (cf. OO interface subtyping)

• Problems:
– Closed scope. Must open an existential before 

using it!
– Poor support for module hierarchies
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Problems with Existentials (Cont.)
• There is an inherent tension between handling modules in 

isolation (good for separate compilation, interchangeability) 
and the need to integrate them

• Solution 1: open “point” at top level
– Inversion of program structure
– The most basic construct has the widest scope

point

rect circle

geometry
(the arrow means “depends on”)
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Give Up Abstraction?

• Solution 2: incorporate point in rect and circle
              R = < point = …, <rect = point £ point, …> … >

              C = < point = …, <circle = point £ real, …> … >

• When we open R and C we get two distinct notions 
of point!
– And we will not be able to combine them

• Another option is to allow the type checker to see 
the representation type
– and thus give up representation hiding 
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Strong Sums
• New way to open a package

Terms   e ::= ... | Ops(e)
Types   τ ::= ... Σt.τ | Typ(e)
– Use Typ and Ops to decompose the module
– Operationally, they are just like “fst” and “snd”
� Σt.τ is the dependent sum type
– It is like 9t.τ except we can look at the type 



#33

Modularity with Strong Sums

• Consider the R and C defined as before:
        Pt = <point = real £ real, ...> : Σpoint. τP

        R = <point = Typ(Pt),  

                    < rect = point £ point, ...> : Σrect. τR

        C = <point = Typ(Pt),
                    < circle = point £ real, ...> : Σcircle. τC

• Since we use strong-sums the type checker 
sees that the two point types are the same
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Modules with Strong Sums

• ML’s module system is based on strong sums
Problems:
• Poorer data abstraction
• Expressions appear in types (Typ(e))

– Types might not be known until at run time
– Lost separate compilation
– Trouble if e has side-effects (but we can use a value 

restriction – e.g., “IntSet.t”)

• Second-class modules (because of value restriction)
• We can combine existentials with strong sums

– Translucent sums: partially visible
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Homework

• Project!
– You have ~19 days (including holidays) to 

complete it. 
– Need help? Stop by my office or send email.


