
#1

DependantDependant
Type SystemsType Systems
(saying what you are)(saying what you are)

Data Data
AbstractionAbstraction

(hiding what you are)(hiding what you are)

#2

Review
• We studied a variety of type systems

• We repeatedly made the type system more
expressive to enable the type checker to catch more
errors

• But we have steered clear of undecidable systems
– Thus there must still be many errors that are not caught

• Now we explore more complex type systems that
bring type checking closer to program verification

#3

Dependent Types
• Say that we have the functions

zero : nat ! vector (creates vector of requested length)
dotprod : vector ! vector ! real (dot product)

• The types do not prevent using dotprod on vectors of
different length
– If they did, we could catch more bugs!

• Idea: Make “vector” a type family annotated by a
natural number
“vector n” is the type of vectors of length n
dotprod: vector n ! vector n ! real (where is n bound?)
zero : nat ! vector ?

Need a way to refer to
the value of the first
argument in the type!

#4

Dependent Type Notation
• How to write the type of zero : nat ! vector ?
• Given two sets A and B verify the isomorphism

A ! B ' Πx 2 A B
– The latter is the cartesian product of B with itself as

many times as there are elements in A
– Also written as Πx:A.B (x plays no role so far!)
– But now we can make B depend on x!

• Definition: Πx:A.B is the type of functions with
argument in A and with the result type B (possibly
depending on the value of the argument x in A)
– We write “zero : Πx:nat. vector x”
– Special case when x∉B we abbreviate as A ! B
– We play “fast and loose” with the binding of Π

#5

Dependent Typing Rules

– Note that expressions are now part of types
– Have types like “vector 5” and “vector (2 + 3)”
– We need type equivalence

#6

Dependent Types
and Program Specifications

• Types act as specifications
• With dependent types we can specify any property!
• For example, define the following types:

“eq e” - the type of values equal to “e”.
 Also named “sng e” (the singleton type)
“ge e” – the type of values larger or equal to “e”
“lt e” – the type of values smaller than “e”
“and τ1 τ2” – the type of values having both type τ1 and τ2

• Need appropriate typing rules for the new types
• The precondition for vector-accessing (cf. HW5)

– read: Πn:nat.vector n ! (and (ge 0) (lt n)) ! int
• The type checker must do program verification

#7

Dependent Type Commentary

• Type checking with Π types can be as hard as full
program verification

• Type equivalence can be undecidable
– If types are dependent on expressions drawn from a

powerful language (“powerful” = “arithmetic”)
– Then even type checking will be undecidable

• Dependent types play an important role in the
formalization of logics
– Started with Per Martin-Lof
– Proof checking via type checking
– Proof-carrying code uses a dependent type checker to

check proofs
– There are program specification tools based on Π types

#8

Dependent Sum Types
• We want to pack a vector with its length

– e = (n, v) where “v : vector n”
– The type of an element of a pair depends on the value of

another element
– This is another form of dependency
– The type of e is “nat £ vector ?”

• Given two sets A and B verify the isomorphism
A £ B ' Σx 2 A B

– The latter is the disjoint union of B with itself as many
times as there are elements in A

– Also written as Σx:A.B (x here plays no role)
– But now we can make B depend on x!

#9

Dependent Sum Types
• Definition: Σx:A.B is the type of pairs with first

element of type A and second element of type B
(possibly depending on the value of first element x)
– Now we can write e : Σx:nat. vector x

• Functions that compute the length of a vector
– vlength : Πn:nat.vector n ! nat

• (the result is not constrained)
– slength : Πn:nat.vector n ! sng n

• “sng n” is a dependent type that contains only n
• called the singleton type (recall from 3 slides ago …)

• What if the vector is packed with its length?
– pvlength : Σn:nat.vector n ! nat
– pslength : Σn:nat.vector n ! sng n

#10

Dependent Sum Types
Static Semantics

– Note how this rule reduces to the usual rules for
tuples when there is no dependency

• The evaluation rules are unchanged

#11

Weimeric Commentary
• Dependant types seem obscure: why care?
• Grand Unified Theory

– Type Checking = Verification (= Model Checking =
Proof Checking = Abstract Interpretation …)

• CCured Project
– Rumor has it this project was successful
– The whole thing is dependant sum types

• SEQ = (pointer + lower bound + upper bound)
• FSEQ = (pointer + upper bound)
• WILD = (pointer + lower bound + upper bound + rtti)

#12

Types for Data Abstraction

What’s inside the implementation?
We don’t know!

#13

Data Abstraction

• Ability to hide (abstract) concrete
implementation details

• Modularity builds on data abstraction
• Improves program structure and minimizes

dependencies
• One of the most influential developments of

the 1970’s
• Key element for much of the success of

object orientation in the 1980’s

#14

Example of Abstraction
• Cartesian points (gotta love it!)
• Introduce the “abstype” language construct:

abstype point implements

 mk : real £ real ! point
 xc : point ! real

 yc : point ! real
is
 < point = real £ real,
 mk = λx. x,
 xc = fst,

 yc = snd >

• Shows a concrete
implementation

• Allows the rest of the
program to access the
implementation through
an abstract interface

• Only the interface need
to be publicized

• Allows separate
compilation

#15

Data Abstraction
• It is useful to separate the creation of the

abstract type and its use (newsflash …)
• Extend the syntax (t = imp, σ = interface):

Terms ::= … | < t = τ, e : σ > | open ea as t, x : σ in eb

Types ::= … | 9t. σ
• The expression <t=τ, e : σ> takes the concrete

implementation e and “packs it” as a value of an
abstract type
– Alternative notation: “pack e as 9t. σ with t = τ”
– “existential types” – used to model the stack, etc.

• The “open” expression allows eb to access the
abstract type expression ea using the name x, the
unknown type of the concrete implementation “t”
and the interface σ

#16

Example with Abstraction
• C = {mk = λx.x, xc = fst, yc = snd } is a concrete

implementation of points as real £ real
• We want to hide the type of the representation
 σ is the following type:
 { mk : real £ real ! point,

 xc : point ! real, yc : point ! real}
• Note that C : [real£real/point]σ
• A = <point=real£real, C : σ> is an expression of the

abstract type 9point.σ
• We want clients to access only the second

component of A and just use the abstract name
“point” for the first component:

open A as point, P : σ in … P.xc(P.mk(1.0, 2.0)) …

#17

Typing Rules for Existential Types

• We add the following typing rules:

• The restriction in the rule for “open” ensures
that t does not escape its scope

#18

Evaluation Rules
for Abstract Types

• We add a new form of value
 v ::= … | <t=τ, v : σ>
– This is just like v but with some type decorations that

make it have an existential type

• At the time eb is evaluated, abstract-type variables
are replaced with concrete values
– If we ignore the type issues “open ea as t, x : σ in eb” is

like “let x : σ = ea in eb”
– Difference: eb cannot know statically what is the

concrete type of x so it cannot take advantage of it

#19

Abstract Types
as a Specification Mechanism

• Just like polymorphism, existential types are mostly
a type checking mechanism

• A function of type 8t. t List ! int does not know
statically what is the type of the list elements.
Therefore no operations are allowed on them
– But it will have at run-time the actual value of t
– “There are no type variables at run-time”

• Same goes for existentials
• These type mechanisms are a very powerful (and

widely used!) form of static checking
– Recall Wadler’s “Theorems for Free”

Q: Movies (387 / 842)

•Name the movie quoted below
and also name either character
or either character's actor. In
this 1987 Mel Brooks spoof, one
character is revealed to be
another character's "father's
brother's nephew's cousin's
former roommate."

Q: Games (540 / 842)

•This seminal 1991 turn-based
strategy computer game by Sid
Meier of Microprose spawned an
entire genre about
micromanaging exploration,
expansion and conflict.

Q: Games (543 / 842)

•His genre-spawning 1993 game,
"affectionately" referred to as
"crack for gamers", was later
inducted into the GAMES
Magazine and Origins Halls of
Fame. Name this game designer,
who also holds a doctorate in
mathematics.

Q: Books (754 / 842)

•Name the factory owner, the
workers, and the newly-
developed form of unending
suckable candy in the 1964
children's book that features the
title character finding a golden
ticket and visiting the title
chocolate factory.

#24

Data Abstraction
and the Real World

• Example: file descriptors
• Solution 1:

– Represent file descriptors as “int” and export the
interface {open:string!int, read:int! data}

• An untrusted client of the interface calls
“read”

• How can we know that “read” is invoked with
a file descriptor that was obtained from
“open”? Anyone?

#25

Data Abstraction
and the Real World

• Example: file descriptors
• Solution 1:

– Represent file descriptors as “int” and export the
interface {open:string!int, read:int! data}

• An untrusted client of the interface calls “read”
• How can we know that “read” is invoked with a file

descriptor that was obtained from “open”?
– We must keep track of all integers that represent file

descriptors
– We design the interface such that all such integers are

small integers and we can essentially keep a bitmap
– This becomes expensive with more complex (e.g.

pointer-based) representations

#26

Data Abstraction, Static Checking
• Solution 2: Use the same representation but export

an abstraction of it.
– 9fd. File or
– 9fd. {open : string ! fd, read : fd ! data}
– A possible value:
– Fd = < fd = int, { open = …, read = …} : File> : 9fd. File

• Now the untrusted client e
open Fd as fd, x : File in e

• At run-time “e” can see that file descriptors are
integers
– But cannot cast 187 as a file descriptor.
– Static checking with no run-time costs!
– Catch: you must be able to type check e!

#27

Modularity
• A module is a program fragment along with visibility

constraints
• Visibility of functions and data

– Specify the function interface but hide its
implementation

• Visibility of type definitions
– More complicated because the type might appear in

specifications of the visible functions and data
– Can use data abstraction to handle this

• A module is represented as a type component and an
implementation component

<t = τ, e : σ> (where t can occur in e and σ)
– even though the specification (σ) refers to the

implementation type we can still hide the latter

#28

Problems with Existentialists
• Existentialist types

– Assert that truth is subjectivity
– Oppose the rational tradition and positivism
– Are subject to an “absurd” universe

• Problems:
– "In so far as Existentialism is a philosophical doctrine, it

remains an idealistic doctrine: it hypothesizes specific
historical conditions of human existence into ontological
and metaphysical characteristics. Existentialism thus
becomes part of the very ideology which it attacks, and
its radicalism is illusory." (Herbert Marcuse, "Sartre's
Existentialism", p. 161)

#29

Problems with Existentials
• Existential types

– Allow representation (type) hiding
– Allow separate compilation. Need to know only

the type of a module to compile its client
– First-class modules. They can be selected at run-

time. (cf. OO interface subtyping)

• Problems:
– Closed scope. Must open an existential before

using it!
– Poor support for module hierarchies

#30

Problems with Existentials (Cont.)
• There is an inherent tension between handling modules in

isolation (good for separate compilation, interchangeability)
and the need to integrate them

• Solution 1: open “point” at top level
– Inversion of program structure
– The most basic construct has the widest scope

point

rect circle

geometry
(the arrow means “depends on”)

#31

Give Up Abstraction?

• Solution 2: incorporate point in rect and circle
 R = < point = …, <rect = point £ point, …> … >

 C = < point = …, <circle = point £ real, …> … >

• When we open R and C we get two distinct notions
of point!
– And we will not be able to combine them

• Another option is to allow the type checker to see
the representation type
– and thus give up representation hiding

#32

Strong Sums
• New way to open a package

Terms e ::= ... | Ops(e)
Types τ ::= ... Σt.τ | Typ(e)
– Use Typ and Ops to decompose the module
– Operationally, they are just like “fst” and “snd”
� Σt.τ is the dependent sum type
– It is like 9t.τ except we can look at the type

#33

Modularity with Strong Sums

• Consider the R and C defined as before:
 Pt = <point = real £ real, ...> : Σpoint. τP

 R = <point = Typ(Pt),

 < rect = point £ point, ...> : Σrect. τR

 C = <point = Typ(Pt),
 < circle = point £ real, ...> : Σcircle. τC

• Since we use strong-sums the type checker
sees that the two point types are the same

#34

Modules with Strong Sums

• ML’s module system is based on strong sums
Problems:
• Poorer data abstraction
• Expressions appear in types (Typ(e))

– Types might not be known until at run time
– Lost separate compilation
– Trouble if e has side-effects (but we can use a value

restriction – e.g., “IntSet.t”)

• Second-class modules (because of value restriction)
• We can combine existentials with strong sums

– Translucent sums: partially visible

#35

Homework

• Project!
– You have ~19 days (including holidays) to

complete it.
– Need help? Stop by my office or send email.

