
#1

Automated Theorem ProvingAutomated Theorem Proving
andand

Proof CheckingProof Checking

#2

Data Abstraction, Static Checking
• Solution: Export an abstraction of the

representation.
– 9fd. File or
– 9fd. {open : string ! fd, read : fd ! data}
– A possible value:
– Fd = < fd = int, { open = …, read = …} : File> : 9fd. File

• Now the untrusted client e
open Fd as fd, x : File in e

• At run-time “e” can see that file descriptors are
integers
– But cannot cast 187 as a file descriptor.
– Static checking with no run-time costs!
– Catch: you must be able to type check e!

#3

Modularity
• A module is a program fragment along with visibility

constraints
• Visibility of functions and data

– Specify the function interface but hide its
implementation

• Visibility of type definitions
– More complicated because the type might appear in

specifications of the visible functions and data
– Can use data abstraction to handle this

• A module is represented as a type component and an
implementation component

<t = τ, e : σ> (where t can occur in e and σ)
– even though the specification (σ) refers to the

implementation type we can still hide the latter

#4

Problems with Existentialists
• Existentialist types

– Assert that truth is subjectivity
– Oppose the rational tradition and positivism
– Are subject to an “absurd” universe

• Problems:
– "In so far as Existentialism is a philosophical doctrine, it

remains an idealistic doctrine: it hypothesizes specific
historical conditions of human existence into ontological
and metaphysical characteristics. Existentialism thus
becomes part of the very ideology which it attacks, and
its radicalism is illusory." (Herbert Marcuse, "Sartre's
Existentialism", p. 161)

#5

Problems with Existentials
• Existential types

– Allow representation (type) hiding
– Allow separate compilation. Need to know only

the type of a module to compile its client
– First-class modules. They can be selected at run-

time. (cf. OO interface subtyping)

• Problems:
– Closed scope. Must open an existential before

using it!
– Poor support for module hierarchies

#6

Problems with Existentials (Cont.)
• There is an inherent tension between handling modules in

isolation (good for separate compilation, interchangeability)
and the need to integrate them

• Solution 1: open “point” at top level
– Inversion of program structure
– The most basic construct has the widest scope

point

rect circle

geometry
(the arrow means “depends on”)

#7

Give Up Abstraction?

• Solution 2: incorporate point in rect and circle
 R = < point = …, <rect = point £ point, …> … >

 C = < point = …, <circle = point £ real, …> … >

• When we open R and C we get two distinct notions
of point!
– And we will not be able to combine them

• Another option is to allow the type checker to see
the representation type
– and thus give up representation hiding

#8

Strong Sums
• New way to open a package

Terms e ::= ... | Ops(e)
Types τ ::= ... Σt.τ | Typ(e)
– Use Typ and Ops to decompose the module
– Operationally, they are just like “fst” and “snd”
� Σt.τ is the dependent sum type
– It is like 9t.τ except we can look at the type

#9

Modularity with Strong Sums

• Consider the R and C defined as before:
 Pt = <point = real £ real, ...> : Σpoint. τP

 R = <point = Typ(Pt),

 < rect = point £ point, ...> : Σrect. τR

 C = <point = Typ(Pt),
 < circle = point £ real, ...> : Σcircle. τC

• Since we use strong-sums the type checker
sees that the two point types are the same

#10

Modules with Strong Sums

• ML’s module system is based on strong sums
Problems:
• Poorer data abstraction
• Expressions appear in types (Typ(e))

– Types might not be known until at run time
– Lost separate compilation
– Trouble if e has side-effects (but we can use a value

restriction – e.g., “IntSet.t”)

• Second-class modules (because of value restriction)
• We can combine existentials with strong sums

– Translucent sums: partially visible

#11

Cunning Theorem-Proving Plan
• There are full-semester courses on automated

deduction; we will elide details.
• Logic Syntax
• Theories
• Satisfiability Procedures
• Mixed Theories
• Theorem Proving
• Proof Checking
• SAT-based Theorem Provers (cf. Engler paper)

#12

Motivation
• Can be viewed as “decidable AI”

– Would be nice to have a procedure to automatically
reason from premises to conclusions …

• Used to rule out the exploration of infeasible paths
(model checking, dataflow)

• Used to reason about the heap (McCarthy, symbolic
execution)

• Used to automatically synthesize programs from
specifications (e.g. Leroy, Engler optional papers)

• Used to discover proofs of conjectures (e.g., Tarski
conjecture proved by machine in 1996, efficient
geometry theorem provers)

• Generally under-utilized

#13

History
• Automated deduction is logical deduction

performed by a machine
• Involves logic and mathematics
• One of the oldest and technically deepest

fields of computer science
– Some results are as much as 75 years old
– “Checking a Large Routine”, Turing 1949
– Automation efforts are about 40 years old
– Floyd-Hoare axiomatic semantics

• Still experimental (even after 40 years)

#14

Standard Architecture

Program

Specification

Theorem
In A Logic

Meets Spec
Or

Found A Bug

Verification
Condition

Generation

Semantics

Va
lid

ity

Pr
ov

ab
ili

ty

Automated
Theorem
Proving

#15

Logic Grammar
• We’ll use the following logic:
Goals: G ::= L | true |

G1 Æ G2 | H) G | 8x. G

Hypotheses: H ::= L | true | H1 Æ H2

Literals: L ::= p(E1, …, Ek)

Expressions: E ::= n | f(E1, …, Em)

• This is a subset of first-order logic
– Intentionally restricted: no Ç so far
– Predicate functions p: <, =, …
– Expression functions f: +, *, sel, upd,

#16

Theorem Proving Problem
• Write an algorithm “prove” such that:
• If prove(G) = true then ² G

– Soundnes (must have)

• If ² G then prove(G) = true
– Completeness (nice to have, optional)

• prove(H,G) means prove H) G
• Architecture: Separation of Concerns

– #1. Handle Æ,), 8, =
– #2. Handle ·, *, sel, upd, =

#17

Theorem Proving

• Want to prove true things
• Avoid proving false things
• We’ll do proof-checking

later to rule out the “cat
proof” shown here

• For now, let’s just get to
the point where we can
prove something

#18

Basic Symbolic Theorem Prover

• Let’s define prove(H,G) …
prove(H, true)= true
prove(H, G1 Æ G2) = prove(H,G1) &&

prove(H, G2)

prove(H1, H2) G) = prove(H1 Æ H2, G)

prove(H, 8x. G) = prove(H, G[a/x])
(a is “fresh”)

prove(H, L) = ???

#19

Theorem Prover for Literals
• We have reduced the problem to

prove(H,L)

• But H is a conjunction of literals L1 Æ … Æ Lk

• Thus we really have to prove that

L1 Æ … Æ Lk) L

• Equivalently, that L1 Æ … Æ Lk Æ : L is unsatisfiable
– For any assignment of values to variables the truth value

of the conjunction is false

• Now we can say

prove(H,L) = Unsat(H Æ : L)

#20

Theory Terminology
• A theory consists of a set of functions and

predicate symbols (syntax) and definitions for
the meanings of those symbols (semantics)

• Examples:
– 0, 1, -1, 2, -3, …, +, -, =, < (usual meanings;

“theory of integers with arithmetic” or
“Presburger arithmetic”)

– =, · (axioms of transitivity, anti-symmetry, and
8x. 8y. x · y Ç y · x ; “theory of total orders”)

– sel, upd (McCarthy’s “theory of lists”)

#21

Decision Procedures for Theories
• The Decision Problem

– Decide whether a formula in a theory with first-
order logic is true

• Example:
– Decide “8x. x>0) (9y. x=y+1)” in {N, +, =, >}

• A theory is decidable when there is an
algorithm that solves the decision problem
– This algorithm is the decision procedure for that

theory

#22

Satisfiability Procedures
• The Satisfiability Problem

– Decide whether a conjunction of literals in the
theory is satisfiable

– Factors out the first-order logic part
– The decision problem can be reduced to the

satisfiability problem
• Parameters for 8, skolem functions for 9, negate and

convert to DNF (sorry; I won’t explain this here)

• “Easiest” Theory = Propositional Logic = SAT
– A decision procedure for it is a “SAT solver”

#23

Theory of Equality

• Theory of equality with uninterpreted
functions

• Symbols: =, ≠, f, g, …
• Axiomatically defined (A,B,C 2 Expressions):

• Example satisfiability problem:
g(g(g(x)))=x Æ g(g(g(g(g(x)))))=x Æ g(x)≠x

A=A A=B

B=A

A=C

A=B B=C

f(A) = f(B)

A=B

#24

More Satisfying Examples
• Theory of Linear Arithmetic

– Symbols: ¸, =, +, -, integers
– Example: y > 2x + 1, x > 1, y < 0 is unsat
– Satisfiability problem is in P (loosely, no multiplication

means no tricky encodings)

• Theory of Lists
– Symbols: cons, head, tail, nil

– Theorem: head(x) = head(y) Æ tail(x) = tail(y)) x = y

head(cons(A,B)) = A tail(cons(A,B) = B

#25

Mixed Theories
• Often we have facts involving symbols from multiple

theories
– E’s symbols =, ≠, f, g, … (uninterp function equality)
– R’s symbols =, ≠, +, -, ·, 0, 1, … (linear arithmetic)
– Running Example (and Fact):

 ² x · y Æ y + z · x Æ 0 · z) f(f(x) – f(y)) = f(z)
– To prove this, we must decide:

Unsat(x · y, y + z · x, 0 · z, f(f(x) – f(y)) ≠ f(z))
• We may have a sat procedure for each theory

– E’s sat procedure by Ackermann in 1924
– R’s proc by Fourier

• The sat proc for their combination is much harder
– Only in 1979 did we get E+R

#26

Satisfiability of Mixed Theories

• Can we just separate out the terms in Theory
1 from the terms in Theory 2 and see if they
are separately safisfiable?
– No, unsound, equi-sat ≠ equivalent.

• The problem is that the two satisfying
assignments may be incompatible

• Idea (Nelson and Oppen): Each sat proc
announces all equalities between variables
that it discovers

Unsat(x · y, y + z · x, 0 · z, f(f(x) – f(y)) ≠ f(z))

#27

Handling Multiple Theories

• We’ll use
cooperating decision
procedures

• Each sat proc works
on the literals it
understands

• Sat procs share
information
(equalities)

#28

Consider Equality and Arith
f(f(x) – f(y) ≠ f(z) x · y y + z · x 0 · z

x = y y · x

0 = zf(x) = f(y)

f(x) – f(y) = z

f(f(x) – f(y)) = f(z)false
• How can we do this

in our prover?

#29

Nelson-Oppen: The E-DAG
• Represent all terms in one Equivalence DAG

– Node names act as variables shared between
theories!

f(f(x) – f(y)) ≠ f(z) Æ y ¸ x Æ x ¸ y + z Æ z ¸ 0
f

-

x y z 0

f
f

·

¸ ¸f

+

#30

Nelson-Oppen: Processing
• Run each sat proc

– Report all contradictions (as usual)
– Report all equalities between nodes (key idea)

Implementation
details: Use union-
find to track node

equivalence classes
in E-DAG. When

merging A=B, also
merge f(A)=f(B).

f

-

x y z 0

f
f

·

¸ ¸f

+

#31

Nelson-Oppen: Processing
• Broadcast all discovered equalities

– Rerun sat procedures
– Until no more equalities or a contradiction

 ContradictionContradiction
XXf

-

x y z 0

f
f

·

¸ ¸f

+

#32

Does It Work?

• If a contradiction is found, then unsat
– This is sound if sat procs are sound
– Because only sound equalities are ever found

• If there are no more equalities, then sat
– Is this complete? Have they shared enough info?
– Are the two satisfying assignments compatible?
– Yes!
– (Countable theories with infinite models admit

isomorphic models, convex theories have
necessary interpretations, etc.)

#33

SAT-Based Theorem Provers

• Recall separation of concerns:
– #1 Prover handles connectives (8, Æ,))
– #2 Sat procs handle literals (+, ·, 0, head)

• Idea: reduce proof obligation into
propositional logic, feed to SAT solver (CVC)
– To Prove: 3*x=9) (x = 7 Æ x · 4)
– Becomes Prove: A) (B Æ C)
– Becomes Unsat: A Æ :(B Æ C)
– Becomes Unsat: A Æ (:B Ç :C)

#34

SAT-Based Theorem Proving

• To Prove: 3*x=9) (x = 7 Æ x · 4)
– Becomes Unsat: A Æ (:B Ç :C)
– SAT Solver Returns: A=1, C=0
– Ask sat proc: unsat(3*x=9, : x·4) = true
– Add constraint: :(A Æ :C)
– Becomes Unsat: A Æ (:B Ç :C) Æ :(A Æ :C)
– SAT Solver Returns: A=1, B=0, C=1
– Ask sat proc: unsat(3*x=9, : x=7, x·4) = false

• (x=3 is a satisfying assignment)

– We’re done! (original to-prove goal is false)
– If SAT Solver returns “no satisfying assignment” then

original to-prove goal is true

#35

Proofs
“Checking proofs ain’t like dustin’ crops, boy!”

#36

Proof Generation

• We want our theorem prover to emit proofs
– No need to trust the prover
– Can find bugs in the prover
– Can be used for proof-carrying code
– Can be used to extract invariants
– Can be used to extract models (e.g., in SLAM)

• Implements the soundness argument
– On every run, a soundness proof is constructed

#37

Proof Representation
• Proofs are trees

– Leaves are hypotheses/axioms
– Internal nodes are inference rules

• Axiom: “true introduction”
– Constant: truei : pf
– pf is the type of proofs

• Inference: “conjunction introduction”
– Constant: andi : pf ! pf ! pf

• Inference: “conjunction elimination”
– Constant: andel : pf ! Pf

• Problem:
– “andel truei : pf” but does not represent a valid proof
– Need a more powerful type system that checks content

` true

` A

` A Æ B

` A Æ B

` A ` B

truei

andi

andel

#38

Dependent Types
• Make pf a family of types indexed by formulas

– f : Type (type of encodings of formulas)
– e : Type (type of encodings of expressions)
– pf : f ! Type (the type of proofs indexed by formulas: it

is a proof that f is true)

• Examples:
– true : f
– and : f ! f ! f
– truei : pf true
– andi : pf A ! pf B ! pf (and A B)
– andi : ΠA:f. ΠB:f. pf A ! pf B ! pf (and A B)

#39

Proof Checking

• Validate proof trees by type-checking them
• Given a proof tree X claiming to prove A Æ B
• Must check X : pf (and A B)
• We use “expression tree equality”, so

– andel (andi “1+2=3” “x=y”) does not have type pf (3=3)
– This is already a proof system! If the proof-supplier wants

to use the fact that 1+2=3 , 3=3, she can include a proof
of it somewhere!

• Thus Type Checking = Proof Checking
– And it’s quite easily decidable! ¤

#40

Parametric Judgment (Time?)
• Universal Introduction Rule of Inference

• We represent bound variables in the logic using
bound variables in the meta-logic
– all : (e ! f) ! f
– Example: 8x. x=x represented as (all (λx. eq x x))
– Note: 8y. y=y has an α-equivalent representation
– Substitution is done by β-reduction in meta-logic

• [E/x](x=x) is (λx. eq x x) E

` 8x. A

 ` [a/x]A (a is fresh)

#41

Parametric 8 Proof Rules (Time?)

` 8x. A

 ` [a/x]A (a is fresh)

` [E/x]A

 ` 8x. A

• Universal Introduction
– alli: ΠA:(e ! f). (Πa:e. pf (A a)) ! pf (all A)

• Universal Elimination
– alle: ΠA:(e ! f). ΠE:e. pf (all A) ! pf (A E)

#42

Parametric 9 Proof Rules (Time?)

 ` [a/x]A

 …

` B

 ` 9x. A ` B

` 9x. A

 ` [E/x]A

• Existential Introduction
– existi: ΠA:(e ! f). ΠE:e. pf (A E) ! pf (exists A)

• Existential Elimination
– existe: ΠA:(e ! f). ΠB:f.
 pf (exists A) ! (Πa:e. pf (A a) ! pf B) ! pf B

#43

Homework
• Project

– Need help? Stop by my office or send email.

