Automated Theorem Proving and Proof Checking

Partiallyclips

Data Abstraction, Static Checking

- Solution: Export an abstraction of the representation.
- \exists fd. File or
- $\exists \mathrm{fd}$. \{open : string \rightarrow fd, read : fd \rightarrow data\}
- A possible value:
- $\mathrm{Fd}=<\mathrm{fd}=\mathrm{int},\{$ open $=\ldots$, read $=\ldots\}$: File> : $\exists \mathrm{fd}$. File
- Now the untrusted client e

$$
\text { open Fd as } \mathrm{fd} \text {, } \mathrm{x} \text { : File in } \mathrm{e}
$$

- At run-time "e" can see that file descriptors are integers
- But cannot cast 187 as a file descriptor.
- Static checking with no run-time costs!
- Catch: you must be able to type check e!

Modularity

- A module is a program fragment along with visibility constraints
- Visibility of functions and data
- Specify the function interface but hide its implementation
- Visibility of type definitions
- More complicated because the type might appear in specifications of the visible functions and data
- Can use data abstraction to handle this
- A module is represented as a type component and an implementation component

$$
<\mathrm{t}=\tau, \mathrm{e}: \sigma>\quad(\text { where } \mathrm{t} \text { can occur in } \mathrm{e} \text { and } \sigma)
$$

- even though the specification (σ) refers to the implementation type we can still hide the latter

Problems with Existentialists

- Existentialist types
- Assert that truth is subjectivity
- Oppose the rational tradition and positivism
- Are subject to an "absurd" universe
- Problems:
- "In so far as Existentialism is a philosophical doctrine, it remains an idealistic doctrine: it hypothesizes specific historical conditions of human existence into ontological and metaphysical characteristics. Existentialism thus becomes part of the very ideology which it attacks, and its radicalism is illusory." (Herbert Marcuse, "Sartre's Existentialism", p. 161)

Problems with Existentials

- Existential types
- Allow representation (type) hiding
- Allow separate compilation. Need to know only the type of a module to compile its client
- First-class modules. They can be selected at runtime. (cf. 00 interface subtyping)
- Problems:
- Closed scope. Must open an existential before using it!
- Poor support for module hierarchies

Problems with Existentials (Cont.)

- There is an inherent tension between handling modules in isolation (good for separate compilation, interchangeability) and the need to integrate them

(the arrow means "depends on")
- Solution 1: open "point" at top level
- Inversion of program structure
- The most basic construct has the widest scope

Give Up Abstraction?

- Solution 2: incorporate point in rect and circle

$$
\begin{aligned}
& \mathrm{R}=<\text { point }=\ldots,<\text { rect }=\text { point } \times \text { point }, \ldots>\ldots> \\
& \mathrm{C}=<\text { point }=\ldots,<\text { circle }=\text { point } \times \text { real, } \ldots>\ldots>
\end{aligned}
$$

- When we open R and C we get two distinct notions of point!
- And we will not be able to combine them
- Another option is to allow the type checker to see the representation type
- and thus give up representation hiding

Strong Sums

- New way to open a package

Terms e ::=... | Ops(e)
Types $\tau::=\ldots$ Lt. τ | Typ(e)

- Use Typ and Ops to decompose the module
- Operationally, they are just like "fst" and "snd" $\Sigma \mathrm{t} . \tau$ is the dependent sum type
- It is like $\exists \mathrm{t} . \tau$ except we can look at the type

$$
\frac{\Gamma \vdash e: \Sigma t . \tau}{\Gamma \vdash \operatorname{Ops}(e): \tau[\operatorname{Typ}(e) / t]}
$$

Modularity with Strong Sums

- Consider the R and C defined as before:

$$
\begin{aligned}
& \mathrm{Pt}=<\text { point }=\text { real } \times \text { real, } \ldots>: \Sigma \text { point. } \tau_{\mathrm{P}} \\
& \mathrm{R}=<\text { point }=\operatorname{Typ}(\mathrm{Pt}), \\
& \quad<\text { rect }=\text { point } \times \text { point, } \ldots>: \Sigma \text { rect. } \tau_{\mathrm{R}} \\
& \mathrm{C}=<\text { point }=\operatorname{Typ}(\mathrm{Pt}), \\
& \quad<\text { circle }=\text { point } \times \text { real, } \ldots>: \text { circle. } \tau_{\mathrm{C}}
\end{aligned}
$$

- Since we use strong-sums the type checker sees that the two point types are the same

Modules with Strong Sums

- ML's module system is based on strong sums

Problems:

- Poorer data abstraction
- Expressions appear in types (Typ(e))
- Types might not be known until at run time
- Lost separate compilation
- Trouble if e has side-effects (but we can use a value restriction - e.g., "IntSet.t")
- Second-class modules (because of value restriction)
- We can combine existentials with strong sums
- Translucent sums: partially visible

Cunning Theorem-Proving Plan

- There are full-semester courses on automated deduction; we will elide details.
- Logic Syntax
- Theories
- Satisfiability Procedures
- Mixed Theories
- Theorem Proving
- Proof Checking
- SAT-based Theorem Provers (cf. Engler paper)

Motivation

- Can be viewed as "decidable Al"
- Would be nice to have a procedure to automatically reason from premises to conclusions ...
- Used to rule out the exploration of infeasible paths (model checking, dataflow)
- Used to reason about the heap (McCarthy, symbolic execution)
- Used to automatically synthesize programs from specifications (e.g. Leroy, Engler optional papers)
- Used to discover proofs of conjectures (e.g., Tarski conjecture proved by machine in 1996, efficient geometry theorem provers)
- Generally under-utilized

History

- Automated deduction is logical deduction performed by a machine
- Involves logic and mathematics
- One of the oldest and technically deepest fields of computer science
- Some results are as much as 75 years old
- "Checking a Large Routine", Turing 1949
- Automation efforts are about 40 years old
- Floyd-Hoare axiomatic semantics
- Still experimental (even after 40 years)

Standard Architecture

Logic Grammar

- We'll use the following logic:
$G_{1} \wedge G_{2}|H \Rightarrow G| \forall x . G$

Hypotheses:
Literals:
Expressions:
$H::=L$ | true | $H_{1} \wedge H_{2}$
$L::=p\left(E_{1}, \ldots, E_{k}\right)$
$E::=n \mid f\left(E_{1}, \ldots, E_{m}\right)$

- This is a subset of first-order logic
- Intentionally restricted: no \vee so far
- Predicate functions $\mathrm{p}:<,=$, ...
- Expression functions f: +, *, sel, upd,

Theorem Proving Problem

- Write an algorithm "prove" such that:
- If prove $(\mathrm{G})=$ true then $\vDash G$
- Soundnes (must have)
- If $\vDash G$ then $\operatorname{prove}(G)=$ true
- Completeness (nice to have, optional)
- prove(H,G) means prove $\mathrm{H} \Rightarrow \mathrm{G}$
- Architecture: Separation of Concerns
- \#1. Handle $\wedge, \Rightarrow, \forall,=$
- \#2. Handle \leq, *, sel, upd, =

Theorem Proving

- Want to prove true things
- Avoid proving false things
- We'll do proof-checking later to rule out the "cat proof" shown here
- For now, let's just get to the point where we can prove something

Basic Symbolic Theorem Prover

- Let's define prove(H,G) ...
prove $(\mathrm{H}$, true $)=$ true
$\operatorname{prove}\left(H, G_{1} \wedge G_{2}\right) \quad=\operatorname{prove}\left(H, G_{1}\right) \& \&$ prove $\left(\mathbf{H}, \mathrm{G}_{2}\right)$
$\operatorname{prove}\left(H_{1}, H_{2} \Rightarrow G\right)=\operatorname{prove}\left(H_{1} \wedge H_{2}, G\right)$
$\operatorname{prove}(\mathrm{H}, \forall \mathrm{x}, \mathrm{G}) \quad=\operatorname{prove}(\mathrm{H}, \mathrm{G}[\mathrm{a} / \mathrm{x}])$
(a is "fresh")
prove(H, L)
= ???

Theorem Prover for Literals

- We have reduced the problem to prove(H,L)
- But H is a conjunction of literals $L_{1} \wedge \ldots \wedge L_{k}$
- Thus we really have to prove that

$$
L_{1} \wedge \ldots \wedge L_{k} \Rightarrow L
$$

- Equivalently, that $L_{1} \wedge \ldots \wedge L_{k} \wedge \neg L$ is unsatisfiable
- For any assignment of values to variables the truth value of the conjunction is false
- Now we can say
prove(H,L) = Unsat(H ^ ᄀ L)

Theory Terminology

- A theory consists of a set of functions and predicate symbols (syntax) and definitions for the meanings of those symbols (semantics)
- Examples:
- 0, 1, -1, 2, $-3, \ldots,+,-,=,<$ (usual meanings; "theory of integers with arithmetic" or "Presburger arithmetic")
- =, \leq (axioms of transitivity, anti-symmetry, and $\forall x . \forall y . x \leq y \vee y \leq x$; "theory of total orders")
- sel, upd (McCarthy's "theory of lists")

Decision Procedures for Theories

- The Decision Problem
- Decide whether a formula in a theory with firstorder logic is true
- Example:
- Decide " $\forall x . x>0 \Rightarrow(\exists y . x=y+1)$ " in $\{\mathbb{N},+,=,>\}$
- A theory is decidable when there is an algorithm that solves the decision problem
- This algorithm is the decision procedure for that theory

Satisfiability Procedures

- The Satisfiability Problem
- Decide whether a conjunction of literals in the theory is satisfiable
- Factors out the first-order logic part
- The decision problem can be reduced to the satisfiability problem
- Parameters for \forall, skolem functions for \exists, negate and convert to DNF (sorry; I won't explain this here)
- "Easiest" Theory = Propositional Logic = SAT
- A decision procedure for it is a "SAT solver"

Theory of Equality

- Theory of equality with uninterpreted functions
- Symbols: =, =, f, g, ...
- Axiomatically defined ($\mathrm{A}, \mathrm{B}, \mathrm{C} \in$ Expressions):

$$
\overline{A=A} \quad \frac{B=A}{A=B} \quad \frac{A=B \quad B=C}{A=C} \quad \frac{A=B}{f(A)=f(B)}
$$

- Example satisfiability problem:

$$
g(g(g(x)))=x \wedge g(g(g(g(g(x)))))=x \wedge g(x) \neq x
$$

More Satisfying Examples

- Theory of Linear Arithmetic
- Symbols: \geq, =, +, -, integers
- Example: $\mathrm{y}>2 \mathrm{x}+1, \mathrm{x}>1, \mathrm{y}<0$ is unsat
- Satisfiability problem is in P (loosely, no multiplication means no tricky encodings)
- Theory of Lists
- Symbols: cons, head, tail, nil
head $(\operatorname{cons}(A, B))=A \quad \operatorname{tail}(\operatorname{cons}(A, B)=B$
- Theorem: head $(x)=\operatorname{head}(y) \wedge \operatorname{tail}(x)=\operatorname{tail}(y) \Rightarrow x=y$

Mixed Theories

- Often we have facts involving symbols from multiple theories
- E's symbols $=, \neq, f, g, \ldots$ (uninterp function equality)
- R's symbols $=, \neq,+,-, \leq, 0,1, \ldots$ (linear arithmetic)
- Running Example (and Fact):

$$
\vDash x \leq y \wedge y+z \leq x \wedge 0 \leq z \Rightarrow f(f(x)-f(y))=f(z)
$$

- To prove this, we must decide:

$$
\text { Unsat(x } \leq y, y+z \leq x, 0 \leq z, f(f(x)-f(y)) \neq f(z))
$$

- We may have a sat procedure for each theory
- E's sat procedure by Ackermann in 1924
- R's proc by Fourier
- The sat proc for their combination is much harder
- Only in 1979 did we get E+R

Satisfiability of Mixed Theories

$$
\text { Unsat(} x \leq y, y+z \leq x, 0 \leq z, f(f(x)-f(y)) \neq f(z))
$$

- Can we just separate out the terms in Theory 1 from the terms in Theory 2 and see if they are separately safisfiable?
- No, unsound, equi-sat \neq equivalent.
- The problem is that the two satisfying assignments may be incompatible
- Idea (Nelson and Oppen): Each sat proc announces all equalities between variables that it discovers

Handling Multiple Theories

- We'll use cooperating decision procedures
- Each sat proc works on the literals it understands
- Sat procs share information (equalities)

"THEN, AS YOU CAN SEE, WE GIVE THEM
SOME MULTIPLE CHICE TESTS."

Consider Equality and Arith

Nelson-Oppen: The E-DAG

- Represent all terms in one Equivalence DAG
- Node names act as variables shared between theories!
$f(f(x)-f(y)) \neq f(z) \wedge y \geq x \wedge x \geq y+z \wedge z \geq 0$

Nelson-Oppen: Processing

- Run each sat proc
- Report all contradictions (as usual)
- Report all equalities between nodes (key idea)

Nelson-Oppen: Processing

- Broadcast all discovered equalities
- Rerun sat procedures
- Until no more equalities or a contradiction

Does It Work?

- If a contradiction is found, then unsat
- This is sound if sat procs are sound
- Because only sound equalities are ever found
- If there are no more equalities, then sat
- Is this complete? Have they shared enough info?
- Are the two satisfying assignments compatible?
- Yes!
- (Countable theories with infinite models admit isomorphic models, convex theories have necessary interpretations, etc.)

SAT-Based Theorem Provers

- Recall separation of concerns:
- \#1 Prover handles connectives $(\forall, \wedge, \Rightarrow)$
- \#2 Sat procs handle literals (+, $\leq, 0$, head)
- Idea: reduce proof obligation into propositional logic, feed to SAT solver (CVC)
- To Prove: $3^{*} x=9 \Rightarrow(x=7 \wedge x \leq 4)$
- Becomes Prove: $A \Rightarrow(B \wedge C)$
- Becomes Unsat: $A \wedge \neg(B \wedge C)$
- Becomes Unsat: $A \wedge(\neg B \vee \neg C)$

SAT-Based Theorem Proving

- To Prove: $3^{*} x=9 \Rightarrow(x=7 \wedge x \leq 4)$
- Becomes Unsat: $\mathrm{A} \wedge(\neg \mathrm{B} \vee \neg \mathrm{C})$
- SAT Solver Returns: $A=1, C=0$
- Ask sat proc: unsat($3^{*} x=9, \neg x \leq 4$) $=$ true
- Add constraint: $\neg(\mathrm{A} \wedge \neg \mathrm{C})$
- Becomes Unsat: $\mathrm{A} \wedge(\neg \mathrm{B} \vee \neg \mathrm{C}) \wedge \neg(\mathrm{A} \wedge \neg \mathrm{C})$
- SAT Solver Returns: $A=1, B=0, C=1$
- Ask sat proc: unsat($\left.3^{*} x=9, \neg x=7, x \leq 4\right)=$ false
- ($\mathrm{x}=3$ is a satisfying assignment)
- We're done! (original to-prove goal is false)
- If SAT Solver returns "no satisfying assignment" then original to-prove goal is true

Proofs

"Checking proofs ain't like dustin' crops, boy!"

Proof Generation

- We want our theorem prover to emit proofs
- No need to trust the prover
- Can find bugs in the prover
- Can be used for proof-carrying code
- Can be used to extract invariants
- Can be used to extract models (e.g., in SLAM)
- Implements the soundness argument
- On every run, a soundness proof is constructed

Proof Representation

- Proofs are trees
- Leaves are hypotheses/axioms
- Internal nodes are inference rules
- Axiom: "true introduction"
\vdash true
- Constant: truei : pf
- pf is the type of proofs
- Inference: "conjunction introduction" $\vdash \mathrm{A} \wedge \mathrm{B}$
- Constant: andi : pf \rightarrow pf \rightarrow pf
- Inference: "conjunction elimination"
- Constant: andel: pf \rightarrow Pf
- Problem:
- "andel truei : pf" but does not represent a valid proof
- Need a more powerful type system that checks content

Dependent Types

- Make pf a family of types indexed by formulas
- f: Type
- e:Type
- pf : $\mathrm{f} \rightarrow$ Type (the type of proofs indexed by formulas: it is a proof that f is true)
- Examples:
- true : f
- and $\quad: f \rightarrow f \rightarrow f$
- truei : pf true
- andi : pf A \rightarrow pf B \rightarrow pf (and AB)
- andi $\quad: \Pi A: f . ~ \Pi B: f$. pf $A \rightarrow p f B \rightarrow p f(a n d B)$

Proof Checking

- Validate proof trees by type-checking them
- Given a proof tree X claiming to prove $A \wedge B$
- Must check X: pf (and A B)
- We use "expression tree equality", so
- andel (andi " $1+2=3$ " " $x=y$ ") does not have type pf ($3=3$)
- This is already a proof system! If the proof-supplier wants to use the fact that $1+2=3 \Leftrightarrow 3=3$, she can include a proof of it somewhere!
- Thus Type Checking = Proof Checking
- And it's quite easily decidable! \square

Parametric Judgment (Time?)

- Universal Introduction Rule of Inference
$\frac{\vdash[\mathrm{a} / \mathrm{x}] \mathrm{A}(\mathrm{a} \text { is fresh) }}{\vdash \forall \mathrm{x} . \mathrm{A}}$
- We represent bound variables in the logic using bound variables in the meta-logic
- all : $(e \rightarrow f) \rightarrow f$
- Example: $\forall x$. $x=x$ represented as (all (λx. eq x x))
- Note: $\forall y . y=y$ has an α-equivalent representation
- Substitution is done by β-reduction in meta-logic - $[E / x](x=x)$ is $\quad(\lambda x$. eq $x x) E$

Parametric \forall Proof Rules (Time?)

$$
\frac{\vdash[\mathrm{a} / \mathrm{x}] \mathrm{A}(\mathrm{a} \text { is fresh })}{\vdash \forall \mathrm{x} . \mathrm{A}}
$$

- Universal Introduction
- alli: ПА: $(\mathrm{e} \rightarrow \mathrm{f})$. (Па:e. pf (A a)) \rightarrow pf (all A)

$$
\frac{\vdash \forall x . A}{\vdash[\mathrm{E} / \mathrm{x}] \mathrm{A}}
$$

- Universal Elimination
- alle: ПА:(e \rightarrow f). ПЕ:e. pf (all A) \rightarrow pf (A E)

Parametric \exists Proof Rules (Time?)

- Existential Introduction
$\frac{\vdash[E / x] A}{\vdash \exists x . A}$
- existi: ПА:(e \rightarrow f). ПЕ:e. pf (A E) \rightarrow pf (exists A)

$$
\vdash[\mathrm{a} / \mathrm{x}] \mathrm{A}
$$

- Existential Elimination $\vdash \exists \mathrm{x} . \mathrm{A} \vdash \mathrm{B}$
- existe: ПА:(e \rightarrow f). ПВ:f.
$\vdash B$ pf $($ exists $A) \rightarrow($ Па: e. pf $(A \quad a) \rightarrow p f B) \rightarrow$ pf B

Homework

- Project
- Need help? Stop by my office or send email.

