Linking, Loading, Libraries

One-Slide Summary

« We want separate compilation for
program pieces. So we must link those
compiled pieces together later. We
must resolve references from one
object to another.

e We also want to share libraries
between programs.

 We also want to typecheck separately-
compiled modules.

H#H2

Lecture Outline

e Object Files

e Linking

e Relocations

e Shared Libraries

e Type Checking

TASSOCATION”

CTRL+* AHH, BY TIM BUCKLEY

FV COMMANDER.
GOOD TO HAVE You
ABOARD. T ONLY HAVE ONE .
RULE. EVERYONE FIGHTS. NO ONE WELCOME

QAUITS. YoU PON'T DO YOUR JOB TO THE
T'LL SHOOT YOU MYSELF ROUGHNECKS
You GET ME? y

WELCOME
TO NOP, BROTHER.
WE HAVE WAITEP CENTURIES
FOR THIS MOMENT. THE RIVER
WILL FLOW WITH THE BLOOD
OF THOSE WHO

COMMANDER,
WE HAVE INTEL FOR
vgu CONCERNING ;Ha%
WHEREABOUTS OF

FORCES. RARIO ADMIRAL PON'T WORRY,

ADAMA FOR VIPER MY FRIEND'S POWN
SUPPORT IE YOU THEEE. HE'LL HAVE THAT

SHIELP POWN IN TIME...

G.PL
OPERATIVES HAVE
BEEN CLOSING IN. BUT
PON'T WORRY, GOP HAS
A PLAN. YOU maY EVEN BE

NEEP IT.

OR THIS'LL BE THE ONE OF THE FINAL FIVE
SHORTEST OFFENSIVE CHLONS.
OF ALL TIME.

WELL,
TWINKLE TOES, WHAT

ARE YOU WAITING FOR?
YOU NEED TO 60 STOP G.0L
WE ALSO NEED TO GET OFF

OH MAN.
THANK THE GOPS
THEY DIDN'T HAVE ANY
ACTORS FROM HEROES OR
FIREFLY. MY BRAIN WOULPN'T
HAVE BEEN ABLE TO WITHSTAND
THIS GEEK CHARACTER
ORGY OF SHEER
ANESOMENESS!

PANT
PANT

ARE COMING!

Separate Compilation

o Compile different parts of your program at
different times

 And then link them together later
e This is a big win
- Faster compile times on small changes

- Software Engineering (modularity)
- Independently develop different parts (libraries)

o All major languages and all big projects use
this

HA4

Pieces

o A compiled program fragment is called an
object file

e An object file contains
- Code (for methods, etc.)
- Variables (e.g., values for global variables)
- Debugging information

- References to code and data that appear
elsewhere (e.g., printf)

- Tables for organizing the above
e Object files are implicit for interpreters

H#H5

Two Big Tasks

* The operating system uses virtual memory so
every program starts at a standard [virtual]
address (e.g., address 0)

 Linking involves two tasks

- Relocating the code and data from each object
file to a particular fixed virtual address

- Resolving references (e.g., to variable locations
or jump-target labels) so that they point to
concrete and correct virtual addresses in the New

World Order

Relocatable Object Files

* For this to work, a relocatable object file comes
equipped with three tables

- Import Table: points to places in the code where an
external symbol (variable or method) is references
o List of (external_symbol_name, where_in_code) pairs
e One external_symbol_name may come up many times!

- Export Table: points to symbol definitions in the code
that are exported for use by others
 List of (internal_symbol_name, where_in_code) pairs
- Relocation Table: points to places in the code where
local symbols are referenced

o List of (internal_symbol_name, where_in_code) pairs
e One internal_symbol may come up many times!

H7

So Many Tables

e Tables must contain
quite a bit of
information

e Tables must also be
easy to understand

e Let's see some
examples ...

FROM THE MAKERS OF THE BLOGOSPHERE,
BLoGo CUBE, AND BLOGODROME COMES

the Slo9ofractal

e TR 3,113 sty on Ko S
AT & N 3 2 hfép 2/ $lashdot. O@/“”‘] % £

Cory Dbcranw) is @ H'Hc upset about Copuright lows.

I | pedled 0% RO gl P o S
ty E’Snake&man]:donﬁfmfﬂeﬁnwg‘g% ggg. 3
o = 3K s FHs
& ?rzi‘mLfommen&(O)f of flge]e s
"al Ry
& W%Checkcvf fhis vid of Jon Stewart {32,335
g ::Ef = Krgp? ite™ locks Winerablk 1o k@gsl“g ’siﬁ%ﬂi
1 |53 <3 F NOTLYOLLG TN NRSVD v 94»—_-:_ o
T, femirellisiom o s la_Gupibng shed epathg =45 w2 |
T MAKE Blog: DIY baby “é’MM!ﬁ hurcicone.
2(3 3 2| S{le showld ekect Hhis dudet [~
__:?E 'I?Uuqnmwaud‘ W i"'b T 1457q vp 5t 340 9| t{j’?
B |l e ee nh B 3\ Wiodewon: o Sassy |
©127¥0 Popn gE B G[3 | s rees) | S31NOd
N ek al35(s [r= T3 [MALE=ironY v
E NS SRR < fsuvlst
-"—-E Et?" féﬂ cggfg,_ugﬂ%g
|2 o E R e e
oy e C N§IS |S535 |2S9T 2 8|58 [1EFS
g 508 [B s sle
‘= i 2 s B
A-list % o i E._E‘ § QU'a_qga']g g = {3? ‘40‘1%3
{<31 %2 Blosodrome [T 7 [ONF Relesed![£ 1521 3 [0 0|8 5

C/Asm/Java Example

e Consider this program:
extern double sqrt(double x);

static double temp = 0.0;

double quadratic(double a, b, c) {
temp = b*b - 4.0*a*c;
if (temp >= 0.0) { goto has_roots; }
throw Invalid_Argument;
has_roots:
return (-b + sqrt(temp)) / (2.0*a);
3

H#O

extern double sqrt(double x);

Imports

static double temp = 0.0;

double quadratic(double a, b, ¢) {
temp = b*b - 4.0*a*c;
if (temp >= 0.0) { goto has_roots; }
throw Invalid_Argument;

has_roots:

return (-b + sqrt(temp)) / (2.0%a);

3 v
0x1000 ..
0x1004 push r1
0x1008 call loc,

o)

-

Import Table:
Replace address used at 0x1008
with final location of sqrt.

#10

Exports

extern double sqrt(double x);

0x0200 r1=b

static double temp = 0.0; 0x0204 ri=r1*r1

—— 0x0208 r2 =4.0

double quadratic(double a, b, c) { 0x020c r2 = ri * 5

temp = b*b - 4.0*a*c;

if (temp >= 0.0) { goto has_roots; }

throw Invalid_Argument;
has_roots:

return (-b + sqrt(temp)) / (2.0*a);

} © Export Table:

We provide quadratic. If anyone else wants its, they can figure out
where 0x0200 is finally relocated to. Call that new location R.
They then replace all of their references to loc, g With R.

H#11

(Internal) Relocations

extern double sqrt(double x);

static double temp = 0.0;

0x0600 ri =1ld loc

temp

OXO6O4 ng r1 loChas{roots}

double quadratic(double a, b,

temp = b*b - 4.0*a*c;

)i

if (temp >= 0.0) { goto has_roots; }

throw Invalid_Argument;
has_roots:

return (-b + sqrt(temp)) / (2.

3

D

O*@ Import Table:

Find final relocated address of
temp. Call that R, .. Find final

relocated address of 0x0600.
Call that R,,,,,- Replace address

referenced at R, ., With R

temp*

)

H#12

Where did
these numbers

Big Linking Example

Relocatable object files Executable object

A B Code \
Imports Imports -

M - X S B r1:= &M (2300)
\Y T Exports , call M (2300)
Exports : M

X
o Relocation Lo
Relocation . - | . 8L 11800
1 \ r2 ;=Y (3900)
r3 ;= X (3300)

Code L Code

rl = &M S r1 = &L (1000)
call M -t J r2 :=Y (400)
r3:=X

Data
X

Summary

* Your relocatable object file: main.o
- Exports main(), imports sqrt(), relocations ...

e Your math library: math.o
- Exports sqrt(), relocations
- Libraries can have imports: give an example!
- In Unix, math.o lives in libmath.a and -lmath on the

command line will find it

e The linker reads them in, picks a fixed final
relocation address for all code and data (1t pass)
and then goes through and modifies every
instruction with a symbol reference (2" pass)

#14

Q: Theatre (002 / 842)

e What is Jean Valjean's prisoner
number in Les Miserables?

Q: TV (051 / 842)

e This 1993 television series
typically begins with the phrase
“The Truth Is Out There".

Q: TV (089 / 842)

« Name any two of the five
"Satellite Of Love" characters
mentioned by name in the first-
season opening theme song to

Mystery Science Theatre:
3000.

Q: Movies (393 / 842)

e This phrase is Swahilian for
"there are no concerns here" and
was popularized by a 1994
Hamlet-like, mammal-centric
Disney film.

Something Missing?

e That was fine, but if two programs both use
math.o they will each get a copy of it

#19

Are We Done?

e That was fine, but if two programs both use
math.o they will each get a copy of it

- You can optimize this a bit by only linking and
copying in the parts of a library that you really
need (transitive closure of dependencies), but
that’s just a band-aid

 If we run both programs we will load both
copies of math.o into memory - wasting
memory (recall: they’re identical)!

 How could we go about sharing math.o?

#20

Dynamic Linking

 |dea: shared libraries (.so) or dynamically
linked libraries (.dll) use virtual memory so
that multiple programs can share the same
libraries in main memory

- Load the library into physical memory once

- Each program using it has a virtual address V that
points to it

- During dynamic linking, resolve references to
library symbols using that virtual address V

 What could go wrong? Code? Security?

H#21

Relocations In The DLL

e Since we are sharing the code to math.dll, we
cannot set its relocations separately for each client

o S0 if math.dll has a jump to loC, .., .pery that must be

resolved to the same location (e.g., 0x1234) for all
clients

- Because we can only patch the instruction once!

e So either:

- Every program using math.dll agrees to put it at virtual
address location 0x1000 (problems? Unix SVR3 ...)

- math.dll uses no relocations in its code segment (how?)

H22

Position-Independent Code

e Rather than “0x1000: jump to 0x1060”, use
“5ump to PC+0x60”

- This code can be relocated to any address
- This is called position-independent code (PIC)

e OK, that works for branches.

e But what about global variables?
- You tell me:

- Where should they live?
- Should they be shared?

#23

Data Linkage Table

e Store shared-library global variable addresses
starting at some virtual address B

- This table of addresses is the linkage table

e Compile the PIC assuming that register 5 (or
GP or ...) will hold the current value of B

- Problems?

 The entry point to a shared library (or the
caller) sets register GP to hold B

- Optimization: of the code and data live at fixed
offsets, can do e.g. GP = ((PC & OxFF00)+0x0100)

#24

Shared Library = Shared Data?

e Typically each client of a shared library X wants its
own copies of X’s globals

- Example: errno in libc

 When dynamically linking, you share the code
segment but get your own copy of the data segment

- And thus your own base address B to put in GP
- Optimization: use copy-on-write virtual memory
e Detail: use an extra level of indirection when the

PIC shared library code does callbacks to unshared

main() or references global variables from unshared
main()

- Allows the unshared non-PIC target address to be kept in
the data segment, which is private to each program

H#25

Not As Bad As It Looks

main:

*(sp+N) := gp

-- call foo:
t9 := *(gp+A)
jalr t9

gp := *(sp+N)

@

--load X:

t0 :=
@> t0 :=

--load ¥:
t0 :=
t0 :=

*(gp+C)
*t0

*(gp+B)
*t0

gp (main)

.
>
.I)i‘
‘ p——

Dynamically linked
shared library

D
__+-»|foo:
R gp := t9+(E-D)
f/ E
——load X: L S;:?éed code
N\ t0 := *(gp+F) (PIC)
3) to := xt0
v * * *
--load Y:
t0 := *x(gp+G)
t0 := *t0
gp (foo) —F—:- =
cl — — Linkage table
, > (one copy
i = per process)
/,/ .’/ —
/ I
\\ }" f.f'
\\ // '
’ I
e !
s N]
- - \\ |)
A Private data
Ty (one copy
Y. per process)

Fully Dynamic Linking

e So far this is all happening at load time when
you start the program
e Could we do it at run-time on demand?
- Decrease load times with many libraries
- Support dynamically-loaded code (e.g., Java)
- Big deal for scripting languages

» Use linkage table as before

- But instead loading the code for foo(), point to a
special stub procedure that loads foo() and all
variables from the library and then updates the
linkage table to point to the newly-loaded foo()

H#H27

Type Checking

e S0 we have separate compilation
 What’s wrong with this picture?

@

(* Main ¥)
extern string sqrt();
void main() {

string str = sqrt();
printf(“%s\n”,str);
return;

}

@

(* math *)
export double
sqrt(double a) {

return ...;

}

#28

Header or Interface Files

 When we type-check a piece of code we
generate an interface file

- Listing all exported methods and their types
- Listing all exported globals and their types

- The imp map and class map from PA4 suffice
perfectly: just throw away the expression
information

 When we compile a client of a library we
check the interface file for the types of
external symbols

- Can anything go wrong?

#29

Bait And Switch

* Write math.cl where sqrt() returns a string
 Generate interface file

e Give interface file to user

 Write new math.cl: sqrt() returns a double
o Compile source to relocatable objet file

» Give object file to user

e Profit!

#30

Checksums and Name Mangling

From the interface file, take all of the exported
symbols and all of their types and write them down
in a list, then hash (or checksum) it

Include hash value in relocatable object

Each library client also computes the hash value
based on the interface it was given

At link time, check to make sure the hash values are
the same

- C++ name mangling is the same idea, but done on a per
symbol basis (rather than a per-interface basis)

H#31

I'll Form The Head

« We wanted separate
compilation for program
pieces. So we must link
those compiled pieces
together later. We must
resolve references from
one object to another.

e We also wanted to
share libraries between
programs.

 We also wanted to
typecheck separately-
compiled modules.

Homework

e Midterm 2 - Tuesday
« WA8 Due Thursday April 17
e PA5 Due Wednesday April 23 (13 days)

#33

