CS164 - Left-recursion Elimination example (Weimer)

Consider the grammar:

A — Bla|CBD
B — C|b

C — Ajc

D — d

Some strings in the language of this grammar are: a, cbd, etc. Notice that this grammar is not immediately
left-recursive in that there is no single production X — Xa. However, it is left-recursive because there are valid
derivations of the form A —* Aa (and B —* Bf and C —* (C4). Let’s demonstrate one: A - B — C — A, so
A —* A

To warm up, let’s compute First() and Follow() sets for this grammar.

First(A) must contain First(B), {a} and First(CBD). First(B) must contain First(C') and {b}. First(C)
must contain First(A) and {c}. First(CBD) = First(C) as before. So First(A) = {a,b,c}. Similarly, First(B) =
First(C)U{b} = {a,b,c} and First(C) = First(A) J{c} = {a,b,c}. First(D) = {d}.

To compute Follow(A) we look for every occurrence of A on the right-hand side of a production. We find one in
C — A, but it that A is at the direct end of the production, we get that Follow(A) includes Follow(C). Now we
look for C on the right-hand side of a production and find it in A — C'BD. This time there is something to the right
of C, so we get that Follow(C) contains First(B). However, we also see a C on the right of B — C, so Follow(C)
contains Follow(B). Looking for B’s on the right we find A — CBD, so Follow(B) contains First(D) = {d}l. So
Follow(A) = Follow(B) = Follow(C) = {a,b,c,d}. Since D appears in the production A - CBD, we have that
Follow(D) includes Follow(A), so Follow(D) = {a,b,c,d} as well.

OK, messy grammar. Now let’s eliminate left-recursion. The first step is to make all left-recursion immediate by
doing some substitutions. For example, since we have A -+ B — C — A, we need to take the production A — B and
replace it with A — C and A — b. That gives us:

A = C|bla|CBD

But we’re not done, since we can have A - C — A. So now we need to substitute in for C' in that production.
Let’s do that once:

A — Alc|bla|CBD

To get here, we just removed the production A — C and replaced it by A — A and A — ¢ (we got those two right-
hand sides from the productions C — A and C' — ¢). Now we’re almost done, just one more possible non-immediate
left-recursion. Let’s substitute it away:

A — Ajc|bla|ABD|c¢BD

Huzzah! Now A has only immediate left-recursion. And actually, there is no other left-recursion left in the grammar
now, since we can no longer derive B —* B or C' —* C'§. So we can leave the B — and C' — and D — productions
alone and concentrate on eliminating left-recursion from A.

First, let’s group the productions into those that are left-recursive and those that are not:

A — A|ABD
| c¢|blaleBD

Now imagine that you actually have this grammar before you. You can expand things for a long time by just using
the first to productions: A - ABD — ABDBD — ABDBD, etc. But eventually you have to settle down and use

one of the other productions: A - ABD — ABDBD — ¢BDBD and then the chain stops. So we get the idea that
A can eventually produce something that starts with ¢, b, a or ¢BD and ends with a list of BD’s.

One other thing to note is that the production A — A itself is useless — it does not change the language of the
grammar and can be safely dropped. So here’s the revised left-recursive grammar:

A — ABD
| c¢|bla|eBD
Now let’s break that down into A and A". We reasoned above that an A goes to c|bla|cBD followed by a list of
BD’s. Let’s make the first bit the A and make the list of BD’s the A’.
A — cA |bA |aA' |cBDA
A" = ¢|BDA

We’re done. You can check and see that every production for A is of the form A — oA’ and that A" really does
define a (possibly empty) list of BD’s. Let’s do one more example, just for fun. Consider the grammar:

QED|q
e
NFA|d
DFA|n
f

a

2 0mo
L1141

1

This grammar is left recursive. In fact, it is immediately left-recursive in one place and non-immediately left-
recursive in two places. First, let’s substitute to get rid of the non-immediate left recursion. Consider the derivation:
D - NFA — DFAFA. Since it ends up being left recursive, we must substitute. Take the production D —+ NF A
and remove it. Then for every production N — «;, add a production D — a;F A. That gives us:

D — DFAFA|nFA|d

Notice again that in one fell swoop we have eliminated the whole chain of non-immediate left-recursion: we can no
longer derive N —* NS. So now our grammar looks like:

Q@ — QED|q

E — e

D — DFAFA|nFA|d
N — DFA|n

F - f

A = a

Now it’s time to eliminate the immediate left recursion. Let’s start with @ — QED|q. Once again, we can derive
strings like Q - QEDEDED, but eventually we have to stop and use Q — ¢q. Taking @ to be the ¢ bit and) to be
the list of ED’s, we get:

Q — @
Q — ¢|EDQ

Now let’s look at D — DFAF AnF Ald. We see that we can make a huge list of FAF A’ s using the first production
but we eventually have to start with nF' A or d. Let’s make D' the list and D the first bit.

D — nFAD |dD
D — ¢|FAFAD

OK, that’s all the left-recursion. The final grammar is:

7

qQ

e|EDQ’

e

nFAD' |dD’
e|FAFAD
DFA|n

f

a

R S R R I
R A S S A

Huzzah, we are done.

