
#1

LR ParsingLR Parsing

Bottom-Up ParsingBottom-Up Parsing

#2

Outline

• No Stopping The Parsing!
– LL(1) Construction

• Bottom-Up Parsing

• LR Parsing
– Shift and Reduce
– LR(1) Parsing Algorithm

• LR(1) Parsing Tables

#3

Software Engineering

• The most important consideration is that the
software do what it is supposed to.
– and be delivered on time and within budget ...

• You gather requirements
• And refine them into a specification
• And then write code to meet that specification

– Correctly meeting the spec is paramount!

#4

Lexer Commentary• Compilation
– naming of files, syntax errors, include .mll files

• non-standard compile: -5; no compile: -all, README not
plain text: -2

• Output
– should be: if error, report to stdout, else write

tokens to .cl-lex file
– reality: write to stderr, write error to file, write

tokens to stdout, ...

• Corner Cases and Correctness
– long strings, junk in strings, EOF in comment, ...
– Average: 34.6 / 50

• Make an appointment with me via email to demonstrate
that yours compiles and regain (some) points

#5

How To Survive CS 4610How To Survive CS 4610

• PA3 – Parser PA3 – Parser
– Testing, CRMTesting, CRM

• PA4 – Type CheckerPA4 – Type Checker
– CheckpointCheckpoint

• PA5 – InterpreterPA5 – Interpreter
• Written AssignmentsWritten Assignments
• MidtermsMidterms

– Cheat SheetCheat Sheet

• Final ExamFinal Exam

#6

In One Slide

• If the LL(1) table for a grammar G has
multiple entries, then G is not LL(1)!

• An LR(1) parser reads tokens from left to
right and constructs a bottom-up rightmost
derivation. LR(1) parsers shift terminals and
reduce the input by application productions in
reverse. LR(1) parsing is fast and easy, and
uses a finite automaton with a stack. LR(1)
works fine if the grammar is left-recursive, or
not left-factored.

#7

Constructing LL(1) Parsing Tables

• Here is how to construct a parsing table T for
context-free grammar G

• For each production A → α in G do:
– For each terminal b ∈ First(α) do

•T[A, b] = α

– If α ! * ε, for each b ∈ Follow(A) do

•T[A, b] = α

#8

LL(1) Table Construction Example
• Recall the grammar

 E → T X X → + E | ε

 T → (E) | int Y Y → * T | ε

• Where in the row of Y do we put Y ! * T ?
– In the columns of First(*T) = { * }

(E)int YT

εεε* T* T Y

εε+ EX

T XT XE

$)(+*int

#9

LL(1) Table Construction Example
• Recall the grammar

 E → T X X → + E | ε

 T → (E) | int Y Y → * T | ε

• Where in the row of Y we put Y ! ε ?
– In the columns of Follow(Y) = { $, +,) }

(E)int YT

εεε* T Y

εε+ EX

T XT XE

$)(+*int

#10

Avoid Multiple Definitions!

#11

Notes on LL(1) Parsing Tables

• If any entry is multiply defined then G is not
LL(1)
– If G is ambiguous
– If G is left recursive
– If G is not left-factored
– And in other cases as well

• Most programming language grammars are not
LL(1) (e.g., Java, Ruby, C++, OCaml, Cool, Perl, ...)

• There are tools that build LL(1) tables

#12

Top-Down Parsing Strategies

• Recursive Descent Parsing
– But backtracking is too annoying, etc.

• Predictive Parsing, aka. LL(k)
– Predict production from k tokens of lookahead
– Build LL(1) table
– Parsing using the table is fast and easy
– But many grammars are not LL(1) (or even LL(k))

• Next: a more powerful parsing strategy for
grammars that are not LL(1)

#13

Bottom-Up Parsing

• Bottom-up parsing is more general than top-
down parsing
– And just as efficient
– Builds on ideas in top-down parsing
– Preferred method in practice

• Also called LR parsing
– L means that tokens are read left to right
– R means that it constructs a rightmost derivation

#14

An Introductory Example

• LR parsers don’t need left-factored grammars
and can also handle left-recursive grammars

• Consider the following grammar:

E → E + (E) | int

– Why is this not LL(1)? (Guess before I show you!)

• Consider the string: int + (int) + (int)

#15

The Idea

• LR parsing reduces a string to the start
symbol by inverting productions:

str Ã input string of terminals

repeat
– Identify β in str such that A ! β is a production

 (i.e., str = α β γ)

– Replace β by A in str (i.e., str becomes α A γ)

until str = S

#16

A Bottom-up Parse in Detail (1)

int++int int()

int + (int) + (int)

()

#17

A Bottom-up Parse in Detail (2)

E

int++int ()

int + (int) + (int)
E + (int) + (int)

(int)

#18

A Bottom-up Parse in Detail (3)

E

int++int ()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)

(

E

int)

#19

A Bottom-up Parse in Detail (4)

E

int++int ()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int) E

(

E

int)

#20

A Bottom-up Parse in Detail (5)

E

int++int ()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int)
E + (E)

E

(

EE

int)

#21

A Bottom-up Parse in Detail (6)

E

E

int++int ()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int)
E + (E)
E

E

(

EEA rightmost derivation
in reverse

int)

#22

Important Fact

Important Fact #1 about bottom-up parsing:

An LR parser traces a rightmost derivation in
reverse.

#23

Where Do Reductions Happen

Important Fact #1 has an Interesting
Consequence:
– Let αβγ be a step of a bottom-up parse

– Assume the next reduction is by A→ β
– Then γ is a string of terminals!

Why? Because αAγ → αβγ is a step in a right-
most derivation

#24

Notation

• Idea: Split the string into two substrings
– Right substring (a string of terminals) is as yet

unexamined by parser
– Left substring has terminals and non-terminals

• The dividing point is marked by a I
– The I is not part of the string

• Initially, all input is new: Ix1x2 . . . xn

#25

Shift-Reduce Parsing

• Bottom-up parsing uses only two kinds of
actions:

Shift

Reduce

#26

Shift

Shift: Move I one place to the right
– Shifts a terminal to the left string

E + (I int)

⇒
E + (int I)

#27

Reduce

Reduce: Apply an inverse production at the
right end of the left string
– If T → E + (E) is a production, then

E + (E + (E) I)

⇒
E +(T I)

Reductions
can only

happen here!

Q: Movies (268 / 842)

•In the 1986 movie Stand By Me,
what do the kids journey to see?

Q: Books (769 / 842)
• Who wrote the 1978 book entitled What is

the Name of this Book?, obliquely referenced
here by critic Andrew Maizels:
– In fact, between SG&E and the Illuminatus!

trilogy, I was sufficiently intrigued that I went out
and bought a copy of Ayn Rand's What is the
Name of this Book?. No, sorry, Atlas Shrugged,
that's the one. Of course, I haven't actually read
it; every so often I pick it up, and say to myself:
"it's a lovely day today, I think I shall go for a
walk". This book has improved my life immensely.

Current Events
• Name the scientist to whom this September 11, 2009 formal

apology was directed by British Prime Minister Gordon Brown:

• "[name] was a quite brilliant mathematician, most famous for
his work on breaking the German Enigma codes. It is no
exaggeration to say that, without his outstanding
contribution, the history of the Second World War could well
have been very different. In 1952, he was convicted of gross
indecency - in effect, tried for being gay. His sentence [...]
was chemical castration by a series of injections of female
hormones. He took his own life just two years later. I am
pleased to have the chance to say how deeply sorry I and we
all are for what happened to him. [He] and the many
thousands of other gay men who were convicted as he was
convicted, under homophobic laws, were treated terribly.”

Q: Movies (287 / 842)

•This 1995 Pixar animated film
featured "Forrest Gump" and
"Tim The Tool-Man Taylor".
Initially jealous and resentful,
the two eventually work
together.

#32

Shift-Reduce Example

I int + (int) + (int)$ shift

int++int int()()

#33

Shift-Reduce Example

I int + (int) + (int)$ shift

int I + (int) + (int)$ red. E ! int

int++int ()(int)

#34

Shift-Reduce Example

I int + (int) + (int)$ shift

int I + (int) + (int)$ red. E ! int

E I + (int) + (int)$ shift 3 times

E

int++int ()(int)

#35

Shift-Reduce Example

I int + (int) + (int)$ shift

int I + (int) + (int)$ red. E ! int

E I + (int) + (int)$ shift 3 times

E + (int I) + (int)$ red. E ! int

E

int++int ()(int)

#36

Shift-Reduce Example

I int + (int) + (int)$ shift

int I + (int) + (int)$ red. E ! int

E I + (int) + (int)$ shift 3 times

E + (int I) + (int)$ red. E ! int

E + (E I) + (int)$ shift

E

int++int ()(

E

int)

#37

Shift-Reduce Example

I int + (int) + (int)$ shift

int I + (int) + (int)$ red. E ! int

E I + (int) + (int)$ shift 3 times

E + (int I) + (int)$ red. E ! int

E + (E I) + (int)$ shift

E + (E) I + (int)$ red. E ! E + (E)

E

int++int ()(

E

int)

#38

Shift-Reduce Example

I int + (int) + (int)$ shift

int I + (int) + (int)$ red. E ! int

E I + (int) + (int)$ shift 3 times

E + (int I) + (int)$ red. E ! int

E + (E I) + (int)$ shift

E + (E) I + (int)$ red. E ! E + (E)

E I + (int)$ shift 3 times

E

int++int ()

E

(

E

int)

#39

Shift-Reduce Example

I int + (int) + (int)$ shift

int I + (int) + (int)$ red. E ! int

E I + (int) + (int)$ shift 3 times

E + (int I) + (int)$ red. E ! int

E + (E I) + (int)$ shift

E + (E) I + (int)$ red. E ! E + (E)

E I + (int)$ shift 3 times

E + (int I)$ red. E ! int
E

int++int ()

E

(

E

int)

#40

Shift-Reduce Example

I int + (int) + (int)$ shift

int I + (int) + (int)$ red. E ! int

E I + (int) + (int)$ shift 3 times

E + (int I) + (int)$ red. E ! int

E + (E I) + (int)$ shift

E + (E) I + (int)$ red. E ! E + (E)

E I + (int)$ shift 3 times

E + (int I)$ red. E ! int

E + (E I)$ shift E

int++int ()

E

(

EE

int)

#41

Shift-Reduce Example

I int + (int) + (int)$ shift

int I + (int) + (int)$ red. E ! int

E I + (int) + (int)$ shift 3 times

E + (int I) + (int)$ red. E ! int

E + (E I) + (int)$ shift

E + (E) I + (int)$ red. E ! E + (E)

E I + (int)$ shift 3 times

E + (int I)$ red. E ! int

E + (E I)$ shift

E + (E) I $ red. E ! E + (E)

E

int++int ()

E

(

EE

int)

#42

Shift-Reduce Example

I int + (int) + (int)$ shift

int I + (int) + (int)$ red. E ! int

E I + (int) + (int)$ shift 3 times

E + (int I) + (int)$ red. E ! int

E + (E I) + (int)$ shift

E + (E) I + (int)$ red. E ! E + (E)

E I + (int)$ shift 3 times

E + (int I)$ red. E ! int

E + (E I)$ shift

E + (E) I $ red. E ! E + (E)

E I $ accept

E

E

int++int ()

E

(

EE

int)

#43

The Stack

• Left string can be implemented as a stack
– Top of the stack is the I

• Shift pushes a terminal on the stack

• Reduce pops 0 or more symbols from the
stack (production RHS) and pushes a non-
terminal on the stack (production LHS)

#44

Key Issue:
When to Shift or Reduce?

• Decide based on the left string (the stack)
• Idea: use a finite automaton (DFA) to decide when

to shift or reduce
– The DFA input is the stack (this is tricky!)
– DFA language consists of terminals and nonterminals

• We run the DFA on the stack and we examine the
resulting state X and the token tok after I
– If X has a transition labeled tok then shift

– If X is labeled with “A ! β on tok” then reduce

#45

LR(1) Parsing Example
int

E ! int
on $, +

accept
on $

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int) + (int)$

int

E

)

#46

LR(1) Parsing Example
int

E ! int
on $, +

accept
on $

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int) + (int)$ shift

int I + (int) + (int)$

int

E

)

#47

LR(1) Parsing Example
int

E ! int
on $, +

accept
on $

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int) + (int)$ shift

int I + (int) + (int)$ E ! int

E I + (int) + (int)$

int

E

)

#48

LR(1) Parsing Example
int

E ! int
on $, +

accept
on $

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int) + (int)$ shift

int I + (int) + (int)$ E ! int

E I + (int) + (int)$ shift(x3)

E + (int I) + (int)$

int

E

)

#49

LR(1) Parsing Example
int

E ! int
on $, +

accept
on $

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int) + (int)$ shift

int I + (int) + (int)$ E ! int

E I + (int) + (int)$ shift(x3)

E + (int I) + (int)$ E ! int

E + (E I) + (int)$

int

E

)

#50

LR(1) Parsing Example
int

E ! int
on $, +

accept
on $

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int) + (int)$ shift

int I + (int) + (int)$ E ! int

E I + (int) + (int)$ shift(x3)

E + (int I) + (int)$ E ! int

E + (E I) + (int)$ shift

E + (E) I + (int)$

int

E

)

#51

LR(1) Parsing Example
int

E ! int
on $, +

accept
on $

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int) + (int)$ shift

int I + (int) + (int)$ E ! int

E I + (int) + (int)$ shift(x3)

E + (int I) + (int)$ E ! int

E + (E I) + (int)$ shift

E + (E) I + (int)$ E ! E+(E)

E I + (int)$
int

E

)

#52

LR(1) Parsing Example
int

E ! int
on $, +

accept
on $

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int) + (int)$ shift

int I + (int) + (int)$ E ! int

E I + (int) + (int)$ shift(x3)

E + (int I) + (int)$ E ! int

E + (E I) + (int)$ shift

E + (E) I + (int)$ E ! E+(E)

E I + (int)$ shift (x3)

E + (int I)$ int

E

)

#53

LR(1) Parsing Example
int

E ! int
on $, +

accept
on $

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int) + (int)$ shift

int I + (int) + (int)$ E ! int

E I + (int) + (int)$ shift(x3)

E + (int I) + (int)$ E ! int

E + (E I) + (int)$ shift

E + (E) I + (int)$ E ! E+(E)

E I + (int)$ shift (x3)

E + (int I)$ E ! int

E + (E I)$

int

E

)

#54

LR(1) Parsing Example
int

E ! int
on $, +

accept
on $

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int) + (int)$ shift

int I + (int) + (int)$ E ! int

E I + (int) + (int)$ shift(x3)

E + (int I) + (int)$ E ! int

E + (E I) + (int)$ shift

E + (E) I + (int)$ E ! E+(E)

E I + (int)$ shift (x3)

E + (int I)$ E ! int

E + (E I)$ shift

E + (E) I $

int

E

)

#55

LR(1) Parsing Example
int

E ! int
on $, +

accept
on $

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int) + (int)$ shift

int I + (int) + (int)$ E ! int

E I + (int) + (int)$ shift(x3)

E + (int I) + (int)$ E ! int

E + (E I) + (int)$ shift

E + (E) I + (int)$ E ! E+(E)

E I + (int)$ shift (x3)

E + (int I)$ E ! int

E + (E I)$ shift

E + (E) I $ E ! E+(E)

E I $ accept

int

E

)

#56

Representing the DFA

• Parsers represent the DFA as a 2D table
– Recall table-driven lexical analysis

• Lines (rows) correspond to DFA states
• Columns correspond to terminals and non-

terminals
• Typically columns are split into:

– Those for terminals: action table
– Those for non-terminals: goto table

#57

Representing the DFA. Example

• The table for a fragment of our DFA:

…

rE! E+(E)rE! E+(E)
7

s7s86

rE! intrE! int
5

g6s54

s43

…

E$)(+int

E ! int
on), +

E ! E + (E)
on $, +

(

int
3 4

56

7

)

E

#58

The LR Parsing Algorithm

• After a shift or reduce action we rerun the
DFA on the entire stack
– This is wasteful, since most of the work is

repeated

• Optimization: remember for each stack
element to which state it brings the DFA

• LR parser maintains a stack
< sym1, state1 > . . . < symn, staten >

statek is the final state of the DFA on sym1 … symk

#59

The LR Parsing Algorithm

Let S = w$ be initial input
Let j = 0
Let DFA state 0 be the start state
Let stack = < dummy, 0 >
	repeat

match action[top_state(stack), S[j]] with
| shift k: push < S[j++], k >
| reduce X ! α:
 pop |α| pairs,
 push < X, Goto[top_state(stack), X] >

			 | accept: halt normally
| error: halt and report error

#60

LR Parsing Notes

• Can be used to parse more grammars than LL

• Most PL grammars are LR

• Can be described as a simple table

• There are tools for building the table
– Often called “yacc” or “bison”

• How is the table constructed? Next time!

#61

Son of LR(1) Parsing Example
int

E ! int
on $, +

accept
on $

E ! int
on), +

E ! E + (E)
on $, +

E ! E + (E)
on), +

(+
E

int

10

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

I int + (int + (int)) $

int

E

)

#62

Homework
• Tuesday: WA2 due
• Tuesday: Read 2.3.4-2.3.5, 2.4.2-2.4.3
• Wednesday Sep 30: PA3 due

– Parsing!
– When should I start? Early or late?

