

Type
 Checking

One-Slide Summary

- A type environment gives types for free variables. You typecheck a let-body with an environment that has been updated to contain the new let-variable.
- If an object of type X could be used when one of type Y is acceptable then we say X is a subtype of Y , also written $\mathrm{X} \leq \mathrm{Y}$.
- A type system is sound if $\forall E$. dynamic_type(E) \leq static_type(E)

Lecture Outline

- Typing Rules
- Typing Environments
- "Let" Rules
- Subtyping
- Wrong Rules

Example: 1 + 2

If we can prove it, then it's true!

Soundness

- A type system is sound if
- Whenever $\vdash \mathrm{e}: \mathrm{T}$
- Then e evaluates to a value of type T
- We only want sound rules
- But some sound rules are better than others:
(i is an integer)
\vdash i : Object

Type Checking Proofs

- Type checking proves facts e : T
- One type rule is used for each kind of expression
- In the type rule used for a node e
- The hypotheses are the proofs of types of e's subexpressions
- The conclusion is the proof of type of e itself

Rules for Constants

\vdash false: Bool [Bool]

-s: String [String]

(s is a string
constant)

Rule for New

new T produces an object of type T

- Ignore SELF_TYPE for now . . .

Two More Rules

$$
\frac{\vdash \mathrm{e}: \text { Bool }}{\vdash \text { not e }: \text { Sol }}[\mathrm{Not}]
$$

$$
\vdash \mathrm{e}_{1}: \text { Dol }
$$

$$
\vdash \mathrm{e}_{2}: \mathrm{T}
$$

\vdash while e_{1} loop e_{2} pool : Object

Typing: Example

- Typing for while not false loop $1+2$ * 3 pool

Typing: Example

- Typing for while not false loop $1+2$ * 3 pool

Typing: Example

- Typing for while not false loop $1+2$ * 3 pool

Typing: Example

- Typing for while not false loop $1+2$ * 3 pool

Typing: Example

- Typing for while not false loop $1+2$ * 3 pool

Typing: Example

- Typing for while not false loop $1+2$ * 3 pool

Typing: Example

- Typing for while not false loop $1+2$ * 3 pool

Typing: Example

- Typing for while not false loop $1+2$ * 3 pool

Typing: Example

- Typing for while not false loop $1+2$ * 3 pool

Typing: Example

- Typing for while not false loop $1+2$ * 3 pool

Typing: Example

- Typing for while not false loop $1+2$ * 3 pool

Typing: Example

- Typing for while not false loop $1+2$ * 3 pool

Typing: Example

- Typing for while not false loop $1+2$ * 3 pool

Typing Derivations

- The typing reasoning can be expressed as a tree:
$\frac{\vdash \text { false : Bool }}{\vdash \text { not false : Bool }} \frac{\vdash 1: \operatorname{lnt} \frac{\vdash 2: \operatorname{lnt} \vdash 3: \operatorname{lnt}}{\vdash 2^{*} 3: \operatorname{lnt}}}{\vdash+1+2 * 3: \operatorname{lnt}}$
\vdash while not false loop $1+2$ * 3 : Object
- The root of the tree is the whole expression
- Each node is an instance of a typing rule
- Leaves are the rules with no hypotheses

A Problem

- What is the type of a variable reference?

- The local structural rule does not carry enough information to give x a type. Fail.

A Solution: Put more information in the rules!

- A type environment gives types for free variables
- A type environment is a mapping from Object_Identifiers to Types
- A variable is free in an expression if:
- The expression contains an occurrence of the variable that refers to a declaration outside the expression
- in the expression " x ", the variable " x " is free
- in "let x : Int in $x+y$ " only " y " is free
- in " $\underline{x}+$ let $x:$ Int in $x+y$ " both " \underline{x} ", " y " are free

Type Environments

Let O be a function from Object_Identifiers to Types

The sentence $O \vdash \mathrm{e}: \mathrm{T}$
is read: Under the assumption that variables have the types given by 0 , it is provable that the expression e has the type T

Modified Rules

The type environment is added to the earlier rules:

$$
\begin{aligned}
& \overline{0 \vdash \mathrm{i}: \text { Int }} \\
& \\
& \left.\mathrm{O} \vdash \mathrm{e}_{1}: \text { Int }\right] \\
& \mathrm{O} \vdash \mathrm{i} \text { is an integer) } \\
& \mathrm{O} \vdash \mathrm{e}_{2}: \text { Int } \\
& \text { [Add }+\mathrm{e}_{2}: \text { Int }
\end{aligned}
$$

New Rules

And we can write new rules:

$$
0 \vdash x: T
$$

[Var] $(O(x)=T)$

Equivalently:

$$
\frac{O(x)=T}{O \vdash x: T}[\operatorname{Var}]
$$

Let

$O\left[T_{0} / x\right] \vdash e_{1}: T_{1}$
 $0 \vdash$ let $x: T_{0}$ in $e_{1}: T_{1}$
 [Let-No-Init]

$\mathrm{O}\left[\mathrm{T}_{0} / \mathrm{x}\right]$ means " O modified to map x to T_{0} and behaving as 0 on all other arguments":

$$
\begin{aligned}
& \mathrm{O}\left[\mathrm{~T}_{0} / \mathrm{x}\right](\mathrm{x})=\mathrm{T}_{0} \\
& \mathrm{O}\left[\mathrm{~T}_{0} / \mathrm{x}\right](\mathrm{y})=\mathrm{O}(\mathrm{y})
\end{aligned}
$$

(You can write $0\left[x / T_{0}\right]$ on tests/assignments.)

Let Example

- Consider the Cool expression let $\mathrm{x}: \mathrm{T}_{0}$ in (let $\mathrm{y}: \mathrm{T}_{1}$ in $\mathrm{E}_{\mathrm{x}, \mathrm{y}}$) $+\left(\right.$ let $\mathrm{x}: \mathrm{T}_{2}$ in $\mathrm{F}_{\mathrm{x}, \mathrm{y}}$) (where $\mathrm{E}_{x, y}$ and $\mathrm{F}_{x, y}$ are some Cool expression that contain occurrences of " x " and " y ")
- Scope
- of " y " is $\mathrm{E}_{\mathrm{x}, \mathrm{y}}$
- of outer " x " is $E_{x, y}$
- of inner " x " is $F_{x, y}$
- This is captured precisely in the typing rule.

Example of Typing "let"

AST

Example of Typing "let"

AST

Example of Typing "let"

AST
Type env.

Example of Typing "let"

Example of Typing "let"

AS
Type inv.
Types

$$
\underbrace{\text { O let } x: T_{0} \text { in }}_{O\left[T_{0} / x\right] \vdash}
$$

$$
\begin{aligned}
& O\left[T_{0} / x\right] \vdash \text { let } y: T_{1} \text { in } O\left[T_{0} / x\right] \vdash \text { let } x: T_{2} \text { in } \\
& \left(O\left[T_{0} / x\right]\right)\left[T_{1} / y\right] \vdash \quad E_{x, y}: \operatorname{int} \\
& \left(O\left[T_{0} / x\right]\right)\left[T_{2} / x\right] \vdash F_{x, y}
\end{aligned}
$$

$\left(O\left[T_{0} / x\right]\right)\left[T_{1} / y\right] \vdash x: T_{0}$

Example of Typing "let"

AS
Type inv.
Types

$$
\text { O let } x: T_{0} \text { in }
$$

$\left(O\left[T_{0} / x\right]\right)\left[T_{1} / y\right] \vdash x: T_{0}$

Example of Typing "let"

AS
Type inv.
Types

$$
\text { O let } x: T_{0} \text { in }
$$

$O\left[T_{0} / x\right] \vdash$ let $y: T_{1}$ in $:$ int $\quad O\left[T_{0} / x\right] \vdash$ let $x: T_{2}$ in
$\left(O\left[T_{0} / x\right]\right)\left[T_{1} / y\right] \vdash \quad E_{x, y} \quad: \operatorname{int}$
$\left(O\left[T_{0} / x\right]\right)\left[T_{2} / x\right] \vdash \quad \mathrm{F}_{x, y}: \operatorname{int}$

Example of Typing "let"

AS
Type inv.
Types

$$
\underbrace{\text { let } x: T_{0} \text { in }}_{O\left[T_{0} / x\right] \vdash}+
$$

$O\left[T_{0} / x\right] \vdash$ let $y: T_{1}$ in $\quad:$ int $\quad O\left[T_{0} / x\right] \vdash$ let $x: T_{2}$ in $\quad:$ int
$1 \backslash$
$\left(O\left[T_{0} / x\right]\right)\left[T_{1} / y\right] \vdash \quad E_{x, y} \quad: \operatorname{int}$
$\left(O\left[\mathrm{~T}_{0} / x\right]\right)\left[\mathrm{T}_{2} / x\right] \vdash \quad \mathrm{F}_{x, y}: \operatorname{int}$

Example of Typing "let"

AS

Types
$O\left[T_{0} / x\right] \vdash \quad+\quad$ int
$O\left[T_{0} / x\right] \vdash$ let $y: T_{1}$ in $:$ int $\quad O\left[T_{0} / x\right] \vdash$ let $x: T_{2}$ in $\quad:$ int
$1>$
$\left(O\left[T_{0} / x\right]\right)\left[T_{1} / y\right] \vdash \quad E_{x, y} \quad: \operatorname{int}$
$\left(O\left[T_{0} / x\right]\right)\left[T_{2} / x\right] \vdash \quad F_{x, y}: \operatorname{int}$

Example of Typing "let"

MST
Type inv.
Types
O \vdash let $x: T_{0}$ in $:$ int

$O\left[T_{0} / x\right] \vdash \quad+\quad$ int
$O\left[T_{0} / x\right] \vdash$ let $y: T_{1}$ in $:$ int $\quad O\left[T_{0} / x\right] \vdash$ let $x: T_{2}$ in $\quad:$ int
int
$\left(O\left[T_{0} / x\right]\right)\left[T_{2} / x\right] \vdash \quad F_{x, y}: \operatorname{int}$

Notes

- The type environment gives types to the free identifiers in the current scope
- The type environment is passed down the AST from the root towards the leaves
- Types are computed up the AST from the leaves towards the root

Q: Movies (362 / 842)

- In this 1992 comedy Dana Carvey and Mike Myers reprise a Saturday Night Live skit, sing Bohemian Rhapsody and say of a guitar: "Oh yes, it will be mine."

Q: General (455 / 842)

- This numerical technique for finding solutions to boundary-value problems was initially developed for use in structural analysis in the 1940's. The subject is represented by a model consisting of a number of linked simplified representations of discrete regions. It is often used to determine stress and displacement in mechanical systems.

Q: Movies (377 / 842)

- Identify the subject or the speaker in 2 of the following 3 Star Wars quotes.
- "Aren't you a little short to be a stormtrooper?"
- "I felt a great disturbance in the Force ... as if millions of voices suddenly cried out in terror and were suddenly silenced."
- "I recognized your foul stench when I was brought on board."

Let with Initialization

Now consider let with initialization:

$$
\left.\begin{array}{c}
\mathrm{O} \vdash \mathrm{e}_{0}: \mathrm{T}_{0} \\
\mathrm{O}\left[\mathrm{~T}_{0} / \mathrm{x}\right] \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
\mathrm{O} \vdash \text { let } \mathrm{x}: \mathrm{T}_{0} \leftarrow \mathrm{e}_{0} \text { in } \mathrm{e}_{1}: \mathrm{T}_{1}
\end{array} \text { [Let-Init }\right]
$$

This rule is weak. Why?

Let with Initialization

- Consider the example:

$$
\begin{aligned}
& \text { class } C \text { inherits } P\{\ldots\} \\
& \text { l... } \\
& \text { let } x: P \leftarrow \text { new } C \text { in ... }
\end{aligned}
$$

- The previous let rule does not allow this code
- We say that the rule is too weak or incomplete

Subtyping

- Define a relation $X \leq Y$ on classes to say that:
- An object of type X could be used when one of type Y is acceptable, or equivalently
- X conforms with Y
- In Cool this means that X is a subclass of Y
- Define a relation \leq on classes
$X \leq X$
$X \leq Y$ if X inherits from Y
$X \leq Z$ if $X \leq Y$ and $Y \leq Z$

Let With Initialization (Better)

$$
\begin{gathered}
\mathrm{O} \vdash \mathrm{e}_{0}: \mathrm{T} \\
\mathrm{~T} \leq \mathrm{T}_{0} \\
\mathrm{O}\left[\mathrm{~T}_{0} / \mathrm{x}\right] \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \quad \text { [Let-Init] }
\end{gathered}
$$

$0 \vdash$ let $x: T_{0} \leftarrow e_{0}$ in $e_{1}: T_{1}$

- Both rules for let are sound
- But more programs type check with this new rule (it is more complete)

Type System Tug-of-War

- There is a tension between
- Flexible rules that do not constrain programming
- Restrictive rules that ensure safety of execution

> Expressiveness of Static Type Systems

- A static type system enables a compiler to detect many common programming errors
- The cost is that some correct programs are disallowed
- Some argue for dynamic type checking instead
- Others argue for more expressive static type checking
- But more expressive type systems are also more complex

Dynamic And Static Types

- The dynamic type of an object is the class C that is used in the "new C" expression that creates the object
- A run-time notion
- Even languages that are not statically typed have the notion of dynamic type
- The static type of an expression is a notation that captures all possible dynamic types the expression could take
- A compile-time notion

Dynamic and Static Types. (Cont.)

- In early type systems the set of static types correspond directly with the dynamic types
- Soundness theorem: for all expressions E dynamic_type(E) = static_type(E)
(in all executions, E evaluates to values of the type inferred by the compiler)
- This gets more complicated in advanced type systems (e.g., Java, Cool)

Dynamic and Static Types in COOL

- A variable of static type A can hold values of static type B, if $B \leq A$

Dynamic and Static Types

Soundness theorem for the Cool type system:

\forall E. dynamic_type $(E) \leq$ static_type(E)
Why is this Ok?

- For E, compiler uses static_type(E)
- All operations that can be used on an object of type C can also be used on an object of type C' \leq C
- Such as fetching the value of an attribute
- Or invoking a method on the object
- Subclasses can only add attributes or methods
- Methods can be redefined but with the same types!

Subtyping Example

- Consider the following Cool class definitions

> Class A $\{\mathrm{a}(): \operatorname{int}\{0\} ;\}$
> Class B inherits A $\{b(): \operatorname{int}\{1\} ;\}$

- An instance of B has methods "a" and "b"
- An instance of A has method "a"
- A type error occurs if we try to invoke method "b" on an instance of A

Example of Wrong Let Rule (1)

- Now consider a hypothetical wrong let rule:

$$
\frac{0 \vdash e_{0}: T \quad T \leq T_{0} \quad 0 \vdash e_{1}: T_{1}}{0 \vdash \text { let } x: T_{0} \leftarrow e_{0} \text { in } e_{1}: T_{1}}
$$

- How is it different from the correct rule?

Example of Wrong Let Rule (1)

- Now consider a hypothetical wrong let rule:

$$
\frac{0 \vdash e_{0}: T \quad T \leq T_{0} \quad 0 \vdash e_{1}: T_{1}}{0 \vdash \text { let } x: T_{0} \leftarrow e_{0} \text { in } e_{1}: T_{1}}
$$

- How is it different from the correct rule?
- The following good program does not typecheck

$$
\text { let } x: \text { Int } \leftarrow 0 \text { in } x+1
$$

-Why?

Example of Wrong Let Rule (2)

- Now consider a hypothetical wrong let rule:

$$
\frac{O \vdash e_{0}: T \quad T_{0} \leq T \quad O\left[T_{0} / x\right] \vdash e_{1}: T_{1}}{0 \vdash \text { let } x: T_{0} \leftarrow e_{0} \text { in } e_{1}: T_{1}}
$$

- How is it different from the correct rule?

Example of Wrong Let Rule (2)

- Now consider a hypothetical wrong let rule:

$$
\frac{O \vdash e_{0}: T \quad T_{0} \leq T \quad O\left[T_{0} / x\right] \vdash e_{1}: T_{1}}{0 \vdash \text { let } x: T_{0} \leftarrow e_{0} \text { in } e_{1}: T_{1}}
$$

- How is it different from the correct rule?
- The following bad program is well typed

$$
\text { let } x: B \leftarrow \text { new } A \text { in } x . b()
$$

-Why is this program bad?

Example of Wrong Let Rule (3)

- Now consider a hypothetical wrong let rule:
$O \vdash e_{0}: T \quad T \leq T_{0} \quad O[T / x] \vdash e_{1}$
$O \vdash$ let $x: T_{0} \leftarrow e_{0}$ in $e_{1}: T_{1}$
- How is it different from the correct rule?

Example of Wrong Let Rule (3)

- Now consider a hypothetical wrong let rule:

$$
\frac{O \vdash e_{0}: T \quad T \leq T_{0} O[T / x] \vdash e_{1}: T_{1}}{O \vdash \text { let } x: T_{0} \leftarrow e_{0} \text { in } e_{1}: T_{1}}
$$

- How is it different from the correct rule?
- The following good program is not well typed let $x: A \leftarrow$ new B in $\{\ldots x \leftarrow$ new $A ; x . a() ;\}$
- Why is this program not well typed?

Typing Rule Notation

- The typing rules use very concise notation
- They are very carefully constructed
- Virtually any change in a rule either:
- Makes the type system unsound
(bad programs are accepted as well typed)
- Or, makes the type system less usable (incomplete) (good programs are rejected)
- But some good programs will be rejected anyway
- The notion of a good program is undecidable

Assignment

More uses of subtyping:

$$
\begin{gathered}
\mathrm{O}(\mathrm{id})=\mathrm{T}_{0} \\
\mathrm{O} \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
\left.\mathrm{~T}_{1} \leq \mathrm{T}_{0} \quad \text { [Assign }\right] \\
\mathrm{O} \vdash \mathrm{id} \leftarrow \mathrm{e}_{1}: \mathrm{T}_{1}
\end{gathered}
$$

Initialized Attributes

- Let $\mathrm{O}_{\mathrm{C}}(\mathrm{x})=\mathrm{T}$ for all attributes $\mathrm{x}: \mathrm{T}$ in class C - O_{c} represents the class-wide scope
- Attribute initialization is similar to let, except for the scope of names

$$
\begin{gathered}
\mathrm{O}_{\mathrm{C}}(\mathrm{id})=\mathrm{T}_{0} \\
\mathrm{O}_{\mathrm{C}} \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
\mathrm{~T}_{1} \leq \mathrm{T}_{0}
\end{gathered}
$$

$$
\mathrm{O}_{\mathrm{c}} \vdash \mathrm{id}: \mathrm{T}_{0} \leftarrow \mathrm{e}_{1} ; \quad[A t \dagger r-\text { Init }]
$$

If-Then-Else

- Consider:
if e_{0} then e_{1} else $e_{2} f i$
- The result can be either e_{1} or e_{2}
- The dynamic type is either e_{1} 's or e_{2} 's type
- The best we can do statically is the smallest supertype larger than the type of e_{1} and e_{2}

If-Then-Else example

- Consider the class hierarchy

- ... and the expression
if ... then new A else new B fi
- Its type should allow for the dynamic type to be both A or B
- Smallest supertype is P

Least Upper Bounds

- Define: lub (X, Y) to be the least upper bound of X and Y. lub (X, Y) is Z if
- $X \leq Z \wedge Y \leq Z$
Z is an upper bound
$-\mathrm{X} \leq \mathrm{Z}^{\prime} \wedge \mathrm{Y} \leq \mathrm{Z}^{\prime} \Rightarrow \mathrm{Z} \leq \mathrm{Z}^{\prime}$
Z is least among upper bounds
- In Cool, the least upper bound of two types is their least common ancestor in the inheritance tree

If-Then-Else Revisited

$$
\begin{gathered}
\mathrm{O} \vdash \mathrm{e}_{0}: \text { Bool } \\
\mathrm{O} \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
\mathrm{O} \vdash \mathrm{e}_{2}: \mathrm{T}_{2}
\end{gathered}
$$

$0 \vdash$ if e_{0} then e_{1} else $e_{2} f i: \operatorname{lub}\left(T_{1}, T_{2}\right)$

> [If-Then-Else]

Case

- The rule for case expressions takes a lub over all branches

$$
\begin{gathered}
0 \vdash \mathrm{e}_{0}: \mathrm{T}_{0} \\
\mathrm{O}\left[\mathrm{~T}_{1} / \mathrm{x}_{1}\right] \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \quad \text { [Case] } \\
\ldots \\
\mathrm{O}\left[\mathrm{~T}_{\mathrm{n}} / \mathrm{x}_{\mathrm{n}}\right] \vdash \mathrm{e}_{\mathrm{n}}: \mathrm{T}_{\mathrm{n}}^{\prime}
\end{gathered}
$$

$0 \vdash$ case e_{0} of $X_{1}: T_{1} \Rightarrow e_{1}$; $\ldots ; \mathrm{x}_{\mathrm{n}}: \mathrm{T}_{\mathrm{n}} \Rightarrow \mathrm{e}_{\mathrm{n}} ; \operatorname{esac}: \operatorname{lub}\left(\mathrm{T}_{1}{ }^{\prime}, \ldots, \mathrm{T}_{\mathrm{n}}{ }^{\prime}\right)$

Next Time

- Type checking method dispatch
- Type checking with SELF_TYPE in COOL

Homework

- Today: WA3 due
- Get started on PA4
- Checkpoint due Oct 14
- Before Next Class: Read Chapter 7.2

