
#1

Linking, Loading, LibrariesLinking, Loading, Libraries

#2

One-Slide Summary
• We want separate compilation for

program pieces. So we must link those
compiled pieces together later. We
must resolve references from one
object to another.

• We also want to share libraries
between programs.

• We also want to typecheck separately-
compiled modules.

#3

Course Goals

• At the end of this course, you will be
acquainted with the fundamental concepts in
the design and implementation of high-level
programming languages. In particular, you will
understand the theory and practice of lexing,
parsing, semantic analysis, and code
generation. You will also have gained practical
experience programming in multiple different
languages.

#4

Lecture Outline

• Object Files

• Linking

• Relocations

• Shared Libraries

• Type Checking

#5

Separate Compilation

• Compile different parts of your program at
different times

• And then link them together later
• This is a big win

– Faster compile times on small changes
– Software Engineering (modularity)
– Independently develop different parts (libraries)

• All major languages and all big projects use
this

#6

Pieces

• A compiled program fragment is called an
object file

• An object file contains
– Code (for methods, etc.)
– Variables (e.g., values for global variables)
– Debugging information
– References to code and data that appear

elsewhere (e.g., printf)
– Tables for organizing the above

• Object files are implicit for interpreters

#7

Two Big Tasks

• The operating system uses virtual memory so
every program starts at a standard [virtual]
address (e.g., address 0)

• Linking involves two tasks
– Relocating the code and data from each object

file to a particular fixed virtual address
– Resolving references (e.g., to variable locations

or jump-target labels) so that they point to
concrete and correct virtual addresses in the New
World Order

#8

Relocatable Object Files
• For this to work, a relocatable object file comes

equipped with three tables
– Import Table: points to places in the code where an

external symbol (variable or method) is references
• List of (external_symbol_name, where_in_code) pairs
• One external_symbol_name may come up many times!

– Export Table: points to symbol definitions in the code
that are exported for use by others

• List of (internal_symbol_name, where_in_code) pairs

– Relocation Table: points to places in the code where
local symbols are referenced

• List of (internal_symbol_name, where_in_code) pairs
• One internal_symbol may come up many times!

#9

So Many Tables

• Tables must contain
quite a bit of
information

• Tables must also be
easy to understand

• Let's see some
examples ...

#10

C/Asm Example
• Consider this program:

extern double sqrt(double x);

static double temp = 0.0;

double quadratic(double a, b, c) {
 temp = b*b – 4.0*a*c;
 if (temp >= 0.0) { goto has_roots; }
 throw Invalid_Argument;
has_roots:
 return (–b + sqrt(temp)) / (2.0*a);
}

#11

Imports
extern double sqrt(double x);

static double temp = 0.0;

double quadratic(double a, b, c) {
 temp = b*b – 4.0*a*c;
 if (temp >= 0.0) { goto has_roots; }
 throw Invalid_Argument;
has_roots:
 return (–b + sqrt(temp)) / (2.0*a);
}

0x1000 …
0x1004 push r1
0x1008 call locsqrt

Import Table:
Replace address used at 0x1008
with final location of sqrt.

#12

Exports
extern double sqrt(double x);

static double temp = 0.0;

double quadratic(double a, b, c) {
 temp = b*b – 4.0*a*c;
 if (temp >= 0.0) { goto has_roots; }
 throw Invalid_Argument;
has_roots:
 return (–b + sqrt(temp)) / (2.0*a);
}

Export Table:
We provide quadratic. If anyone else wants its, they can figure out
where 0x0200 is finally relocated to. Call that new location R.
They then replace all of their references to locquadratic with R.

0x0200 r1 = b
0x0204 r1 = r1 * r1
0x0208 r2 = 4.0
0x020c r2 = r2 * a

#13

(Internal) Relocations
extern double sqrt(double x);

static double temp = 0.0;

double quadratic(double a, b, c) {
 temp = b*b – 4.0*a*c;
 if (temp >= 0.0) { goto has_roots; }
 throw Invalid_Argument;
has_roots:
 return (–b + sqrt(temp)) / (2.0*a);
}

0x0600 r1 = ld loctemp

0x0604 jgz r1 lochas{roots}

Relocation Table:
Find final relocated address of
temp. Call that Rtemp. Find final
relocated address of 0x0600.
Call that R0x0600. Replace address
referenced at R0x0600 with Rtemp.

#14

Big Linking Example
get out some paper!

?
?

?
?
?

#15

Big Linking Example Answers

#16

Summary

• Your relocatable object file: main.o
– Exports main(), imports sqrt(), relocations …

• Your math library: math.o
– Exports sqrt(), relocations
– Libraries can have imports: give an example!
– In Unix, math.o lives in libmath.a and –lmath on the

command line will find it

• The linker reads them in, picks a fixed final
relocation address for all code and data (1st pass)
and then goes through and modifies every
instruction with a symbol reference (2nd pass)

Q: Theatre (002 / 842)

•What is Jean Valjean's prisoner
number in Les Miserables?

Q: TV (051 / 842)

•This 1993 television series
typically begins with the phrase
"The Truth Is Out There".

Q: TV (089 / 842)

•Name any two of the five
"Satellite Of Love" characters
mentioned by name in the first-
season opening theme song to
Mystery Science Theatre:
3000.

Q: Movies (393 / 842)

•This phrase is Swahilian for
"there are no concerns here" and
was popularized by a 1994
Hamlet-like, mammal-centric
Disney film.

#21

Something Missing?

• That was fine, but if two programs both use
math.o they will each get a copy of it

#22

Are We Done?

• That was fine, but if two programs both use
math.o they will each get a copy of it
– You can optimize this a bit by only linking and

copying in the parts of a library that you really
need (transitive closure of dependencies), but
that’s just a band-aid

• If we run both programs we will load both
copies of math.o into memory – wasting
memory (recall: they’re identical)!

• How could we go about sharing math.o?

#23

Dynamic Linking

• Idea: shared libraries (.so) or dynamically
linked libraries (.dll) use virtual memory so
that multiple programs can share the same
libraries in main memory
– Load the library into physical memory once
– Each program using it has a virtual address V that

points to it
– During dynamic linking, resolve references to

library symbols using that virtual address V

• What could go wrong? Code? Security?

#24

Relocations In The DLL
• Since we are sharing the code to math.dll, we

cannot set its relocations separately for each client

• So if math.dll has a jump to locmath_label, that must be
resolved to the same location (e.g., 0x1234) for all
clients
– Because we can only patch the instruction once!
– And every thread/program shares that patched code!

• So either:
– Every program using math.dll agrees to put it at virtual

address location 0x1000 (problems? Unix SVR3 …)
– math.dll uses no relocations in its code segment (how?)

#25

Position-Independent Code

• Rather than “0x1000: jump to 0x1060”, use
“jump to PC+0x60”
– This code can be relocated to any address
– This is called position-independent code (PIC)

• OK, that works for branches.
• But what about global variables?

– You tell me:
– Where should they live?
– Should they be shared?

#26

Data Linkage Table

• Store shared-library global variable addresses
starting at some virtual address B
– This table of addresses is the linkage table

• Compile the PIC assuming that register 5 (or
GP or …) will hold the current value of B
– Problems?

• The entry point to a shared library (or the
caller) sets register GP to hold B
– Optimization: if the code and data live at fixed

offsets, can do e.g. GP = ((PC & 0xFF00)+0x0100)

#27

Shared Library = Shared Data?
• Typically each client of a shared library X wants its

own copies of X’s globals
– Example: errno variable in libc (cf. Exceptions lecture)

• When dynamically linking, you share the code
segment but get your own copy of the data segment
– And thus your own base address B to put in GP
– Optimization: use copy-on-write virtual memory

• Detail: use an extra level of indirection when the
PIC shared library code does callbacks to unshared
main() or references global variables from unshared
main()
– Allows the unshared non-PIC target address to be kept in

the data segment, which is private to each program

#28

Not As Bad As It Looks

1

2
3

4
5

#29

Fully Dynamic Linking
• So far this is all happening at load time when

you start the program
• Could we do it at run-time on demand?

– Decrease load times with many libraries
– Support dynamically-loaded code (e.g., Java)
– Important for scripting languages

• Use linkage table as before
– But instead loading the code for foo(), point to a

special stub procedure that loads foo() and all
variables from the library and then updates the
linkage table to point to the newly-loaded foo()

#30

Type Checking

• So we have separate compilation
• What’s wrong with this picture?

(* Main *)
extern string sqrt();
void main() {
 string str = sqrt();
 printf(“%s\n”,str);
 return;
}

(* math *)
export double
sqrt(double a) {
 return …;
}

#31

Header or Interface Files
• When we type-check a piece of code we

generate an interface file
– Listing all exported methods and their types
– Listing all exported globals and their types
– The imp map and class map from PA4 suffice

perfectly: just throw away the expression
information

• When we compile a client of a library we
check the interface file for the types of
external symbols
– Can anything go wrong?

#32

Bait And Switch

• Write math.cl where sqrt() returns a string
• Generate interface file
• Give interface file to user
• Write new math.cl: sqrt() returns a double
• Compile source to relocatable objet file
• Give object file to user
• …
• Profit!

#33

Checksums and Name Mangling

• From the interface file, take all of the exported
symbols and all of their types and write them down
in a list, then hash (or checksum) it

• Include hash value in relocatable object
• Each library client also computes the hash value

based on the interface it was given
• At link time, check to make sure the hash values are

the same
– C++ name mangling is the same idea, but done on a per

symbol basis (rather than a per-interface basis)

#34

I'll Form The Head

• We wanted separate
compilation for program
pieces. So we must link
those compiled pieces
together later. We must
resolve references from
one object to another.

• We also wanted to
share libraries between
programs.

• We also wanted to
typecheck separately-
compiled modules.

#35

Homework
• Midterm 2 – Tuesday Nov 24
• WA8 Due Thursday Nov 19
• PA5 Checkpoint Due Thursday Nov 19
• PA5 Due Wednesday Dec 02

