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Gone in Sixty Seconds

• Denotation semantics is a formal way of 
assigning meanings to programs. In it, the 
meaning of a program is a mathematical 
object. 

• Denotation semantics is compositional: 
the meaning of an expression depends on 
the meanings of subexpressions. 

• Denotational semantics uses ? 
(“bottom”) to mean non-termination.

• DS uses fixed points and domains to 
handle while.



  

Recall: 
Induction on Derivations Summary

• If you must prove ∀x ∈ A. P(x) ⇒ Q(x)
– A is some structure (e.g., AST), P(x) is some property
– we pick arbitrary x ∈ A and D :: P(x)
– we could do induction on both facts

• x ∈ A         leads to induction on the structure of x
• D :: P(x) leads to induction on the structure of D

– Generally, the induction on the structure of the 
derivation is more powerful and a safer bet

• Sometimes there are many choices for induction
– choosing the right one is a trial-and-error process
– a bit of practice can help a lot



  

Overall Summary of 
Operational Semantics

• Precise specification of dynamic semantics
– order of evaluation (or that it doesn’t matter)
– error conditions (sometimes implicitly, by rule 

applicability; “no applicable rule” = “get stuck”)
• Simple and abstract (vs. implementations)

– no low-level details such as stack and memory 
management, data layout, etc.

• Often not compositional (see while)
• Basis for many proofs about a language

– Especially when combined with type systems!
• Basis for much reasoning about programs
• Point of reference for other semantics



  

Dueling Semantics

• Operational semantics is
– simple
– of many flavors (natural, small-step, more or less 

abstract)
– not compositional
– commonly used in the real (modern research) world

• Denotational semantics is
– mathematical (the meaning of a syntactic expression is 

a mathematical object)
– compositional

• Denotational semantics is also called: fixed-point 
semantics, mathematical semantics, Scott-
Strachey semantics



  

Typical Student Reaction To 
Denotation Semantics



  

Denotational Semantics
Learning Goals

• DS is compositional (!)
• When should I use DS? 
• In DS, meaning is a “math object”
• DS uses ? (“bottom”) to mean non-

termination
• DS uses fixed points and domains to 

handle while
– This is the tricky bit



  

DS In The Real World

• ADA was formally specified with it
• Handy when you want to study non-trivial 

models of computation
– e.g., “actor event diagram scenarios”, 

process calculi

• Nice when you want to compare a 
program in Language 1 to a program in 
Language 2



  

Foreshadowing

• Denotational semantics assigns meanings to 
programs

• The meaning will be a mathematical object
– A number a 2 Z
– A boolean b 2 {true, false}

– A function c : Σ ! (Σ [ {non-terminating})

• The meaning will be determined compositionally
– Denotation of a command is based on the denotations of 

its immediate sub-commands (= more than merely 
syntax-directed)



  

New Notation

• ‘Cause, why not?
« ¬ = “means” or “denotes”

• Example:
«foo¬ = “denotation of foo”
«3 < 5¬ = true
«3 + 5¬ = 8

• Sometimes we write A«¢¬ for arith,  B«¢¬ 
for boolean, C«¢¬ for command



  

Rough Idea of 
Denotational Semantics

• The meaning of an arithmetic expression e in 
state σ is a number n

• So, we try to define A«e¬ as a function that 
maps the current state to an integer:

                    A«¢¬ : Aexp ! (Σ ! Z) 
• The meaning of boolean expressions is defined 

in a similar way
                    B«¢¬ : Bexp ! (Σ ! {true, false})
• All of these denotational function are total

– Defined for all syntactic elements
– For other languages it might be convenient to define 

the semantics only for well-typed elements



  

Denotational Semantics of 
Arithmetic Expressions

• We inductively define a function
A«¢¬ : Aexp ! (Σ ! Z)

A«n¬ σ = the integer denoted by literal n
A«x¬ σ = σ(x)
A«e1+e2¬ σ = A«e1¬σ + A«e2¬σ
A«e1-e2¬ σ = A«e1¬σ - A«e2¬σ
A«e1*e2¬ σ = A«e1¬σ * A«e2¬σ

• This is a total function (= defined for all 
expressions)



  

Denotational Semantics of 
Boolean Expressions

• We inductively define a function

              B«¢¬ : Bexp ! (Σ ! {true, false})

B«true¬σ = true

B«false¬σ = false

B«b1 Æ b2¬σ = B«b1¬ σ Æ B«b2¬ σ

B«e1 = e2¬σ = if A«e1¬ σ = A«e2¬ σ 

                              then true else false



  

Seems Easy So Far



  

Denotational Semantics for 
Commands

• Running a command c starting from a 
state σ yields another state σ’

• So, we try to define C«c¬ as a function 
that maps σ to σ’

C«¢¬ : Comm ! (Σ ! Σ)

• Will this work? Bueller? 



  

? = Non-Termination

• We introduce the special element ? 
(“bottom”) to denote a special resulting 
state that stands for non-termination

• For any set X, we write 
X? to denote X [ {?}

Convention: 
   whenever f 2 X ! X? we extend f to       

X? ! X? so that f(?) = ? 
– This is called strictness



  

Denotational Semantics of 
Commands

• We try:
C«¢¬ : Comm ! (Σ ! Σ?)

C«skip¬ σ = σ
C«x := e¬ σ = σ[x := A«e¬ σ] 
C«c1; c2¬ σ = C«c2¬ (C«c1¬ σ)

C«if b then c1 else c2¬ σ = 

if B«b¬σ then C«c1¬σ else C«c2¬σ
C«while b do c¬ σ = ? (later)



  

Examples

• C«x:=2; x:=1¬ σ = 
σ[x := 1]

• C«if true then x:=2; x:=1 else …¬ σ =
σ[x := 1]

• The semantics does not care about 
intermediate states (cf. “big-step”)

• We haven’t used ? yet



Q:  Theatre  (012 / 842) 

•Name the author or the 
1953 play about 
McCarthyism that features 
John Proctor's famous cry 
of "More weight!" .  



Q:  Games  (557 / 842) 

•Name the company that 
manufactures Barbie (a $1.9 
billion dollar a year industry 
in 2005 with two dolls being 
bought every second).  



English Prose
• 43. I think its amusing fact that most people think 

that my earcuffs are just some kind of excentrick 
decoration.

• 113. They might have been the two youngest 
advisors, (both 17), but they were her most trust.

• 118. He sunk so lo as to go after some blonde bimbo 
names Tracie.

• 389. Her book was really a one of a kind item, she 
could not make one the same. As she passed a more 
freighting prospect came to her, St. John, had in his 
possession, her very thoughts, desires, and loves, or 
recorded for him in one book, John had the 
equivalent of her sole. 



  

Denotational Semantics of WHILE

• Notation: W = C«while b do c¬
• Idea: rely on the equivalence (see end of notes)

while b do c ≈ if b then c; while b do c else skip
• Try

W(σ) = if B«b¬σ then W(C«c¬σ) else σ

• This is called the unwinding equation
• It is not a good denotation of W because:

– It defines W in terms of itself
– It is not evident that such a W exists
– It does not describe W uniquely
– It is not compositional



  

More on WHILE

• The unwinding equation does not specify W 
uniquely

• Take C«while true do skip¬

• The unwinding equation reduces to W(σ) =  
W(σ), which is satisfied by every function!

• Take C«while x ≠ 0 do x := x – 2¬

• The following solution satisfies equation (for 
any σ’)



  

Denotational Game Plan

• Since WHILE is recursive
– always have something like: W(σ) = F(W(σ))

• Admits many possible values for W(σ)
• We will order them

– With respect to non-termination = “least”

• And then find the least fixed point
• LFP W(σ)=F(W(σ)) == meaning of “while”



  

WHILE k-steps Semantics

• Define Wk: Σ ! Σ? (for k 2 N) such that

• We can define the Wk functions as 
follows:

     

Wk(σ) =

otherwise?

if “while b do c” in state σ 
terminates in fewer than k 
iterations in state σ’

σ’

?W0(σ) =

Wk(σ) =
otherwiseσ
if B«b¬σ for k ¸ 1Wk-1(C«c¬σ)



  

WHILE Semantics

• How do we get W from Wk?

• This is a valid compositional definition of W
– Depends only on C«c¬ and B«b¬

• Try the examples again:
– For C«while true do skip¬

        Wk(σ) = ?   for all k, thus W(σ) = ?

– For C«while x ≠ 0 do x := x – 2¬

  

W(σ) =
otherwise?
if 9k.Wk(σ) = σ’ ≠ ?σ’

   W(σ) =
   otherwise   ?
   if σ(x) = 2n Æ σ(x) ¸ 0 σ[x:=0]



  

More on WHILE

• The solution is not quite satisfactory 
because
– It has an operational flavor (= “run the loop”)
– It does not generalize easily to more 

complicated semantics (e.g., higher-order 
functions)

• However, precisely due to the 
operational flavor this solution is easy to 
prove sound w.r.t operational semantics



  

That Wasn’t Good Enough!?



  

Simple Domain Theory
• Consider programs in an eager, 

deterministic language with one variable 
called “x”
– All these restrictions are just to simplify the 

examples

• A state σ is just the value of x
– Thus we can use Z instead of Σ

• The semantics of a command give the 
value of final x as a function of input x
                         C« c ¬ :  Z ! Z?



  

Examples - Revisited

• Take C«while true do skip¬
– Unwinding equation reduces to W(x) = W(x)
– Any function satisfies the unwinding equation
– Desired solution is W(x) = ?

• Take C«while x ≠ 0 do x := x – 2¬
– Unwinding equation: 
    W(x) = if x ≠ 0 then W(x – 2) else x
– Solutions (for all values n, m 2 Z?): 

     W(x) = if x ¸ 0 then 
                  if x even then 0 else n
                else m
– Desired solution: W(x) = if x ¸ 0 Æ x even then 0 else ?



  

An Ordering of Solutions 

• The desired solution is the one in which all the 
arbitrariness is replaced with non-termination
– The arbitrary values in a solution are not uniquely 

determined by the semantics of the code

• We introduce an ordering of semantic functions 

• Let f, g 2 Z ! Z?

• Define f v g  as

        8x 2 Z. f(x) = ? or f(x) = g(x) 
– A “smaller” function terminates at most as often, 

and when it terminates it produces the same result 



  

Alternative Views of 
Function Ordering

• A semantic function f 2 Z ! Z? can be 
written as Sf µ Z £ Z as follows:

            Sf = { (x, y) | x 2 Z, f(x) = y ≠ ? }  

– set of “terminating” values for the function

• If f v g then
–  Sf µ Sg (and vice-versa)

– We say that g refines f
– We say that f approximates g
– We say that g provides more information than f



  

The “Best” Solution

• Consider again C«while x ≠ 0 do x := x – 2¬
– Unwinding equation: 
    W(x) = if x ≠ 0 then W(x – 2) else x

• Not all solutions are comparable:
W(x) = if x ¸ 0 then if x even then 0 else 1 else 2
W(x) = if x ¸ 0 then if x even then 0 else ? else 3
W(x) = if x ¸ 0 then if x even then 0 else ? else ?  
   (last one is least and best)

• Is there always a least solution?
• How do we find it?
• If only we had a general framework for answering 

these questions …



  

A Recursive Labyrinth



  

Fixed-Point Equations
• Consider the general unwinding equation for while

while b do c ≡ if b then c; while b do c else skip

• We define a context C (command with a hole)
              C = if b then c; ² else skip
              while b do c ≡ C[while b do c]

– The grammar for C does not contain “while b do c”

• We can find such a (recursive) context for any 
looping construct
– Consider: fact n = if n = 0 then 1 else n * fact (n – 1)
– C(n) = if n = 0 then 1 else n * ² (n – 1)
– fact = C [ fact ]



  

Fixed-Point Equations

• The meaning of a context is a semantic functional 
    F : (Z ! Z?) ! (Z ! Z?) such that

 F «C[w]¬ = F «w¬

• For “while”: C = if b then c; ² else skip 
          F w x = if «b¬ x then w («c¬ x) else x

– F depends only on «c¬ and «b¬

• We can rewrite the unwinding equation for while
– W(x) = if «b¬ x then W(«c¬ x) else x 

– or, W x = F W x for all x, 
– or, W = F W (by function equality)



  

Fixed-Point Equations

• The meaning of “while” is a solution for W = F W
• Such a W is called a fixed point of F 
• We want the least fixed point 

– We need a general way to find least fixed points

• Whether such a least fixed point exists depends on 
the properties of function F
– Counterexample: F w x = if w x = ? then 0 else ?
– Assume W is a fixed point
– F W x = W x = if W x = ? then 0 else ?
– Pick an x, then if W x = ? then W x = 0 else W x = ?
– Contradiction. This F has no fixed point! 



  

Can We Solve This?

• Good news: the functions F that 
correspond to contexts in our language 
have least fixed points!

• The only way F w x uses w is by invoking it
• If any such invocation diverges, then F w x 

diverges!
• It turns out: F is monotonic, continuous

– Not shown here!



  

We need more 
power!



  

New Notation: λ

•  λx. e
– an anonymous function with body e and argument x 

• Example: double(x) = x+x

double = λx. x+x
• Example: allFalse(x) = false

allFalse = λx. false
• Example: multiply(x,y) = x*y

multiply = λx. λy. x*y



  

The Fixed-Point Theorem
• If F is a semantic function corresponding to a 

context in our language
– F is monotonic and continuous (we assert)
– For any fixed-point G of F and k 2 N
            Fk(λx.? ) v G
– The least of all fixed points is
           tk Fk(λx.?)

• Proof (not detailed in the lecture):
1. By mathematical induction on k.  
    Base: F0(λx.? ) = λx.? v G
    Inductive: Fk+1(λx.? ) = F(Fk(λx.? )) v F(G) = G
–  Suffices to show that tk Fk(λx.? ) is a fixed-point

              F(tk Fk(λx.? )) = tk Fk+1(λx.? ) = tk Fk(λx.? )



  

WHILE Semantics
• We can use the fixed-point theorem to write the 

denotational semantics of while:
     «while b do c¬ = tk Fk (λx.?)
             where F f x = if «b¬ x then f («c¬ x) else x
• Example: «while true do skip¬ = λx.?
• Example: «while x ≠ 0 then x := x – 1¬ 

– F  (λx.?) x = if x = 0 then x else  ?  
– F2 (λx.?) x = if x = 0 then x else if x–1 = 0 then x–1 else ? 
                  = if 1 ¸ x ¸ 0 then 0 else  ? 
– F3 (λx.?) x = if 2 ¸ x ¸ 0 then 0 else  ? 
– LFPF = if x ¸ 0 then 0 else ?

• Not easy to find the closed form for general LFPs!



  

Discussion

• We can write the denotational semantics but 
we cannot always compute it.
– Otherwise, we could decide the halting problem

– H is halting for input 0 iff «H¬ 0 ≠ ?

• We have derived this for programs with one 
variable
– Generalize to multiple variables, even to 

variables ranging over richer data types, even 
higher-order functions: domain theory



  

Can You Remember?
You just survived the hardest lecture. 
It’s all downhill from here.



  

Recall: Learning Goals

• DS is compositional
• When should I use DS? 
• In DS, meaning is a “math object”
• DS uses ? (“bottom”) to mean non-

termination
• DS uses fixed points and domains to 

handle while
– This is the tricky bit



  

Homework

• Homework 2 
• Start Homework 3

– Not as long as it looks – separated out every 
exercise sub-part for clarity. 

– Your denotational answers must be 
compositional (e.g., Wk(σ) or LFP) 

• Read!



  



  

Equivalence

• Two expressions (commands) are equivalent if 
they yield the same result from all states

e1 ≈ e2 iff 

∀σ ∈ Σ. ∀n ∈ N. 

<e1, σ> ⇓ n iff <e2, σ> ⇓ n
   and for commands

c1 ≈ c2 iff

∀σ, σ’ ∈ Σ. 
<c1, σ> ⇓ σ’ iff <c2, σ> ⇓ σ’



  

Notes on Equivalence

• Equivalence is like logical validity 
– It must hold in all states (= all valuations)
– 2 ≈ 1 + 1 is like “2 = 1 + 1 is valid”
– 2 ≈ 1 + x might or might not hold. 

• So, 2 is not equivalent to 1 + x

• Equivalence (for IMP) is undecidable
– If it were decidable we could solve the halting problem 

for IMP. How?
• Equivalence justifies code transformations

– compiler optimizations
– code instrumentation
– abstract modeling

• Semantics is the basis for proving equivalence



  

Equivalence Examples
• skip; c ≈ c 
• while b do c ≈ 

if b then c; while b do c else skip
• If e1 ≈ e2 then x := e1 ≈ x := e2

• while true do skip ≈ while true do x := x + 1
• If c is 

while x ≠ y do
     if x ≥ y then x := x - y else y := y - x

    then  
(x := 221; y := 527; c) ≈ (x := 17; y := 17)



  

Potential Equivalence

•(x := e1; x := e2) ≈ x := e2

•Is this a valid equivalence?

`



  

Not An Equivalence

• (x := e1; x := e2) ¿ x := e2

• Iie. Chigau yo. Dame desu!

• Not a valid equivalence for all e1, e2.

• Consider:
– (x := x+1; x := x+2) ¿ x := x+2

• But for n1, n2 it’s fine:

– (x := n1; x := n2) ≈ x := n2



  

Proving An Equivalence

• Prove that “skip; c  ≈  c” for all c
• Assume that D :: <skip; c, σ> ⇓ σ’
• By inversion (twice) we have that

• Thus, we have D1 :: <c,σ> ⇓ σ’

• The other direction is similar

<skip; c, σ> ⇓ σ’
D ::

   <skip, σ> ⇓ σ    D1 :: <c, σ> ⇓ σ’



  

Proving An Inequivalence

• Prove that x := y ¿ x := z when y ≠z

• It suffices to exhibit a σ in which the two 
commands yield different results

• Let σ(y) = 0 and σ(z) = 1
• Then 

<x := y, σ> ⇓ σ[x := 0]
<x := z, σ> ⇓ σ[x := 1]
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