
#1

Introduction Introduction
to to

Axiomatic Axiomatic
SemanticsSemantics

(1/2)(1/2)

#2

How’s The
Homework

Going?

• Remember that
you can’t just
define a
meaning
function in
terms of itself –
you must use
some fixed point
machinery.

#3

Observations

• A key part of doing research is noticing when
something is incongruous. This is related to
spotting patterns.

#4

Observations

• A key part of doing research is noticing when
something is incongruous. This is related to
spotting patterns.

• suffix === state
• r1 r2 === c1 ; c2
• r1* === while ? do r1
• r1 | r2 === if ? then r1 else r2

#5

What's Wrong Here?

• Look closely at this “opsem rule”

` r1 r2 matches s leaving S

s = r1 :: r2 :: S

string =
list of

characters

regular
expression =

tree-structured
mathematical object

defined by a grammar

set of
strings

syntax
for list

construction

#6

Review via Class Participation

• Tell Me About Operational Semantics
• Tell Me About Structural Induction
• Tell Me About Denotational Semantics

• We would also like a semantics that is
appropriate for arguing program correctness

• “Axiomatic Semantics”, we’ll call it.

#7

Aujourd’hui, nous ferons …

•History
•Assertions
•Validity
•Derivation Rules
•Soundness
•Completeness

#8

Axiomatic Semantics

• An axiomatic semantics consists of:
– A language for stating assertions about programs,
– Rules for establishing the truth of assertions

• Some typical kinds of assertions:
– This program terminates
– If this program terminates, the variables x and y have the

same value throughout the execution of the program
– The array accesses are within the array bounds

• Some typical languages of assertions
– First-order logic
– Other logics (temporal, linear, pointer-assertion)
– Special-purpose specification languages (SLIC, Z, Larch)

#9

History

• Program verification is almost as old as
programming (e.g., Checking a Large
Routine, Turing 1949)

• In the late ’60s, Floyd had rules for flow-
charts and Hoare for structured languages

• Since then, there have been axiomatic
semantics for substantial languages, and
many applications
– ESC/Java, SLAM, PCC, SPARK Ada, …

#10

Tony Hoare Quote
• “Thus the practice of proving programs

would seem to lead to solution of three of
the most pressing problems in software and
programming, namely, reliability,
documentation, and compatibility. However,
program proving, certainly at present, will
be difficult even for programmers of high
caliber; and may be applicable only to quite
simple program designs.”

-- C.A.R Hoare, An Axiomatic Basis for
Computer Programming,1969

#11

Edsger Dijkstra Quote

•“Program testing can be used to
show the presence of bugs, but
never to show their absence!”

Qu’est-ce
que c’est?

#12

Tony Hoare Quote, Mark 2
• “It has been found a serious problem to define

these languages [ALGOL, FORTRAN, COBOL] with
sufficient rigor to ensure compatibility among all
implementations. ... one way to achieve this would
be to insist that all implementations of the
language shall satisfy the axioms and rules of
inference which underlie proofs of properties of
programs expressed in the language. In effect, this
is equivalent to accepting the axioms and rules of
inference as the ultimately definitive specification
of the meaning of the language.”

#13

Other Applications of Axiomatic
Semantics

• The project of defining and proving everything
formally has not succeeded (at least not yet)

• Proving has not replaced testing and debugging
• Applications of axiomatic semantics:

– Proving the correctness of algorithms (or finding bugs)
– Proving the correctness of hardware descriptions (or

finding bugs)
– “extended static checking” (e.g., checking array bounds)
– Proof-carrying code
– Documentation of programs and interfaces

#14

Assertion Notation

{A} c {B}
with the meaning that:

– if A holds in state σ and if <c, σ> ⇓ σ’
– then B holds in σ’

• A is the precondition
• B is the postcondition
• For example:

{ y · x } z := x; z := z +1 { y < z }
 is a valid assertion
• These are called Hoare triples or Hoare assertions

#15

Assertions for IMP

• {A} c {B} is a partial correctness assertion.
– Does not imply termination (= it is valid if c diverges)

• [A] c [B] is a total correctness assertion meaning
that
 If A holds in state σ
 Then there exists σ’ such that <c, σ> ⇓ σ’
 and B holds in state

σ’
• Now let us be more formal (you know you want it!)

– Formalize the language of assertions, A and B
– Say when an assertion holds in a state
– Give rules for deriving Hoare triples

#16

The Assertion Language

• We use first-order predicate logic on top of IMP
expressions

 A :: = true | false | e1 = e2 | e1 ¸ e2

 | A1 Æ A2 | A1 Ç A2 | A1) A2 | 8x.A | 9x.A

• Note that we are somewhat sloppy in mixing logical
variables and the program variables

• All IMP variables implicitly range over integers
• All IMP boolean expressions are also assertions

#17

Assertion Judgment ²

• We need to assign meanings to our assertions

• New judgment σ ² A to say that an assertion

holds in a given state (= “A is true in σ”)
– This is well-defined when σ is defined on all

variables occurring in A

• The ² judgment is defined inductively on the
structure of assertions (surprise!)

• It relies on the denotational semantics of
arithmetic expressions from IMP

#18

Semantics of Assertions
Formal definition

 σ ² true always

 σ ² e1 = e2 iff «e1¬ σ = «e2¬σ
 σ ² e1 ¸ e2 iff «e1¬ σ ¸ «e2¬σ
 σ ² A1 Æ A2 iff σ ² A1 and σ ² A2

 σ ² A1 Ç A2 iff σ ² A1 or σ ² A2

 σ ² A1) A2 iff σ ² A1 implies σ ² A2

 σ ² 8x.A iff 8n2Z. σ[x:=n] ² A

 σ ² 9x.A iff 9n2Z. σ[x:=n] ² A

#19

Hoare Triple Semantics

• Now we can define formally the meaning of a
partial correctness assertion ² { A } c { B }

8σ2Σ. 8σ’2Σ. (σ ² A Æ <c,σ> ⇓ σ’)) σ’ ² B

• … and a total correctness assertion ² [A] c [B]

8σ2Σ. σ ² A) 9σ’2Σ. <c,σ> ⇓ σ’ Æ σ’ ² B

• or even better yet: (explain this to me!)

 8σ2Σ. 8σ’2Σ. (σ ² A Æ <c,σ> ⇓ σ’)) σ’ ² B

 Æ

 8σ2Σ. σ ² A) 9σ’2Σ. <c,σ> ⇓ σ’

Q: Movie Music (420 / 842)

•In a 1995 Disney movie that has
been uncharitably referred to as
"Hokey-Hontas", the Stephen
Schwartz lyrics "what I love most
about rivers is: / you can't step
in the same river twice" refer to
the ideas of which Greek
philosopher?

Computer Science

• This American Turing-award winner is known
for his work on formal semantics of
programming languages, automata theory,
modal logic, topology, and category theory.
His 1959 paper with Rabin, Finite Automata
and Their Decision Problem, introduced the
idea of nondeterministic machines to
automata and complexity theory.

Q: Movies (267 / 842)

•Name the movie described
below, its heroine and its star.
This 1979 Ridley Scott movie
began the first major American
film series with a female action
hero. Famously, it is the original
movie to pass the Bechdel Test.

#23

Deriving Assertions

• Have a formal mechanism to decide ² { A } c { B }

– But it is not satisfactory

– Because ² {A} c {B} is defined in terms of the operational
semantics, we practically have to run the program to
verify an assertion

– It is impossible to effectively verify the truth of a 8x. A
assertion (check every integer?)

• Plan: define a symbolic technique for deriving valid
assertions from others that are known to be valid
– We start with validity of first-order formulas

#24

Derivation Rules

• We write ` A when A can be derived from basic
axioms (` A === “we can prove A”)

• The derivation rules for ` A are the usual ones from
first-order logic with arithmetic:

` A Æ B

` A ` B

` 8x.A

` [a/x]A (a is fresh)

` 9x.A

` [e/x]A

` B

` A) B ` A

` A) B

` A

…
` B ` B

` [a/x]A

…

` B

` 9x.A

` [e/x]A

` 8x.A

#25

Derivation Rules for Hoare Triples

• Similarly we write ` {A} c {B} when we
can derive the triple using derivation
rules

• There is one derivation rule for each
command in the language

• Plus, the evil rule of consequence

` {A’} c {B’}
` A’) A ` {A} c {B} ` B) B’

#26

Derivation Rules for Hoare Logic
• One rule for each syntactic construct:

` {A} skip {A} ` {[e/x]A} x := e {A}

` {A} c1; c2 {C}
` {A} c1 {B} ` {B} c2 {C}

` {A} if b then c1 else c2 {B}
` {A Æ b} c1 {B} ` {A Æ : b} c2 {B}

` {A} while b do c {A Æ : b}
` {A Æ b} c {A}

#27

Alternate Hoare Rules
• For some constructs multiple rules are possible:
• (Exercise: these rules can be derived from the

previous ones using the consequence rules)

` {A} x := e {9x0.[x0/x]A Æ x = [x0/x]e}

` {A} while b do c {B}
` A Æ b) C ` {C} c {A} ` A Æ : b) B

(This one is called the “forward” axiom for assignment)

(C is the loop invariant)

#28

Example: Assignment

• (Assuming that x does not appear in e)
 Prove that {true} x := e { x = e }
• Assignment Rule:

 because [e/x](x = e) ! e = e

• Use Assignment + Consequence:

` {e = e} x := e {x = e}

` {e = e} x := e {x = e}

` {true} x := e {x = e}

` true) e = e

#29

The Assignment Axiom (Cont.)

• “Assignment is undoubtedly the most characteristic
feature of programming a digital computer, and
one that most clearly distinguishes it from other
branches of mathematics. It is surprising therefore
that the axiom governing our reasoning about
assignment is quite as simple as any to be found in
elementary logic.” - Tony Hoare

• Caveats are sometimes needed for languages with
aliasing (the strong update problem):
– If x and y are aliased then
 { true } x := 5 { x + y = 10}
 is true

#30

Example: Conditional

• D1 and D2 were obtained by consequence and
assignment. D1 details:

` {true} if y · 0 then x := 1 else x := y {x > 0}

D1 :: ` {true Æ y · 0} x := 1 {x > 0}

D2 :: ` {true Æ y > 0} x := y {x > 0}

` D1 :: {true Æ y · 0} x := 1 {x > 0}

` {1 > 0} x := 1 {x > 0} ` true Æ y · 0) 1 > 0

#31

Example: Loop
• We want to derive that

` {x · 0} while x · 5 do x := x + 1 { x = 6}

• Use the rule for while with invariant x · 6

• Then finish-off with consequence

` {x · 6} while x · 5 do x := x+1 { x · 6 Æ x > 5}

` {x+1 · 6} x := x+1 { x · 6 }

` {x · 6 Æ x · 5 } x := x+1 {x · 6}

` x · 6 Æ x · 5) x+1 · 6

` {x · 6} while … { x · 6 Æ x > 5}

` {x · 0} while … {x = 6}

` x · 0) x · 6

 ` x · 6 Æ x > 5) x = 6

#32

Using Hoare Rules

• Hoare rules are mostly syntax directed
• There are three wrinkles:

– What invariant to use for while? (fix points, widening)
– When to apply consequence? (theorem proving)
– How do you prove the implications involved in

consequence? (theorem proving)

• This is how theorem proving gets in the picture
– This turns out to be doable!
– The loop invariants turn out to be the hardest problem!
 (Should the programmer give them? See Dijkstra, ESC.)

#33

Where Do We Stand?
• We have a language for asserting properties

of programs
• We know when such an assertion is true
• We also have a symbolic method for deriving

assertions

A
{A} c {B}

σ ² A
² {A} c {B}

` A
` { A} c {B}

symbolic
derivation
(theorem proving)

meaning

soundness

completeness

#34

Soundness Soundness
and and

CompletenessCompleteness

#35

Soundness of Axiomatic Semantics

• Formal statement of soundness:
 if ` { A } c { B } then ² { A } c { B }

 or, equivalently
 For all σ, if σ ² A

and Op :: <c, σ> ⇓ σ’
 and Pr :: ` { A } c { B }

then σ’ ² B

• “Op” === “Opsem Derivation”
• “Pr” === “Axiomatic Proof”

How shall we
prove this, oh

class?

#36

Not Easily!

• By induction on the structure of c?
– No, problems with while and rule of consequence

• By induction on the structure of Op?
– No, problems with while

• By induction on the structure of Pr?
– No, problems with consequence

• By simultaneous induction on the structure
of Op and Pr
– Yes! New Technique!

#37

Simultaneous Induction

• Consider two structures Op and Pr
– Assume that x < y iff x is a substructure of y

• Define the ordering
 (o, p) Á (o’, p’) iff

o < o’ or o = o’ and p < p’
– Called lexicographic (dictionary) ordering

• This Á is a well founded order and leads to
simultaneous induction

• If o < o’ then p can actually be larger than p’!
• It can even be unrelated to p’!

#38

Soundness of the While Rule
(Indiana Proof and the Slide of Doom)

• Case: last rule used in Pr : ` {A} c {B} was the while rule:

• Two possible rules for the root of Op (by inversion)
– We’ll only do the complicated case:

Assume that σ ² A
To show that σ’’ ² A Æ : b

• By soundness of booleans and Op1 we get σ ² b
– Hence σ ² A Æ b

• By IH on Pr1 and Op2 we get σ’ ² A

• By IH on Pr and Op3 we get σ’’ ² A Æ : b, q.e.d. (tricky!)

` {A} while b do c {A Æ : b}

Pr1 :: ` {A Æ b} c {A}

<while b do c, σ > ⇓ σ’’

Op1 :: <b, σ> ⇓ true Op2 :: <c,σ> ⇓ σ’ Op3 :: <while b do c, σ’ > ⇓
σ’’

#39

Soundness of the While Rule

• Note that in the last use of IH the derivation
Pr did not decrease

• But Op3 was a sub-derivation of Op

• See Winskel, Chapter 6.5, for a soundness
proof with denotational semantics

• To be continued ...

#40

Homework

• HW 3 Due Soon
• Axiomatic Reading

	Introduction to Axiomatic Semantics
	How’s The Homework Going?
	Observations
	Slide 4
	Slide 5
	Review via Class Participation
	Aujourd’hui, nous ferons …
	Axiomatic Semantics
	History
	Tony Hoare Quote
	Edsger Dijkstra Quote
	Tony Hoare Quote, Mark 2
	Other Applications of Axiomatic Semantics
	Assertion Notation
	Assertions for IMP
	The Assertion Language
	Assertion Judgment ²
	Semantics of Assertions
	Hoare Triple Semantics
	Q: Movie Music (420 / 842)
	Slide 21
	Q: Movies (267 / 842)
	Deriving Assertions
	Derivation Rules
	Derivation Rules for Hoare Triples
	Derivation Rules for Hoare Logic
	Alternate Hoare Rules
	Example: Assignment
	The Assignment Axiom (Cont.)
	Example: Conditional
	Example: Loop
	Using Hoare Rules
	Where Do We Stand?
	Soundness and Completeness
	Soundness of Axiomatic Semantics
	Not Easily!
	Slide 37
	Soundness of the While Rule (Indiana Proof and the Slide of Doom)
	Soundness of the While Rule
	Slide 40

