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How’s The 
Homework 

Going?

• Remember that 
you can’t just 
define a 
meaning 
function in 
terms of itself – 
you must use 
some fixed point 
machinery. 
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Observations

• A key part of doing research is noticing when 
something is incongruous. This is related to 
spotting patterns. 
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Observations

• A key part of doing research is noticing when 
something is incongruous. This is related to 
spotting patterns. 

• suffix === state
• r1 r2 === c1 ; c2
• r1*   === while ? do r1
• r1 | r2 === if ? then r1 else r2
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What's Wrong Here?

• Look closely at this “opsem rule” 

` r1 r2 matches s leaving S

s = r1 :: r2 :: S

string =
list of 

characters

regular
expression =

tree-structured 
mathematical object 

defined by a grammar

set of
strings

syntax
for list

construction
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Review via Class Participation

• Tell Me About Operational Semantics
• Tell Me About Structural Induction
• Tell Me About Denotational Semantics

• We would also like a semantics that is 
appropriate for arguing program correctness

• “Axiomatic Semantics”, we’ll call it. 
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Aujourd’hui, nous ferons …

•History
•Assertions
•Validity
•Derivation Rules
•Soundness
•Completeness
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Axiomatic Semantics

• An axiomatic semantics consists of:
– A language for stating assertions about programs,
– Rules for establishing the truth of assertions

• Some typical kinds of assertions:
– This program terminates
– If this program terminates, the variables x and y have the 

same value throughout the execution of the program
– The array accesses are within the array bounds

• Some typical languages of assertions
– First-order logic
– Other logics (temporal, linear, pointer-assertion)
– Special-purpose specification languages (SLIC, Z, Larch)
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History

• Program verification is almost as old as 
programming (e.g., Checking a Large 
Routine, Turing 1949)

• In the late ’60s, Floyd had rules for flow-
charts and Hoare for structured languages

• Since then, there have been axiomatic 
semantics for substantial languages, and 
many applications
– ESC/Java, SLAM, PCC, SPARK Ada, …
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Tony Hoare Quote
• “Thus the practice of proving programs 

would seem to lead to solution of three of 
the most pressing problems in software and 
programming, namely, reliability, 
documentation, and compatibility. However, 
program proving, certainly at present, will 
be difficult even for programmers of high 
caliber; and may be applicable only to quite 
simple program designs.”

-- C.A.R Hoare, An Axiomatic Basis for 
Computer Programming,1969
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Edsger Dijkstra Quote

•“Program testing can be used to 
show the presence of bugs, but 
never to show their absence!”

Qu’est-ce 
que c’est?
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Tony Hoare Quote, Mark 2
• “It has been found a serious problem to define 

these languages [ALGOL, FORTRAN, COBOL] with 
sufficient rigor to ensure compatibility among all 
implementations. ... one way to achieve this would 
be to insist that all implementations of the 
language shall satisfy the axioms and rules of 
inference which underlie proofs of properties of 
programs expressed in the language. In effect, this 
is equivalent to accepting the axioms and rules of 
inference as the ultimately definitive specification 
of the meaning of the language.” 
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Other Applications of Axiomatic 
Semantics

• The project of defining and proving everything 
formally has not succeeded (at least not yet)

• Proving has not replaced testing and debugging
• Applications of axiomatic semantics:

– Proving the correctness of algorithms (or finding bugs)
– Proving the correctness of hardware descriptions (or 

finding bugs)
– “extended static checking” (e.g., checking array bounds)
– Proof-carrying code
– Documentation of programs and interfaces
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Assertion Notation

{A} c {B}
with the meaning that:

– if A holds in state σ and if <c, σ> ⇓ σ’
– then B holds in σ’

• A is the precondition
• B is the postcondition
• For example:

{ y · x } z := x; z := z +1 { y < z }
    is a valid assertion
• These are called Hoare triples or Hoare assertions
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Assertions for IMP

• {A} c {B} is a partial correctness assertion. 
– Does not imply termination (= it is valid if c diverges)

• [A] c [B] is a total correctness assertion meaning 
that
     If A holds in state σ
     Then there exists σ’ such that <c, σ> ⇓ σ’
          and B holds in state 

σ’
• Now let us be more formal (you know you want it!)

– Formalize the language of assertions, A and B
– Say when an assertion holds in a state
– Give rules for deriving Hoare triples
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The Assertion Language

• We use first-order predicate logic on top of IMP 
expressions

     A :: = true | false | e1 = e2 | e1 ¸ e2

           |  A1 Æ A2 | A1 Ç A2 | A1 ) A2 | 8x.A | 9x.A

• Note that we are somewhat sloppy in mixing logical 
variables and the program variables

• All IMP variables implicitly range over integers
• All IMP boolean expressions are also assertions
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Assertion Judgment  ²

• We need to assign meanings to our assertions

• New judgment σ ² A to say that an assertion 

holds in a given state (= “A is true in σ”)
– This is well-defined when σ is defined on all 

variables occurring in A

• The ² judgment is defined inductively on the 
structure of assertions (surprise!)

• It relies on the denotational semantics of 
arithmetic expressions from IMP
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Semantics of Assertions
Formal definition

 σ ² true always

 σ ² e1 = e2 iff «e1¬ σ = «e2¬σ
 σ ² e1 ¸ e2 iff «e1¬ σ ¸ «e2¬σ
 σ ² A1 Æ A2 iff σ ² A1 and σ ² A2

 σ ² A1 Ç A2 iff σ ² A1 or σ ² A2

 σ ² A1 ) A2 iff σ ² A1 implies σ ² A2

 σ ² 8x.A iff 8n2Z. σ[x:=n] ² A

 σ ² 9x.A iff 9n2Z. σ[x:=n] ² A
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Hoare Triple Semantics

• Now we can define formally the meaning of a 
partial correctness assertion ² { A } c { B }  

8σ2Σ. 8σ’2Σ. (σ ² A Æ <c,σ> ⇓ σ’) ) σ’ ² B

• … and a total correctness assertion ² [A] c [B]

8σ2Σ. σ ² A ) 9σ’2Σ. <c,σ> ⇓ σ’ Æ σ’ ² B

• or even better yet: (explain this to me!)

        8σ2Σ. 8σ’2Σ. (σ ² A Æ <c,σ> ⇓ σ’) ) σ’ ² B 

    Æ

        8σ2Σ. σ ² A ) 9σ’2Σ. <c,σ> ⇓ σ’



Q:  Movie Music  (420 / 842) 

•In a 1995 Disney movie that has 
been uncharitably referred to as 
"Hokey-Hontas", the Stephen 
Schwartz lyrics "what I love most 
about rivers is: / you can't step 
in the same river twice" refer to 
the ideas of which Greek 
philosopher?  



Computer Science

• This American Turing-award winner is known 
for his work on formal semantics of 
programming languages, automata theory, 
modal logic, topology, and category theory. 
His 1959 paper with Rabin, Finite Automata 
and Their Decision Problem, introduced the 
idea of nondeterministic machines to 
automata and complexity theory. 



Q:  Movies  (267 / 842) 

•Name the movie described 
below, its heroine and its star. 
This 1979 Ridley Scott movie 
began the first major American 
film series with a female action 
hero. Famously, it is the original 
movie to pass the Bechdel Test.
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Deriving Assertions

• Have a formal mechanism to decide ² { A } c { B }

– But it is not satisfactory

– Because ² {A} c {B} is defined in terms of the operational 
semantics, we practically have to run the program to 
verify an assertion

– It is impossible to effectively verify the truth of a 8x. A 
assertion (check every integer?)

• Plan: define a symbolic technique for deriving valid 
assertions from others that are known to be valid
– We start with validity of first-order formulas
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Derivation Rules

• We write ` A when A can be derived from basic 
axioms (` A === “we can prove A”)

• The derivation rules for ` A are the usual ones from 
first-order logic with arithmetic:

` A Æ B

` A      ` B

` 8x.A

` [a/x]A    (a is fresh)  

` 9x.A

` [e/x]A

` B

` A ) B   ` A

` A ) B

` A

…
` B ` B

` [a/x]A

…

` B

` 9x.A

` [e/x]A

` 8x.A
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Derivation Rules for Hoare Triples

• Similarly we write ` {A} c {B} when we 
can derive the triple using derivation 
rules

• There is one derivation rule for each 
command in the language

• Plus, the evil rule of consequence

` {A’} c {B’}
` A’ ) A   ` {A} c {B}   ` B ) B’
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Derivation Rules for Hoare Logic
• One rule for each syntactic construct:

` {A} skip {A} ` {[e/x]A} x := e {A}

` {A} c1; c2 {C}
` {A} c1 {B}    ` {B} c2 {C}

` {A} if b then c1 else c2 {B}
` {A Æ b} c1 {B}    ` {A Æ : b} c2 {B}

` {A} while b do c {A Æ : b}
` {A Æ b} c {A}
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Alternate Hoare Rules
• For some constructs multiple rules are possible:
• (Exercise: these rules can be derived from the 

previous ones using the consequence rules)

` {A} x := e {9x0.[x0/x]A Æ x = [x0/x]e}

` {A} while b do c {B}
` A Æ b ) C    ` {C} c {A}   ` A Æ : b ) B

(This one is called the “forward” axiom for assignment)

(C is the loop invariant)
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Example: Assignment

• (Assuming that x does not appear in e)
            Prove that {true} x := e { x = e }
• Assignment Rule:

     because [e/x](x = e) ! e = e

• Use Assignment + Consequence:

` {e = e} x := e {x = e}

` {e = e} x := e {x = e}

` {true} x := e {x = e}

` true ) e = e
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The Assignment Axiom (Cont.)

• “Assignment is undoubtedly the most characteristic 
feature of programming a digital computer, and 
one that most clearly distinguishes it from other 
branches of mathematics. It is surprising therefore 
that the axiom governing our reasoning about 
assignment is quite as simple as any to be found in 
elementary logic.” - Tony Hoare

• Caveats are sometimes needed for languages with 
aliasing (the strong update problem):
– If x and y are aliased then
     { true } x := 5 { x + y = 10}
   is true
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Example: Conditional

• D1 and D2 were obtained by consequence and 
assignment. D1 details:

` {true} if y · 0 then x := 1 else x := y {x > 0}

D1 :: ` {true Æ y · 0} x := 1 {x > 0}

D2 :: ` {true Æ y > 0} x := y {x > 0}

` D1 :: {true Æ y · 0} x := 1 {x > 0}

` {1 > 0} x := 1 {x > 0}             ` true Æ y · 0 ) 1 > 0



#31

Example: Loop
• We want to derive that

` {x · 0} while x · 5 do x := x + 1 { x = 6}

• Use the rule for while with invariant x · 6

• Then finish-off with consequence

` {x · 6} while x · 5 do x := x+1 { x · 6 Æ x > 5}

` {x+1 · 6} x := x+1 { x · 6 }

` {x · 6 Æ x · 5 } x := x+1 {x · 6}

` x · 6 Æ x · 5 ) x+1 · 6  

` {x · 6} while … { x · 6 Æ x > 5}

` {x · 0} while … {x = 6}

` x · 0 ) x · 6

 ` x · 6 Æ x > 5 ) x = 6
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Using Hoare Rules

• Hoare rules are mostly syntax directed
• There are three wrinkles:

– What invariant to use for while? (fix points, widening)
– When to apply consequence? (theorem proving)
– How do you prove the implications involved in 

consequence? (theorem proving)

• This is how theorem proving gets in the picture
– This turns out to be doable!
– The loop invariants turn out to be the hardest problem!
    (Should the programmer give them? See Dijkstra, ESC.)
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Where Do We Stand?
• We have a language for asserting properties 

of programs
• We know when such an assertion is true
• We also have a symbolic method for deriving 

assertions

A
{A} c {B}

σ ² A
² {A} c {B}

` A
` { A} c {B}

symbolic
derivation
(theorem proving)

meaning

soundness

completeness
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Soundness Soundness 
and and 

CompletenessCompleteness
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Soundness of Axiomatic Semantics

• Formal statement of soundness:
       if ` { A } c { B } then ² { A } c { B } 

   or, equivalently
       For all σ, if σ ² A 

and Op :: <c, σ> ⇓ σ’ 
       and Pr :: ` { A } c { B } 

then σ’ ² B 

• “Op” === “Opsem Derivation”
• “Pr” === “Axiomatic Proof” 

How shall we 
prove this, oh 

class?
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Not Easily!

• By induction on the structure of c?
– No, problems with while and rule of consequence

• By induction on the structure of Op?
– No, problems with while

• By induction on the structure of Pr?
– No, problems with consequence

• By simultaneous induction on the structure 
of Op and Pr
– Yes! New Technique!
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Simultaneous Induction

• Consider two structures Op and Pr
– Assume that x < y iff x is a substructure of y

• Define the ordering 
         (o, p) Á (o’, p’) iff    

o < o’   or   o = o’ and p < p’
– Called lexicographic (dictionary) ordering

• This Á is a well founded order and leads to 
simultaneous induction 

• If o < o’ then p can actually be larger than p’! 
• It can even be unrelated to p’!
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Soundness of the While Rule
(Indiana Proof and the Slide of Doom)

• Case: last rule used in Pr : ` {A} c {B} was the while rule:

• Two possible rules for the root of Op (by inversion)
– We’ll only do the complicated case:

Assume that σ ² A
To show that σ’’ ² A Æ : b

• By soundness of booleans and Op1 we get σ ² b
– Hence σ ² A Æ b

• By IH on Pr1 and Op2 we get σ’ ² A

• By IH on Pr and Op3 we get  σ’’ ² A Æ : b, q.e.d. (tricky!)

` {A} while b do c {A Æ : b}

Pr1 :: ` {A Æ b} c {A}

<while b do c, σ > ⇓ σ’’

Op1 :: <b, σ> ⇓ true      Op2 :: <c,σ> ⇓ σ’      Op3 ::  <while b do c, σ’ > ⇓ 
σ’’
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Soundness of the While Rule

• Note that in the last use of IH the derivation 
Pr did not decrease

• But Op3 was a sub-derivation of Op

• See Winskel, Chapter 6.5, for a soundness 
proof with denotational semantics

• To be continued ...
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Homework

• HW 3 Due Soon
• Axiomatic Reading
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