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One-Slide Summary
• Verification Conditions make axiomatic 

semantics practical. We can compute 
verification conditions forward for use on 
unstructured code (= assembly language). 
This is sometimes called symbolic 
execution.

• We can add extra invariants or drop paths 
(dropping is unsound) to help verification 
condition generation scale.

• We can model exceptions, memory 
operations and data structures using 
verification condition generation. 
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Symbolic ExecutionSymbolic Execution



#4

Where Are We?

• Axiomatic Semantics: the meaning of a 
program is what is true after it executes

• Hoare Triples: {A} c {B} 
• Weakest Precondition: { WP(c,B) } c {B}
• Verification Condition: A)VC(c,B))WP(c,b)

– Requires Loop Invariants
– Backward VC works for structured programs
– Forward VC (Symbolic Exec) works for assembly
– Here we are today …
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Today’s Cunning Plan

• Symbolic Execution & Forward VCGen
• Handling Exponential Blowup

– Invariants
– Dropping Paths

• VCGen For Exceptions  (double trouble)
• VCGen For Memory     (McCarthyism)
• VCGen For Structures        (have a field day)
• VCGen For “Dictator For Life”
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VC and Invariants

• Consider the Hoare triple:
{x ≤ 0} whileI(x) x ≤ 5 do x := x + 1 {x = 6} 

• The VC for this is:
x ≤ 0 ⇒  I(x)  ∧   ∀x. (I(x) ⇒ (x > 5 ⇒ x = 6 ∧
                                               x ≤ 5 ⇒ I(x+1) ))

• Requirements on the invariant:
– Holds on entry ∀x. x ≤ 0 ⇒  I(x) 
– Preserved by the body ∀x.  I(x) ∧  x ≤ 5 ⇒ I(x+1)
– Useful ∀x.  I(x) ∧ x > 5 ⇒ x = 6 

• Check that I(x) = x ≤ 6 satisfies all constraints
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Forward VCGen

• Traditionally the VC is computed backwards
– That’s how we’ve been doing it in class
– Backwards works well for structured code

• But it can also be computed forward 
– Works even for un-structured languages (e.g., 

assembly language)
– Uses symbolic execution, a technique that has 

broad applications in program analysis 
• e.g., the PREfix tool (Intrinsa, Microsoft) does this
• Test input generation, document generation, 

specification mining, security analyses, ...
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Forward VC Gen Intuition
• Consider the sequence of assignments

x1 := e1; x2 := e2

• The VC(c, B) = [e1/x1]([e2/x2]B)
                        = [e1/x1, e2[e1/x1]/x2] B

• We can compute the substitution in a forward way 
using symbolic execution (aka symbolic evaluation)
– Keep a symbolic state that maps variables to expressions
– Initially, Σ0 = { } 

– After x1 := e1, Σ1 = { x1 ! e1 }

– After x2 := e2, Σ2 = {x1 ! e1, x2 ! e2[e1/x1] }

– Note that we have applied Σ1 as a substitution to right-
hand side of assignment x2 := e2
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Simple Assembly Language

• Consider the language of instructions:
I ::= x := e  |  f() | if e goto L  |  goto L | 

L: | return | inv e

• The “inv e” instruction is an annotation
– Says that boolean expression e is true at that 

point

• Each function f() comes with Pref and Postf 
annotations (pre- and post-conditions)

• New Notation (yay!): Ik is the instruction at 
address k



#10

Symex States

• We set up a symbolic execution state:

 Σ : Var ! SymbolicExpressions

 Σ(x)         = the symbolic value of x in state Σ
 Σ[x:=e]    = a new state in which x’s value is e
• We use states as substitutions:

Σ(e) - obtained from e by replacing x with Σ(x)
• Much like the opsem so far …
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Symex Invariants
• The symbolic executor tracks invariants 

passed
• A new part of symex state: Inv µ {1…n}

• If k 2 Inv then Ik is an invariant instruction 
that we have already executed

• Basic idea: execute an inv instruction only 
twice:
– The first time it is encountered
– Once more time around an arbitrary iteration
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Symex Rules
• Define a VC function as an interpreter:

VC : Address £ SymbolicState £ InvariantState ! Assertion

if Ik = returnΣ(Postcurrent-function)

if Ik = x := eVC(k+1, Σ[x:=Σ(e)], Inv)

VC(k, Σ, Inv) =

if Ik = f()

Σ(Pref)    Æ

8a1..am.Σ’(Postf) ) 

     VC(k+1, Σ’, Inv)
(where y1, …, ym are modified by f)

and a1, …, am are fresh parameters

and Σ’ = Σ[y1 := a1, …, ym := am]

if Ik = if e goto L
   e ) VC(L, Σ, Inv)      Æ 

: e ) VC(k+1, Σ, Inv)

if Ik = goto L VC(L, Σ,  Inv)

Recall: Inv =
“invariants
visited so far”
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Symex Invariants (2a)
Two cases when seeing an invariant instruction:
1. We see the invariant for the first time

– Ik = inv e

– k ∉ Inv    (= “not in the set of invariants we’ve seen”)

– Let {y1, …, ym} = the variables that could be modified on 
a path from the invariant back to itself

– Let a1, …, am be fresh new symbolic parameters

VC(k, Σ, Inv) = 

         Σ(e) Æ 8a1…am. Σ’(e) ) VC(k+1, Σ’, Inv [ {k}])

 with  Σ’ = Σ[y1 := a1, …, ym := am]
                                                             (like a function call)
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Symex Invariants (2b)

● We see the invariant for the second time
– Ik = inv E

– k 2 Inv

VC(k, Σ, Inv) = Σ(e)
                                                        (like a function return)

• Some tools take a more simplistic approach
– Do not require invariants
– Iterate through the loop a fixed number of times
– PREfix, versions of ESC (DEC/Compaq/HP SRC)
– Sacrifice completeness for usability
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Symex Summary
– Let x1, …, xn be all the variables and a1, …, an fresh 

parameters
– Let Σ0 be the state [x1 := a1, …,xn :=an]
– Let ; be the empty Inv set

• For all functions f in your program, prove:
           8a1…an. Σ0(Pref) ) VC(fentry, Σ0, ∅)
• If you start the program by invoking any f in a state 

that satisfies Pref, then the program will execute 
such that
– At all “inv e” the e holds, and 
– If the function returns then Postf holds

• Can be proved w.r.t. a real interpreter (operational 
semantics)

• Or via a proof technique called co-induction (or, 
assume-guarantee)
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Forward VCGen Example

• Consider the program
                        Precondition: x · 0
Loop: inv x · 6 

         if x > 5 goto End
         x := x + 1
         goto Loop

End:  return      Postconditon: x = 6
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Forward VCGen Example (2)
 8x. 
        x · 0 )
             x · 6 Æ
                  8x’.
                       (x’ · 6 )
                              x’ > 5 ) x’ = 6
                                       Æ
                              x’ · 5 ) x’ + 1 · 6 )
 
• VC contains both proof obligations and 

assumptions about the control flow                
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VCs Can Be Large

• Consider the sequence of conditionals
(if x < 0 then x := - x); (if x ≤ 3 then x += 3)

– With the postcondition P(x) 

• The VC is 
x < 0 Æ -x ≤ 3 ⇒ P(-x + 3)  Æ

x < 0 Æ -x > 3 ⇒ P(-x)     Æ

x ≥ 0 Æ x ≤ 3 ⇒ P(x + 3)    Æ

x ≥ 0 Æ x > 3 ⇒ P(x ) 

• There is one conjunct for each path
) exponential number of paths!
– Conjuncts for infeasible paths have un-satisfiable guards!

• Try with P(x) = x ≥ 3



English Prose
341. Van and Hitomi walked an inaudible 

distance from those guy's Van was hanging out 
with.

253. However, when he got into his chamber 
and sat down with a blank canvas propped up 
on its easel, his vision vanished as if it were 
nothing but a floating dust moat.

352. "Good evening my league." He picked her 
up by the wrist. "I think that you and I have 
some talking to do, actually I have a 
preposition"



Computer Science

• This American Turing award winner is known 
for the “law” that “Adding manpower to a 
late software project makes it later.” The 
Turing Award citation notes landmark 
contributions to operating systems, software 
engineering and computer architecture. 
Notable works include No Silver Bullet: 
Essence and Accidents of Software 
Engineering and The ___ ___ ___. 



Q:  Theatre  (019 / 842) 

• Name the composer or the title of 
the 1937 musical that includes the 
lyrics: "O Fortuna, velut luna statu 
variabilis, semper crescis aut 
decrescis; vita detestabilis nunc 
obdurat et tunc curat ludo mentis 
aciem, egestatem, potestatem 
dissolvit ut glaciem."  
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VCs Can Be Exponential
• VCs are exponential in the size of the source 

because they attempt relative completeness:
– Perhaps the correctness of the program must be argued 

independently for each path

• Unlikely that the programmer wrote a program by 
considering an exponential number of cases
– But possible. Any examples? Any solutions?
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VCs Can Be Exponential

• VCs are exponential in the size of the source 
because they attempt relative completeness:
– Perhaps the correctness of the program must be 

argued independently for each path

• Standard Solutions:
– Allow invariants even in straight-line code
– And thus do not consider all paths 

independently!
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Invariants in Straight-Line Code
• Purpose: modularize the verification task
• Add the command “after c establish Inv”

– Same semantics as c (Inv is only for VC purposes)

    VC(after c establish Inv, P) =def  

VC(c,Inv) ∧ ∀xi. Inv ⇒ P
• where xi are the ModifiedVars(c) 

• Use when c contains many paths
after if x < 0 then x := - x  establish x ≥ 0;

if x ≤ 3 then x += 3 { P(x) }

• VC is now:
(x < 0 ⇒ - x ≥ 0) Æ  (x ≥ 0 ⇒ x ≥  0) Æ  

∀x. x ≥ 0 ⇒ (x ≤ 3 ⇒ P(x+3) Æ  x > 3 ⇒ P(x))
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Dropping Paths

• In absence of annotations, we can drop some paths
• VC(if E then c1 else c2, P) = choose one of

– E ⇒ VC(c1, P) ∧ ¬E ⇒ VC(c2, P) (drop no paths)
– E ⇒ VC(c1, P) (drops “else” path!)
� ¬E ⇒ VC(c2, P) (drops “then” path!)

• We sacrifice soundness! (we are now unsound)
– No more guarantees
– Possibly still a good debugging aid

• Remarks:
– A recent trend is to sacrifice soundness to increase 

usability (e.g., Metal, ESP, even ESC)
– The PREfix tool considers only 50 non-cyclic paths 

through a function (almost at random)
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VCGen for Exceptions

• We extend the source language with 
exceptions without arguments (cf. HW2):
– throw              throws an exception    

– try c1 catch c2    executes c2 if c1 throws

• Problem:
– We have non-local transfer of control
– What is VC(throw, P) ?
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VCGen for Exceptions

• We extend the source language with 
exceptions without arguments (cf. HW2):
– throw              throws an exception    
– try c1 catch c2    executes c2 if c1 throws

• Problem:
– We have non-local transfer of control
– What is VC(throw, P) ?

• Standard Solution: use 2 postconditions
– One for normal termination
– One for exceptional termination
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VCGen for Exceptions (2)

• VC(c, P, Q) is a precondition that makes c 
either not terminate, or terminate normally 
with P or throw an exception with Q

• Rules
VC(skip, P, Q)    = P
VC(c1; c2, P, Q)  = VC(c1, VC(c2, P, Q), Q)

VC(throw, P, Q) = Q
VC(try c1 catch c2, P, Q) = VC(c1, P, VC(c2, P, Q))

VC(try c1 finally c2, P, Q) = ?
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VCGen Finally
• Given these: 

VC(c1; c2, P, Q)  = VC(c1, VC(c2, P, Q), Q)

VC(try c1 catch c2, P, Q) = VC(c1, P, VC(c2, P, Q))

• Finally is somewhat like “if”: 
VC(try c1 finally c2, P, Q) =

VC(c1, VC(c2, P, Q), true) Æ

 VC(c1, true, VC(c2, Q, Q))

• Which reduces to: 
VC(c1, VC(c2, P, Q), VC(c2, Q, Q))
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Hoare Rules and the Heap
• When is the following Hoare triple valid?

             { A } *x := 5 { *x + *y = 10 }
• A should be “*y = 5 or x = y” 
• The Hoare rule for assignment would give us:

– [5/*x](*x + *y = 10) = 5 + *y = 10 = 
– *y = 5     (we lost one case)

• Why didn’t this work? 
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Handling The Heap

• We do not yet have a way to talk about 
memory (the heap, pointers) in assertions

• Model the state of memory as a symbolic 
mapping from addresses to values:
– If A denotes an address and M is a memory state 

then:
– sel(M,A) denotes the contents of the memory cell 
– upd(M,A,V) denotes a new memory state 

obtained from M by writing V at address A
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More on Memory

• We allow variables to range over memory 
states
– We can quantify over all possible memory states 

• Use the special pseudo-variable µ (mu) in 
assertions to refer to the current memory

• Example:

∀i. i ≥ 0 ∧ i < 5 ⇒ sel(µ, A + i) > 0
says that entries 0..4 in array A are positive
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Hoare Rules: Side-Effects

• To model writes we use memory expressions
– A memory write changes the value of memory

• Important technique: treat memory as a whole
• And reason later about memory expressions with 

inference rules such as (McCarthy Axioms, ~‘67):

{ B[upd(µ, A, E)/µ] } *A := E {B}

if A1 = A2V

if A1 ≠ A2sel(M, A2)
sel(upd(M, A1, V), A2) = 
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Memory Aliasing

• Consider again: { A } *x := 5 { *x + *y = 10 }
• We obtain: 
     A = [upd(µ, x, 5)/µ] (*x + *y = 10)
        = [upd(µ, x, 5)/µ] (sel(µ, x) + sel(µ, y) = 10)
(1)    = sel(upd(µ, x, 5), x) + sel(upd(µ, x, 5), y) = 10
        = 5 + sel(upd(µ, x, 5), y) = 10
        = if x = y then 5 + 5 = 10 else 5 + sel(µ, y) = 10
(2)    = x = y or *y = 5 
• Up to (1) is theorem generation
• From (1) to (2) is theorem proving



#35

Alternative Handling for Memory
• Reasoning about aliasing can be expensive 

– It is NP-hard (and/or undecideable)

• Sometimes completeness is sacrificed with 
the following (approximate) rule:

otherwise (p is a fresh 
new parameter)

P

if A1 = (obviously) A2V

if A1 ≠ (obviously) A2sel(M, A2)sel(upd(M, A1, V), A2) = 

• The meaning of “obviously” varies:
• The addresses of two distinct globals are ≠
• The address of a global and one of a local are ≠

• PREfix and GCC use such schemes
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VCGen Overarching Example

• Consider the program
– Precondition: B : bool ∧ A : array(bool, L)
1: I := 0
    R := B
3: inv I ≥ 0 ∧ R : bool
    if I ≥  L goto 9
    assert saferd(A + I)
    T := *(A + I)
    I := I + 1
    R := T
    goto 3
9: return R
– Postcondition: R : bool
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VCGen Overarching Example

 8A. 8B. 8L. 8µ
        B : bool Æ A : array(bool, L) )
             0 ¸ 0 Æ B : bool Æ
                  8 I. 8R.
                       I ¸ 0 Æ R : bool )
                              I ¸ L ) R : bool
                                       Æ
                               I < L ) saferd(A + I)  Æ
                                  I + 1 ¸ 0 Æ
                                        sel(µ, A + I) : bool 
• VC contains both proof obligations and assumptions 

about the control flow                               
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Mutable Records - Two Models

• Let r :  RECORD { f1 : T1; f2 : T2 } END
• For us, records are reference types
• Method 1: one “memory” for each record

– One index constant for each field
– r.f1 is sel(r,f1) and  r.f1 := E is r := upd(r,f1,E)

• Method 2: one “memory” for each field
– The record address is the index
– r.f1 is sel(f1,r) and  r.f1 := E is f1 := upd(f1,r,E)

• Only works in strongly-typed languages like Java
– Fails in C where &r.f2 = &r + sizeof(T1) 
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VC as a “Semantic Checksum”

• Weakest preconditions are an 
expression of the program’s semantics:
– Two equivalent programs have logically 

equivalent WPs
– No matter how different their syntax is!

• VC are almost as powerful
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VC as a “Semantic Checksum” (2)

• Consider the “assembly 
language” program to 
the right

x := 4

x := (x == 5)
   assert x : bool

x := not x
   assert x

• High-level type checking is not appropriate here
• The VC is: ((4 == 5) : bool) ∧ (not (4 == 5)) 
• No confusion from reuse of x with different types



#41

Invariance of VC Across 
Optimizations

• VC is so good at abstracting syntactic details that it 
is syntactically preserved by many common 
optimizations
– Register allocation, instruction scheduling
– Common subexp elim, constant and copy propagation
– Dead code elimination

• We have identical VCs whether or not an 
optimization has been performed
– Preserves syntactic form, not just semantic meaning!

• This can be used to verify correctness of compiler 
optimizations (Translation Validation)
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VC Characterize a Safe 
Interpreter

• Consider a fictitious “safe” interpreter
– As it goes along it performs checks (e.g. “safe to read 

from this memory addr”, “this is a null-terminated 
string”, “I have not already acquired this lock”)

– Some of these would actually be hard to implement

• The VC describes all of the checks to be performed
– Along with their context (assumptions from conditionals)
– Invariants and pre/postconditions are used to obtain a 

finite expression (through induction)

• VC is valid ) interpreter never fails
– We enforce same level of “correctness”
– But better (static + more powerful checks)
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VC Big Picture
• Verification conditions

– Capture the semantics of code + specifications
– Language independent
– Can be computed backward/forward on 

structured/unstructured code
– Make Axiomatic Semantics practical
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Invariants Are Not Easy

• Consider the following code from QuickSort
int partition(int *a, int L0, int H0, int pivot) {
     int L = L0, H = H0;
     while(L < H) {
           while(a[L] < pivot) L ++;
           while(a[H] > pivot) H --;
           if(L < H) { swap a[L] and a[H] }
    }
    return L
}

• Consider verifying only memory safety
• What is the loop invariant for the outer loop ?
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Done!

• Questions?
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