#### Abstract Interpretation (Non-Standard Semantics)

#### a.k.a. "Picking The Right Abstraction"



#### Wei Hu Memorial Homework Award

 Many turned in HW3 code: let rec matches re s = match re with



Star(r) -> union (singleton s)

(matches (Concat(r,Star(r))) s)

• Which is a direct translation of:

$$\mathsf{R}[[\mathsf{r}^*]]\mathsf{s} = \{\mathsf{s}\} \cup \mathsf{R}[[\mathsf{r}\mathsf{r}^*]]\mathsf{s}$$

or, equivalently:

 $R[[r^*]]s = \{s\} \cup \{ y \mid \exists x \in R[[r]]s \land y \in R[[r^*]]x \}$ 

• Why doesn't this work?

# Why analyze programs statically?



# The Problem

- It is extremely useful to predict program behavior statically (= without running the program)
  - For optimizing compilers, program analyses, software engineering tools, finding security flaws, etc.
- The semantics we studied so far give us the precise behavior of a program
- However, precise static predictions are impossible
  - The exact semantics is not computable
- We must settle for approximate, but correct, static analyses (e.g. VC vs. WP)

# The Plan

- We will introduce abstract interpretation by example
- Starting with a miniscule language we will build up to a fairly realistic application
- Along the way we will see most of the ideas and difficulties that arise in a big class of applications

# A Tiny Language

 Consider the following language of arithmetic ("shrIMP"?)

- The denotational semantics of this language
   [n]] = n
   [e<sub>1</sub> \* e<sub>2</sub>]] = [[e<sub>1</sub>]] × [[e<sub>2</sub>]]
- We'll take deno-sem as the "ground truth"
- For this language the precise semantics is computable (but in general it's not)

#### An Abstraction

- Assume that we are interested not in the value of the expression, but only in its sign:
  - positive (+), negative (-), or zero (0)
- We can define an <u>abstract semantics</u> that computes <u>only</u> the sign of the result

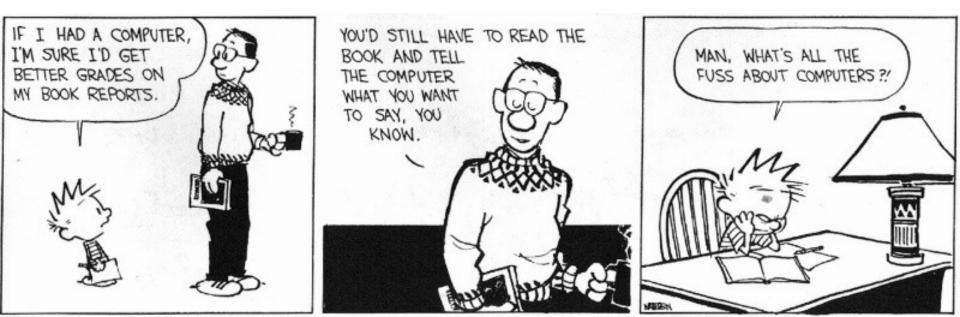
$$\sigma$$
: Exp  $\rightarrow$  {-, 0, +}

$$\sigma(n) = sign(n)$$
  
$$\sigma(e_1 * e_2) = \sigma(e_1) \otimes \sigma(e_2)$$

$$\begin{array}{|c|c|c|c|c|c|}\hline \otimes & - & 0 & + \\ \hline - & + & 0 & - \\ 0 & 0 & 0 & 0 \\ + & - & 0 & + \\ \hline \end{array}$$

#### Saw the Sign All your Ace of Base\* Chung to Us Plus 11 more CDs with your Club membership

- Why did we want to compute the sign of an expression?
  - One reason: no one will believe you know abstract interpretation if you haven't seen the sign example :-)
- What could we be computing instead?



## **Correctness of Sign Abstraction**

• We can show that the abstraction is correct in the sense that it predicts the sign

```
\llbracket e \rrbracket > 0 \Leftrightarrow \sigma(e) = +
```

```
\llbracket e \rrbracket = 0 \Leftrightarrow \sigma(e) = 0
\llbracket e \rrbracket < 0 \Leftrightarrow \sigma(e) = -
```



# **Correctness of Sign Abstraction**

• We can show that the abstraction is correct in the sense that it predicts the sign

$$\llbracket e \rrbracket > 0 \Leftrightarrow \sigma(e) = +$$

$$\llbracket e \rrbracket = 0 \Leftrightarrow \sigma(e) = 0$$

$$\llbracket e \rrbracket < 0 \Leftrightarrow \sigma(e) = -$$

- Our semantics is abstract but precise
- Proof is by structural induction on the expression e
  - Each case repeats similar reasoning

#### Another View of Soundness

- Link each concrete value to an abstract one:  $\beta:\mathbb{Z}\to\{\ \text{-},\ 0,\ \text{+}\ \}$
- This is called the <u>abstraction function</u> ( $\beta$ ) - This three-element set is the <u>abstract domain</u>
- Also define the <u>concretization function</u>  $(\gamma)$ :

$$\begin{array}{ll} \gamma: \{-, \, 0, \, +\} \to \mathcal{P}(\mathbb{Z}) \\ \gamma(+) &= & \{ \, n \in \mathbb{Z} \, \mid \, n > 0 \, \} \\ \gamma(0) &= & \{ \, 0 \, \} \\ \gamma(-) &= & \{ \, n \in \mathbb{Z} \, \mid \, n < 0 \, \} \end{array}$$

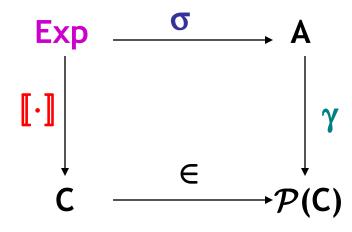
#### Another View of Soundness 2

• Soundness can be stated succinctly

 $\forall e \in Exp. [e] \in \gamma(\sigma(e))$ 

(the real value of the expression is among the concrete values represented by the abstract value of the expression)

- Let C be the concrete domain (e.g.  $\mathbb{Z}$ ) and A be the abstract domain (e.g. {-, 0, +})
- <u>Commutative diagram</u>:



#### Another View of Soundness 3

- Consider the generic abstraction of an operator  $\sigma(e_1 \text{ op } e_2) = \sigma(e_1) \text{ op } \sigma(e_2)$
- This is sound iff

 $\forall a_1 \forall a_2. \ \gamma(a_1 \ \underline{op} \ a_2) \supseteq \ \{n_1 \ op \ n_2 \ | \ n_1 \in \gamma(a_1), \ n_2 \in \gamma(a_2)\}$ 

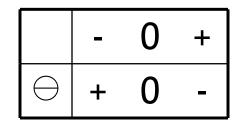
- e.g.  $\gamma(a_1 \otimes a_2) \supseteq \{ n_1 * n_2 \mid n_1 \in \gamma(a_1), n_2 \in \gamma(a_2) \}$
- This reduces the proof of correctness to one proof for each operator

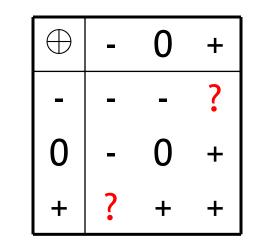
#### **Abstract Interpretation**

- This is our first example of an <u>abstract</u> <u>interpretation</u>
- We carry out computation in an abstract domain
- The abstract semantics is a sound approximation of the standard semantics
- The concretization and abstraction functions establish the connection between the two domains

# Adding Unary Minus and Addition

- We extend the language to e ::= n | e<sub>1</sub> \* e<sub>2</sub> | - e
- We define  $\sigma(-e) = \ominus \sigma(e)$





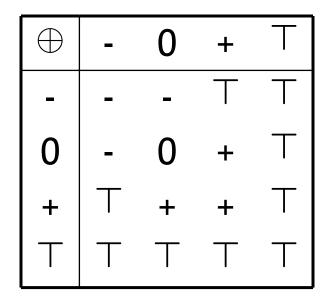
- Now we add addition:
   e ::= n | e<sub>1</sub> \* e<sub>2</sub> | e | e<sub>1</sub> + e<sub>2</sub>
- We define  $\sigma(e_1 + e_2) = \sigma(e_1) \oplus \sigma(e_2)$

# Adding Addition

- The sign values are not closed under addition
- What should be the value of "+  $\oplus$  -"?
- Start from the soundness condition:

 $\gamma(+ \oplus -) \supseteq \{ n_1 + n_2 \mid n_1 > 0, n_2 < 0 \} = \mathbb{Z}$ 

• We don't have an abstract value whose concretization includes  $\mathbb{Z}$ , so we add one:



#### Loss of Precision

• Abstract computation may lose information:

 $\begin{bmatrix} (1+2) + -3 \end{bmatrix} = 0$ but:  $\sigma((1+2) + -3) =$  $(\sigma(1) \oplus \sigma(2)) \oplus \sigma(-3) =$  $(+ \oplus +) \oplus - = \top$ 

- We lost some precision
- But this will simplify the computation of the abstract answer in cases when the precise answer is not computable

# Adding Division

- Straightforward except for division by 0
  - We say that there is no answer in that case

-  $\gamma(+ \oslash 0) = \{ n \mid n = n_1 / 0, n_1 > 0 \} = \emptyset$ 

- Introduce  $\bot$  to be the abstraction of the  $\emptyset$ 
  - We also use the same abstraction for non-termination!
  - ⊥ = "nothing"
  - T = "something unknown"

| $\oslash$ | -      | 0      | +      | Т      | $\bot$ |
|-----------|--------|--------|--------|--------|--------|
| -         | +      | 0      | -      | Т      | $\bot$ |
| 0         | $\bot$ | $\bot$ | $\bot$ | $\bot$ | $\bot$ |
| +         | -      | 0      | +      | Т      | $\bot$ |
|           | Т      | Т      | Т      | Т      | $\bot$ |
|           | $\bot$ | $\bot$ | $\bot$ | $\bot$ | $\bot$ |

### Q: Books (750 / 842)

• This 1962 Newbery Medalwinning novel by Madeleine L'Engle includes Charles Wallace, Mrs. Who, Mrs. Whatsit, Mrs. Which and the space-bending Tesseract.

### **Computer Science**

 This American Turing-award winner is known for developing Speedcoding and FORTRAN (the first two high-level languages), as well creating a way to express the formal syntax of a language and using that approach to specify ALGOL. He later focused on function-level (as opposed to value-level) programming. His first major programming project calculated the positions of the Moon. Oh, and he studied at UVA as an undergrad (but quit).

# Q: Events (596 / 842)

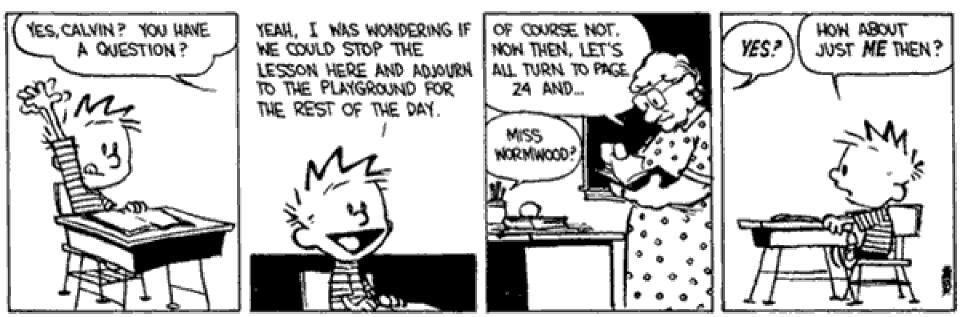
- Fill in the blanks of this 1993 joke with the name of the Prime Minister of the United Kingdom:
  - The Bosnian peace talks continued in Geneva today. The only thing that Alija Izetbegovic, Radovan Karadzic and Slobodan Milosovic could agree on was that <u>blank blank</u> has a funny name.

# The Abstract Domain

- Our abstract domain forms a <u>lattice</u>
- A partial order is induced by  $\boldsymbol{\gamma}$

 $a_1 \leq a_2 \quad \text{iff } \gamma(a_1) \subseteq \gamma(a_2)$ 

- We say that  $a_1$  is more precise than  $a_2$ !
- Every <u>finite subset</u> has a least-upper bound (lub) and a greatest-lower bound (glb)



#### Lattice Facts

- A lattice is <u>complete</u> when every subset has a lub and a gub
  - Even infinite subsets!
- Every finite lattice is (trivially) complete
- Every complete lattice is a complete partial order (recall: denotational semantics!)
  - Since a chain is a subset
- Not every CPO is a complete lattice
  - Might not even be a lattice at all

## Lattice History

- Early work in denotational semantics used lattices (instead of what?)
  - But only chains need to have lubs
  - And there was no need for  $\top$  and glb



# Lattice History

- Early work in denotational semantics used lattices (instead of what?)
  - But only chains need to have lubs
  - And there was no need for  $\top$  and glb
- In abstract interpretation we'll use ⊤ to denote "I don't know".
  - Corresponds to all values in the concrete domain

### From One, Many

- We can start with the abstraction function  $\underline{\beta}$   $\beta:\mathsf{C}\to\mathsf{A}$ 

(maps a concrete value to the best abstract value)A must be a lattice

- We can derive the concretization function  $\gamma$   $\gamma: \mathsf{A} \to \mathcal{P}(\mathsf{C})$ 

 $\gamma(a) = \{ x \in C \mid \beta(x) \le a \}$ 

• And the <u>abstraction for sets  $\alpha$ </u>

 $\alpha : \mathcal{P}(\mathsf{C}) \to \mathsf{A}$  $\alpha(\mathsf{S}) = \mathsf{lub} \{ \beta(\mathsf{x}) \mid \mathsf{x} \in \mathsf{S} \}$ 

# Example

Consider our sign lattice

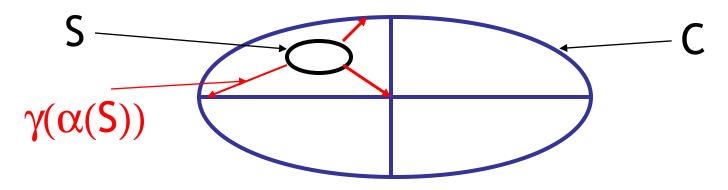
$$\beta(n) = \begin{cases} + & \text{if } n > 0 \\ 0 & \text{if } n = 0 \\ - & \text{if } n < 0 \end{cases}$$

- $\alpha(S) = lub \{ \beta(x) \mid x \in S \}$ 
  - Example:  $\alpha$  ({1, 2}) = lub { + } = +  $\alpha$  ({1, 0}) = lub { +, 0} =  $\top$  $\alpha$  ({}) = lub  $\emptyset$  =  $\bot$
- $\gamma(a) = \{ n \mid \beta(n) \le a \}$

- Example:  $\gamma$  (+) = { n |  $\beta$ (n)  $\leq$  +} =  $\{n \mid \beta(n) = +\} = \{n \mid n > 0\}$  $\gamma$  (T) = { n |  $\beta$ (n)  $\leq$  T } =  $\mathbb{Z}$  $\gamma (\perp) = \{n \mid \beta(n) \leq \perp\} = \emptyset$ 

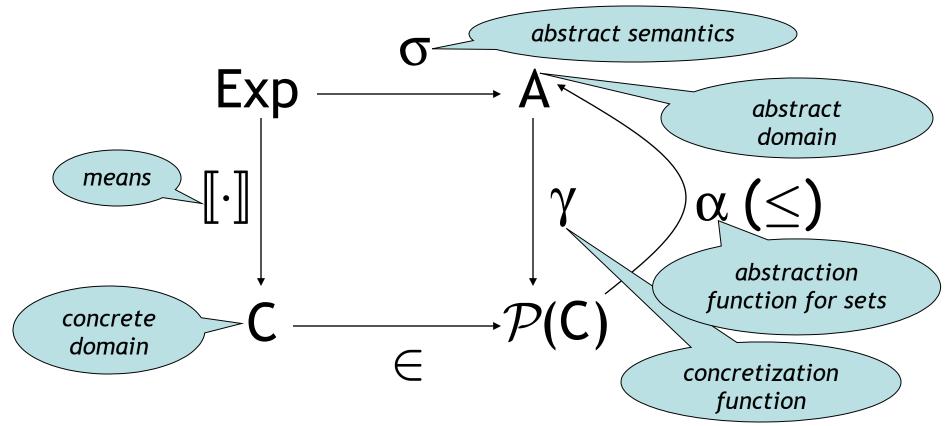
#### **Galois Connections**

- We can show that
  - $\gamma$  and  $\alpha$  are monotonic (with  $\subseteq$  ordering on  $\mathcal{P}(C)$ )
  - $\alpha$  ( $\gamma$  (a)) = a for all a  $\in$  A
  - $\label{eq:gamma-gamma} \gamma \left( \alpha(\mathsf{S}) \right) \supseteq \mathsf{S} \qquad \ \ \text{for all } \mathsf{S} \in \mathcal{P}(\mathsf{C})$
- Such a pair of functions is called a <u>Galois</u> <u>connection</u>
  - Between the lattices A and  $\mathcal{P}(C)$



#### **Correctness Condition**

• In general, abstract interpretation satisfies the following (amazingly common) diagram



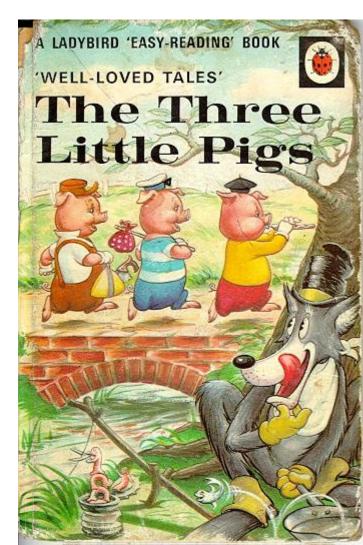
#### **Three Little Correctness Conditions**

- Three conditions define a correct abstract interpretation
- $\alpha$  and  $\gamma$  are monotonic
- α and γ form a Galois connection

= " $\alpha$  and  $\gamma$  are almost inverses"

1. Abstraction of operations is correct

 $a_1 \underline{op} a_2 = \alpha(\gamma(a_1) \text{ op } \gamma(a_2))$ 



# On The Board QuestionsWhat is the VC for:

• This axiomatic rule is unsound. Why?

$$\begin{array}{l} \vdash \{A \land p\} \mathrel{\textbf{C}_{then}} \{B_{then}\} & \vdash \{A \land \neg p\} \mathrel{\textbf{C}_{else}} \{B_{else}\} \\ \vdash \{A\} \textrm{ if } p \textrm{ then } \smash{\textbf{C}_{then}} \textrm{ else } \smash{\textbf{C}_{else}} \{B_{then} \lor B_{else}\} \end{array}$$

#### Homework

- Read Cousot & Cousot Article
- Homework 4 ...