
#1

Automated Theorem ProvingAutomated Theorem Proving
andand

Proof CheckingProof Checking

#2

#3

Cunning Theorem-Proving Plan
• There are full-semester courses on

automated deduction; we will elide details.
• Logic Syntax
• Theories
• Satisfiability Procedures
• Mixed Theories
• Theorem Proving
• Proof Checking
• SAT-based Theorem Provers (cf. Engler paper)

#4

One-Slide Summary

• An automated theorem prover mechanically performs
deduction, producing proofs for true propositions.

• Theorem provers are built atop decision procedures for
individual theories (e.g., theory of arithmetic, theory of
uninterpreted functions).

• Two common theorem prover architectures are
Cooperating Decision Procedures, which broadcast
discovered equalities, and SAT-Based Theorem Provers,
which use SAT solvers to decompose the problem.

• Proof Checking is equivalent to type checking in a
dependent type system.

#5

Motivation
• Can be viewed as “decidable AI”

– Would be nice to have a procedure to automatically
reason from premises to conclusions …

• Used to rule out the exploration of infeasible paths
(model checking, dataflow)

• Used to reason about the heap (McCarthy, symbolic
execution)

• Used to automatically synthesize programs from
specifications (e.g. Leroy, Engler optional papers)

• Used to discover proofs of conjectures (e.g., Tarski
conjecture proved by machine in 1996, efficient
geometry theorem provers)

• Generally under-utilized

#6

History
• Automated deduction is logical deduction

performed by a machine
• Involves logic and mathematics
• One of the oldest and technically deepest

fields of computer science
– Some results are as much as 75 years old
– “Checking a Large Routine”, Turing 1949
– Automation efforts are about 40 years old
– Floyd-Hoare axiomatic semantics

• Still experimental (even after 40 years)

#7

Standard Architecture

Program

Specification

Theorem
In A Logic

Meets Spec
Or

Found A Bug

Verification
Condition

Generation

Semantics

Va
lid

ity

Pr
ov

ab
ili

ty

Automated
Theorem
Proving

#8

Logic Grammar
• We’ll use the following logic:
Goals: G ::= L | true |

G1 Æ G2 | H) G | 8x. G

Hypotheses: H ::= L | true | H1 Æ H2

Literals: L ::= p(E1, …, Ek)

Expressions: E ::= n | f(E1, …, Em)

• This is a subset of first-order logic
– Intentionally restricted: no Ç so far

– Predicate functions p: <, =, …
– Expression functions f: +, *, sel, upd,

#9

Theorem Proving Problem
• Write an algorithm “prove” such that:

• If prove(G) = true then ² G

– Soundness (must have)

• If ² G then prove(G) = true

– Completeness (nice to have, optional)

• prove(H,G) means prove H) G

• Architecture: Separation of Concerns
– #1. Handle Æ,), 8, =

– #2. Handle ·, *, sel, upd, =

#11

Basic Symbolic Theorem Prover

• Let’s define prove(H,G) …
prove(H, true) = true
prove(H, G1 Æ G2) = prove(H,G1) &&

prove(H, G2)

prove(H1, H2) G) = prove(H1 Æ H2, G)

prove(H, 8x. G) = prove(H, G[a/x])

(a is “fresh”)
prove(H, L) = ???

#12

Theorem Prover for Literals
• We have reduced the problem to

prove(H,L)

• But H is a conjunction of literals L1 Æ … Æ Lk

• Thus we really have to prove that
L1 Æ … Æ Lk) L

• Equivalently, that L1 Æ … Æ Lk Æ : L is unsatisfiable
– For any assignment of values to variables the truth value

of the conjunction is false

• Now we can say
prove(H,L) = Unsat(H Æ : L)

#13

Theory Terminology
• A theory consists of a set of functions and

predicate symbols (syntax) and definitions
for the meanings of those symbols
(semantics)

• Examples:
– 0, 1, -1, 2, -3, …, +, -, =, < (usual meanings;

“theory of integers with arithmetic” or
“Presburger arithmetic”)

– =, · (axioms of transitivity, anti-symmetry, and
8x. 8y. x · y Ç y · x ; “theory of total orders”)

– sel, upd (McCarthy’s “theory of lists”)

#14

Decision Procedures for Theories
• The Decision Problem

– Decide whether a formula in a theory with first-
order logic is true

• Example:
– Decide “8x. x>0) (9y. x=y+1)” in {N, +, =, >}

• A theory is decidable when there is an
algorithm that solves the decision problem
– This algorithm is the decision procedure for that

theory

#15

Satisfiability Procedures
• The Satisfiability Problem

– Decide whether a conjunction of literals in the
theory is satisfiable

– Factors out the first-order logic part
– The decision problem can be reduced to the

satisfiability problem
• Parameters for 8, skolem functions for 9, negate and

convert to DNF (sorry; I won’t explain this here)

• “Easiest” Theory = Propositional Logic = SAT
– A decision procedure for it is a “SAT solver”

#16

Theory of Equality

• Theory of equality with uninterpreted
functions

• Symbols: =, , f, g, …
• Axiomatically defined (A,B,C 2 Expressions):

• Example satisfiability problem:

g(g(g(x)))=x Æ g(g(g(g(g(x)))))=x Æ g(x)x

A=A A=B

B=A

A=C

A=B B=C

f(A) = f(B)

A=B

#17

More Satisfying Examples
• Theory of Linear Arithmetic

– Symbols: ¸, =, +, -, integers

– Example: y > 2x + 1, x > 1, y < 0 is unsat
– Satisfiability problem is in P (loosely, no multiplication

means no tricky encodings)

• Theory of Lists
– Symbols: cons, head, tail, nil

– Theorem: head(x) = head(y) Æ tail(x) = tail(y)) x = y
head(cons(A,B)) = A tail(cons(A,B) = B

#18

Computer Science

• This algorithmic strategy is applicable to
decomposable problems that exhibit the
optimal substructure property (in which the
optimal solution to a problem P can be
constructed from the optional solutions to its
overlapping subproblems). The term was
coined in the 1940's by Richard Bellman.
Problems as diverse as “shortest path”,
“sequence alignment” and “CFG parsing” use
this approach.

#19

Mixed Theories
• Often we have facts involving symbols from

multiple theories
– E’s symbols =, , f, g, … (uninterp function equality)
– R’s symbols =, , +, -, ·, 0, 1, … (linear arithmetic)
– Running Example (and Fact):

 ² x · y Æ y + z · x Æ 0 · z) f(f(x) – f(y))  f(z)
– To prove this, we must decide:

Unsat(x · y, y + z · x, 0 · z, f(f(x) – f(y))  f(z))
• We may have a sat procedure for each theory

– E’s sat procedure by Ackermann in 1924
– R’s proc by Fourier

• The sat proc for their combination is much harder
– Only in 1979 did we get E+R

#20

Satisfiability of Mixed Theories

• Can we just separate out the terms in Theory
1 from the terms in Theory 2 and see if they
are separately satisfiable?
– No, unsound, equi-sat  equivalent.

• The problem is that the two satisfying
assignments may be incompatible

• Idea (Nelson and Oppen): Each sat proc
announces all equalities between variables
that it discovers

Unsat(x · y, y + z · x, 0 · z, f(f(x) – f(y))  f(z))

#22

Consider Equality and Arith
f(f(x) – f(y)  f(z) x · y y + z · x 0 · z

x = y y · x

0 = zf(x) = f(y)

f(x) – f(y) = z

f(f(x) – f(y)) = f(z)false
• How can we do

this in our prover?

#23

Nelson-Oppen: The E-DAG
• Represent all terms in one Equivalence DAG

– Node names act as variables shared between
theories!

f(f(x) – f(y))  f(z) Æ y ¸ x Æ x ¸ y + z Æ z ¸ 0
f

-

x y z 0

f
f

·

¸ ¸f

+

#24

Nelson-Oppen: Processing
• Run each sat proc

– Report all contradictions (as usual)
– Report all equalities between nodes (key idea)

Implementation
details: Use union-
find to track node

equivalence classes
in E-DAG. When

merging A=B, also
merge f(A)=f(B).

f

-

x y z 0

f
f

·

¸ ¸f

+

#25

Nelson-Oppen: Processing
• Broadcast all discovered equalities

– Rerun sat procedures
– Until no more equalities or a contradiction

 ContradictionContradiction
XXf

-

x y z 0

f
f

·

¸ ¸f

+

#26

Does It Work?

• If a contradiction is found, then unsat
– This is sound if sat procs are sound
– Because only sound equalities are ever found

• If there are no more equalities, then sat
– Is this complete? Have they shared enough info?
– Are the two satisfying assignments compatible?
– Yes!
– (Countable theories with infinite models admit

isomorphic models, convex theories have
necessary interpretations, etc.)

#27

SAT-Based Theorem Provers

• Recall separation of concerns:
– #1 Prover handles connectives (8, Æ,))

– #2 Sat procs handle literals (+, ·, 0, head)

• Idea: reduce proof obligation into
propositional logic, feed to SAT solver (CVC)
– To Prove: 3*x=9) (x = 7 Æ x · 4)

– Becomes Prove: A) (B Æ C)

– Becomes Unsat: A Æ :(B Æ C)

– Becomes Unsat: A Æ (:B Ç :C)

#28

SAT-Based Theorem Proving

• To Prove: 3*x=9) (x = 7 Æ x · 4)
– Becomes Unsat: A Æ (:B Ç :C)
– SAT Solver Returns: A=1, C=0
– Ask sat proc: unsat(3*x=9, : x·4) = true
– Add constraint: :(A Æ :C)
– Becomes Unsat: A Æ (:B Ç :C) Æ :(A Æ :C)
– SAT Solver Returns: A=1, B=0, C=1
– Ask sat proc: unsat(3*x=9, : x=7, x·4) = false

• (x=3 is a satisfying assignment)

– We’re done! (original to-prove goal is false)
– If SAT Solver returns “no satisfying assignment” then

original to-prove goal is true

#29

Proofs
“Checking proofs ain’t like dustin’ crops, boy!”

#30

Proof Generation

• We want our theorem prover to emit proofs
– No need to trust the prover
– Can find bugs in the prover
– Can be used for proof-carrying code
– Can be used to extract invariants
– Can be used to extract models (e.g., in SLAM)

• Implements the soundness argument
– On every run, a soundness proof is constructed

#31

Proof Representation

• Proofs are trees
– Leaves are hypotheses/axioms
– Internal nodes are inference rules

• Axiom: “true introduction”
– Constant: truei : pf
– pf is the type of proofs

• Inference: “conjunction introduction”
– Constant: andi : pf ! pf ! pf

• Inference: “conjunction elimination”
– Constant: andel : pf ! Pf

• Problem:
– “andel truei : pf” but does not represent a valid proof
– Need a more powerful type system that checks content

` true

` A

` A Æ B

` A Æ B

` A ` B

truei

andi

andel

#32

Dependent Types
• Make pf a family of types indexed by formulas

– f : Type (type of encodings of formulas)
– e : Type (type of encodings of expressions)
– pf : f ! Type (the type of proofs indexed by formulas: it

is a proof that f is true)

• Examples:
– true : f
– and : f ! f ! f

– truei : pf true
– andi : pf A ! pf B ! pf (and A B)

– andi : A:f. B:f. pf A ! pf B ! pf (and A B)
– (A:f.X means “forall A of type f, dependent type X”, see next lecture)

#33

Proof Checking

• Validate proof trees by type-checking them
• Given a proof tree X claiming to prove A Æ B

• Must check X : pf (and A B)
• We use “expression tree equality”, so

– andel (andi “1+2=3” “x=y”) does not have type pf (3=3)
– This is already a proof system! If the proof-supplier wants

to use the fact that 1+2=3 , 3=3, she can include a proof
of it somewhere!

• Thus Type Checking = Proof Checking
– And it’s quite easily decidable! ¤

#34

Parametric Judgment (Time?)
• Universal Introduction Rule of Inference

• We represent bound variables in the logic
using bound variables in the meta-logic
– all : (e ! f) ! f

– Example: 8x. x=x represented as (all (x. eq x x))

– Note: 8y. y=y has an -equivalent representation

– Substitution is done by -reduction in meta-logic
• [E/x](x=x) is (x. eq x x) E

` 8x. A

 ` [a/x]A (a is fresh)

#35

Parametric 8 Proof Rules (Time?)

` 8x. A

 ` [a/x]A (a is fresh)

` [E/x]A

 ` 8x. A

• Universal Introduction
– alli: A:(e ! f). (a:e. pf (A a)) ! pf (all A)

• Universal Elimination
– alle: A:(e ! f). E:e. pf (all A) ! pf (A E)

#36

Parametric 9 Proof Rules (Time?)

 ` [a/x]A

 …

` B

 ` 9x. A ` B

` 9x. A

 ` [E/x]A

• Existential Introduction
– existi: A:(e ! f). E:e. pf (A E) ! pf (exists A)

• Existential Elimination
– existe: A:(e ! f). B:f.

 pf (exists A) ! (a:e. pf (A a) ! pf B) ! pf B

#37

Homework
• Project

– Need help? Stop by my office or send email.

	Automated Theorem Proving and Proof Checking
	Slide 2
	Cunning Plan
	Slide 4
	Motivation
	History
	Standard Architecture
	Logic Grammar
	Theorem Proving Problem
	Theorem Proving
	Basic Symbolic Theorem Prover
	Theorem Prover for Literals
	Theory Terminology
	Decision Procedures for Theories
	Satisfiability Procedures
	Theory of Equality
	More Satisfying Examples
	Slide 18
	Mixed Theories
	Satisfiability of Mixed Theories
	Handling Multiple Theories
	Consider Equality and Arith
	Nelson-Oppen: The E-DAG
	Nelson-Oppen: Processing
	Slide 25
	Does It Work?
	SAT-Based Theorem Provers
	SAT-Based Theorem Proving
	Proofs
	Proof Generation
	Proof Representation
	Dependent Types
	Proof Checking
	Parametric Judgment
	Parametric 8 Proof Rules
	Parametric 9 Proof Rules
	Homework

