
#1

Grad PLGrad PL
vs.vs.

The WorldThe World

#2

Grad PL Conclusions
•You are now equipped to read

the most influential papers in
PL.

•You can also recognize PL
concepts and will know what to
do when they come up in your
research.

#3

ACM SIGPLAN
Most Influential Paper Awards

• SIGPLAN presents these awards to the
author(s) of a paper presented at ICFP,
OOPSLA, PLDI, and POPL held 10 years prior
to the award year. The award includes a prize
of $1,000 to be split among the authors of the
winning paper. The papers are judged by
their influence over the past decade. Each
award is presented at the respective
conference.

#4

• 2008 (POPL 1998): From System F to Typed
Assembly Language, Greg Morrisett, David
Walker, Karl Crary, and Neal Glew.

• ... began a major development in the application of type
system ideas to low level programming. The paper shows
how to compile a high-level, statically typed language into
TAL, a typed assembly language defined by the authors. The
type system for the assembly language ensures that source-
level abstractions like closures and polymorphic functions are
enforced at the machine-code level while permitting
aggressive, low-level optimizations such as register allocation
and instruction scheduling. This infrastructure provides the
basis for ensuring the safety of untrusted low-level code
artifacts, regardless of their source. A large body of
subsequent work has drawn on the ideas in this paper,
including work on proof-carrying code and certifying
compilers.

#5

From System F to Typed
Assembly Language

Polymorphic
Function Type

Tuple Type

Tuple Field
SelectionPolymorphic Function

Type Application

Polymorphic Function
Creation

#6

From System F to Typed
Assembly Language

... but you know it.

Typing Judgment

What is “fix” like?

#7

“ if false ... ; S' ”

“L” is fresh.
Small-step opsem

For allocation.

Operational Semantics,
Forward Symex

#8

From System F to Typed
Assembly Language

Type Preservation

cf. Decomposition

#9

• 2011 (POPL 2001): Anytime, Anywhere:
Modal Logics for Mobile Ambients, Luca
Cardelli and Andrew D. Gordon.

• ... helped spur a flowering of work in the area of
process calculi that continues today. The paper
focused on modal logics for reasoning about both
temporal and spacial modalities for ambient
behaviours, demonstrating techniques that also
apply to other process calculi (even those without an
explicit notion of location), so contributing to
excitement in an area that was growing at that time
and continues. The work has led to application of
concurrency theory in fields as diverse as security,
safety critical applications, query languages for
semistructured data, and systems biology.

#10

Anytime, Anywhere: Modal
Logics for Mobile Ambients

“Pi Calculus”-esque

cf. pi send and receive

#11

Anytime, Anywhere: Modal
Logics for Mobile Ambients

Pi Calculus

Synchronous Rendezvous

#12

• 2011 (PLDI 2001): Automatic predicate
abstraction of C programs, Thomas Ball,
Rupak Majumdar, Todd Millstein, Sriram K.
Rajamani.

• ... presented the underlying predicate abstraction
technology of the SLAM project for checking that
software satisfies critical behavioral properties of the
interfaces it uses and to aid software engineers in
designing interfaces and software that ensure reliable
and correct execution. The technology is now part of
Microsoft's Static Driver Verifier in the Windows Driver
Development Kit. This is one of the earliest examples of
automation of software verification on a large scale and
the basis for numerous efforts to expand the domains
that can be verified.

#13

Automatic predicate
abstraction of C programs

Axiomatic
Semantics

#14

• 2009 (PLDI 1999): A Fast Fourier Transform
Compiler, Matteo Frigo

• ... describes the implementation of genfft, a special-purpose
compiler that produces the performance critical code for a library,
called FFTW (the “Fastest Fourier Transform in the West”), that
computes the discrete Fourier transform. FFTW is the predominant
open fast Fourier transform package available today, as it has been
since its introduction a decade ago. genfft demonstrated the
power of domain-specific compilation—FFTW achieves the best or
close to best performance on most machines, which is remarkable
for a single package. By encapsulating expert knowledge from the
FFT algorithm domain and the compiler domain, genfft and FFTW
provide a tremendous service to the scientific and technical
community by making highly efficient FFTs available to everyone
on any machine. As well as being the fastest FFT in the West, FFTW
may be the last FFT in the West as the quality of this package and
the maturity of the field may mean that it will never be
superseded, at least for computer architectures similar to past and
current ones.

#15

A Fast Fourier
Transform Compiler

No joke. cf. HW5

#16

Your Questions

#17

Grad PL Conclusions
•You are now equipped to read

the most influential papers in
PL.

•You can also recognize PL
concepts and will know what to
do when they come up in your
research.

	Lambda Calculus
	Substitution
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

