
#1

History of Programming LanguagesHistory of Programming Languages

Functional ProgrammingFunctional Programming

#2

Cunning Plan
• History Lesson
• Functional Programming

– OCaml
– Types
– Pattern Matching
– Higher-Order Functions

• Basic Syntax
• Data Structures
• Higher-Order Functions

– Fold

#3

Gone In Sixty Seconds

• Imperative: change state, assignments
• Structured: if/block/routine control

flow
• Object-Oriented: message passing (=

dynamic dispatch), inheritance
• Functional: functions are first-class

citizens that can be passed around or
called recursively. We can avoid
changing state by passing copies.

#6

#7

Surprise Liberal Arts Trivia

• The Ulster Cycle (or Red Branch Cycle) is
one of the four great sagas of this country's
mythology. It includes prominent figures such
as Cú Chulainn and queen Méabh, as well as
the tragic Deirdre (source of Yeats and Synge
plays). The earliest of the stories available is
dated to the 8th century and refers to events
and characters of the 7th.

#8

So What's It About?
• The longest and most important story of the cycle is the

Táin Bó Cúailnge or "Cattle Raid of Cooley", in which
Medb raises an enormous army to invade the Cooley
peninsula and steal the Ulaid's prize bull [...] Warfare
mainly takes the form of cattle raids [...] Cú Chulainn
[...] staves off Medb's army for months, slaying every
champion the queen sends to meet him. [...] Medb, of
course, is not finished with Cú Chulainn, and seeks her
revenge on him through more trickery.
– Wikipedia and others, emphasis mine

• In order words: “A deadly cycle of cattle raids and
revenge attacks between some of the country's groups.”

#9

One Reason Why
• Reason is a biological product -- a tool whose power is inherently

and substantially restricted. It has improved how we do things; it
has not changed why we do things. Reason has generated
knowledge enabling us to fly around the world in less than two
days. Yet we still travel for the same purposes that drove our
ancient ancestors -- commerce, conquest, religion, romance,
curiosity, or escape from overcrowding, poverty, and persecution.
To deny that reason has a role in setting our goals seems, at first,
rather odd. A personal decision to go on a diet or take more
exercise appears to be based upon reason. The same might be said
for a government decision to raise taxes or sign a trade treaty. But
reason is only contributing to the 'how' portion of these decisions;
the more fundamental 'why' element, for all of these examples, is
driven by instinctive self-preservation, emotional needs, and
cultural attitudes. We are usually reluctant to admit the extent to
which these forces govern our behavior, and accordingly we often
recruit reason to explain and justify our actions.
– Donald B. Calne, Within Reason: Rationality and Human Behavior

#10

Modern Era

• 1972 – C1972 – C Systems programming, ASMSystems programming, ASM
• 1983 – Ada1983 – Ada US DOD, static type safetyUS DOD, static type safety
• 1983 – C++1983 – C++ classes, default args, STLclasses, default args, STL
• 1987 – Perl 1987 – Perl dynamic scripting languagedynamic scripting language
• 1990 – Python1990 – Python interp OO + readabilityinterp OO + readability
• 1991 – Java1991 – Java portable OO lang (for iTV)portable OO lang (for iTV)
• 1993 – Ruby1993 – Ruby Perl + SmalltalkPerl + Smalltalk
• 1996 – OCaml1996 – OCaml ML + C++ML + C++
• 2000 – C#2000 – C# “simple” Java + delegates“simple” Java + delegates

I invented the term Object-Oriented,
and I did not have C++ in mind.
- Alan Kay

#11

 Time Travel

• Back to an earlier
time when the US
was worried about a
Communist “perfect
attack”

• In Soviet Russia,
noun verbs you!
 (-1 Redundant)

#13

Oh what a tangled web we weave,
When first we practise to deceive!
- Sir Walter Scott, 1771-1832

Functiona
l Object-

Oriented
Structured
Imperative

There are only two kinds of
programming languages: those people
always [complain] about and those
nobody uses.
- Bjarne Stroustrup

I fear the new OO systems may suffer the
fate of LISP, in that they can do many
things, but the complexity of the class
hierarchies may cause them to collapse
under their own weight.
- Bill Joy

Computer language design
is just like a stroll in the
park. Jurassic Park, that is.
- Larry Wall

#14

Functional Programming

• You know OO and Structured Imperative
• Functional Programming

– Computation = evaluating (math) functions
– Avoid “global state” and “mutable data”
– Get stuff done = apply (higher-order) functions
– Avoid sequential commands

• Important Features
– Higher-order, first-class functions
– Closures and recursion
– Lists and list processing

#15

State

• The state of a program is all of the current
variable and heap values

• Imperative programs destructively modify
existing state

SET {x} add_elem(SET, y)

#16

State

• The state of a program is all of the current
variable and heap values

• Imperative programs destructively modify
existing state

SET {x,y}

#17

State

• The state of a program is all of the current
variable and heap values

• Imperative programs destructively modify
existing state

•
• Functional programs yield new similar states

over time

SET {x,y}

SET_1 {x}

SET_2 = add_elem(SET_1, y)

#18

State

• The state of a program is all of the current
variable and heap values

• Imperative programs destructively modify
existing state

•
• Functional programs yield new similar states

over time

SET {x,y}

SET_1 {x} SET_2 {x,y}

SET_2 = add_elem(SET_1, y)

#19

Basic OCaml
• Let's Start With C

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer is %g\n”, z);
 return z;
}

#20

Basic OCaml
• Let's Start With C

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer is %g\n”, z);
 return z;
}

let avg (x:int) (y:int) : float = beginlet avg (x:int) (y:int) : float = begin

endend

#21

Basic OCaml
• Let's Start With C

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer is %g\n”, z);
 return z;
}

let avg (x:int) (y:int) : float = beginlet avg (x:int) (y:int) : float = begin
 let z = float_of_int (x + y) in let z = float_of_int (x + y) in

endend

#22

Basic OCaml
• Let's Start With C

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer is %g\n”, z);
 return z;
}

let avg (x:int) (y:int) : float = beginlet avg (x:int) (y:int) : float = begin
 let z = float_of_int (x + y) in let z = float_of_int (x + y) in
 let z = z /. 2.0 in let z = z /. 2.0 in

endend

#23

Basic OCaml
• Let's Start With C

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer is %g\n”, z);
 return z;
}

let avg (x:int) (y:int) : float = beginlet avg (x:int) (y:int) : float = begin
 let z = float_of_int (x + y) in let z = float_of_int (x + y) in
 let z = z /. 2.0 in let z = z /. 2.0 in
 printf “Answer is %g\n” z ;printf “Answer is %g\n” z ;

endend

#24

Basic OCaml
• Let's Start With C

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer is %g\n”, z);
 return z;
}

let avg (x:int) (y:int) : float = beginlet avg (x:int) (y:int) : float = begin
 let z = float_of_int (x + y) in let z = float_of_int (x + y) in
 let z = z /. 2.0 in let z = z /. 2.0 in
 printf “Answer is %g\n” z ;printf “Answer is %g\n” z ;
 zz
endend

#25

The Tuple (or Pair)

let x = (22, 58) in (* tuple creation *)
...
let y, z = x in (* tuple field extraction *)
printf “first element is %d\n” y ; ...

let add_points p1 p2 =
 let x1, y1 = p1 in
 let x2, y2 = p2 in
 (x1 + x2, y1 + y2)

#26

List Syntax in OCaml

• Empty List []
• Singleton [element]
• Longer List [e1 ; e2 ; e3]
• Cons x :: [y;z] = [x;y;z]
• Append [w;x]@[y;z] = [w;x;y;z]
• List.length, List.filter, List.fold, List.map …
• More on these later!
• Every element in list must have same type

#27

Functional Example

• Simple Functional Set (built out of lists)
– let rec add_elem (s, e) =
– if s = [] then [e]
– else if List.hd s = e then s
– else List.hd s :: add_elem(List.tl s, e)

• Pattern-Matching Functional (same effect)
– let rec add_elem (s,e) = match s with
– | [] -> [e]
– | hd :: tl when e = hd -> s
– | hd :: tl -> hd :: add_elem(tl, e)

#28

Imperative Code
• More cases to handle

List* add_elem(List *s, item e) {
 if (s == NULL)
 return list(e, NULL);
 else if (s->hd == e)
 return s;
 else if (s->tl == NULL) {
 s->tl = list(e, NULL); return s;
 } else
 return add_elem(s->tl, e);
}

I have stopped reading Stephen
King novels. Now I just read C
code instead.
- Richard O’Keefe

Real-World Languages

• This Indo-European language spans
34 centuries of written records. It
arose from Phoenician and in turn
served as the basis for Latin and
Cyrillic. It boasts a number of
Western canon works, including the
Odyssey, Iliad, Platonic dialogues,
and Christian New Testament.

#30

Functional-Style Advantages

• Tractable program semantics
– Procedures are functions
– Formulate and prove assertions about code
– More readable

• Referential transparency
– Replace any expression by its value without

changing the result

• No side-effects
– Fewer errors

#31

Functional-Style Disadvantages

• Efficiency
– Copying takes time

• Compiler implementation
– Frequent memory allocation

• Unfamiliar (to you!)
– New programming style

• Not appropriate for every program
– Operating systems, etc.

3.96.5Python

5.62.4C# (mono)

9.11.7Java (JDK –server)

111.7Lisp

16

1.5

1.0

1.0

Speed

5.0Ruby

2.9OCaml

1.6C++ (g++)

1.1C (gcc)

SpaceLanguage

17 small benchmarks

#32

ML Innovative Features

• Type system
– Strongly typed
– Type inference
– Abstraction

• Modules
• Patterns
• Polymorphism
• Higher-order functions
• Concise formal semantics

There are many ways of trying to
understand programs. People often rely
too much on one way, which is called
“debugging” and consists of running a
partly-understood program to see if it
does what you expected. Another way,
which ML advocates, is to install some
means of understanding in the very
programs themselves.
- Robin Milner, 1997

#33

Type System
• Type Inference

– let rec add_elem (s,e) = match s with
– | [] -> [e]
– | hd :: tl when e = hd -> s
– | hd :: tl -> hd :: add_elem(tl, e)
– val add_elem : list * -> list
– “ list” means “List<T>” or “List<>”

• ML infers types
– Inconsistent or incomplete type is an error

• Optional type declarations (exp : type)
– Clarify ambiguous cases, documentation

#34

Pattern Matching
• Simplifies Code (eliminates ifs, accessors)

type btree = (* binary tree of strings *)
 | Node of btree * string * btree
 | Leaf of string
let rec height tree = match tree with
 | Leaf _ -> 1
 | Node(x,_,y) -> 1 + max (height x) (height y)
let rec mem tree elt = match tree with
 | Leaf str -> str = elt
 | Node(x,str,y) -> str = elt ||
 mem x elt || mem y elt

#35

Pattern Matching Mistakes

• What if I forget a case?
– let rec is_odd x = match x with
– | 0 -> false
– | 2 -> false
– | x when x > 2 -> is_odd (x-2)
– Warning P: this pattern-matching is not

exhaustive.
– Here is an example of a value that is not

matched: 1

#36

Polymorphism

• Functions and type inference are
polymorphic
– Operate on more than one type
– let rec length x = match x with
– | [] -> 0
– | hd :: tl -> 1 + length tl
– val length : list -> int
– length [1;2;3] = 3
– length [“algol”; ”smalltalk”; ”ml”] = 3
– length [1 ; “algol”] = ?

means “any
one type”

#37

Higher-Order Functions
• Function are first-class values

– Can be used whenever a value is expected
– Notably, can be passed around
– Closure captures the environment
– let rec map f lst = match lst with
– | [] -> []
– | hd :: tl -> f hd :: map f tl
– val map : (->) -> list -> list
– let offset = 10 in
– let myfun x = x + offset in
– val myfun : int -> int
– map myfun [1;8;22] = [11;18;32]

• Extremely powerful programming technique
– General iterators
– Implement abstraction

f is itself a
function!

#38

The Story of Fold
• We’ve seen length and map
• We can also imagine …

– sum [1; 5; 8] = 14
– product [1; 5; 8] = 40
– and [true; true; false] = false
– or [true; true; false] = true
– filter (fun x -> x>4) [1; 5; 8] = [5; 8]
– reverse [1; 5; 8] = [8; 5; 1]
– mem 5 [1; 5; 8] = true

• Can we build all of these?

#39

The House That Fold Built

• The fold operator comes from Recursion
Theory (Kleene, 1952)
– let rec fold f acc lst = match lst with
– | [] -> acc
– | hd :: tl -> fold f (f acc hd) tl
– val fold : (-> ->) -> -> list ->

• Imagine we’re summing a list (f = addition):

9 2 7 4 5 7 4 5… 11
f

4 518 … 27

acc lst

#40

It’s Lego TimeIt’s Lego Time

• Let’s build things out of Fold!
– length lst = fold (fun acc elt -> acc + 1) 0 lst
– sum lst = fold (fun acc elt -> acc + elt) 0 lst
– product lst=fold (fun acc elt -> acc * elt) 1 lst
– and lst = fold (fun acc elt -> acc & elt) true lst

• How would we do or?
• How would we do reverse?

#41

Tougher LegosTougher Legos
• Examples:

– reverse lst = fold (fun acc e -> acc @ [e]) [] lst
• Note typing: (acc : list) (e :)

– filter keep_it lst = fold (fun acc elt ->
– if keep_it elt then elt :: acc else acc) [] lst
– mem wanted lst = fold (fun acc elt ->
– acc || wanted = elt) false lst

• Note typing: (acc : bool) (e :)

• How do we do map?
– Recall: map (fun x -> x +10) [1;2] = [11;12]
– Let’s write it on the board …

#42

Map From Fold

• let map myfun lst =
• fold (fun acc elt -> (myfun elt) :: acc) [] lst

– Types: (myfun : ->)
– Types: (lst : list)
– Types: (acc : list)
– Types: (elt :)

• How do we do sort?
– (sort : (* -> bool) -> list -> list)

Do nothing which is of no use.
- Miyamoto Musashi, 1584-1645

#43

Sorting Examples
• langs = [“fortran”; “algol”; “c”]
• courses = [216; 333; 415]
• sort (fun a b -> a < b) langs

– [“algol”; “c”; “fortran”]

• sort (fun a b -> a > b) langs
– [“fortran”; “c”; “algol”]

• sort (fun a b -> strlen a < strlen b) langs
– [“c”; “algol”; “fortran”]

• sort (fun a b -> match is_odd a, is_odd b with
• | true, false -> true (* odd numbers first *)
• | false, true -> false (* even numbers last *)
• | _, _ -> a < b (* otherwise ascending *)) courses

– [333 ; 415 ; 216]

Java uses
Inner Classes

for this.

#44

Partial Application and Currying

• let myadd x y = x + y
• val myadd : int -> int -> int
• myadd 3 5 = 8
• let addtwo = myadd 2

– How do we know what this means? We use referential
transparency! Basically, just substitute it in.

• val addtwo : int -> int
• addtwo 77 = 79
• Currying: “if you fix some arguments, you

get a function of the remaining arguments”

#46

Homework
• Cool Reference Manual
• Backus Speedcoding
• PA1c

	History of Programming Languages Functional Programming
	Cunning Plan
	Gone In Sixty Seconds
	Why Study History?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Modern Era
	Slide 11
	Slide 12
	Slide 13
	Functional Programming
	State
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	List Syntax in OCaml
	Functional Example
	Imperative Code
	Slide 29
	Functional-Style Advantages
	Functional-Style Disadvantages
	ML Innovative Features
	Type System
	Pattern Matching
	Pattern Matching Mistakes
	Polymorphism
	Higher-Order Functions
	The Story of Fold
	The House That Fold Built
	It’s Lego Time
	Tougher Legos
	Map From Fold
	Sorting Examples
	Partial Application and Currying
	Applicability
	Homework

