Top=Down Parsing

Extra Credit Question

- Given this grammar G :

$$
\begin{aligned}
& -\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \\
& -\mathrm{E} \rightarrow \mathrm{~T} \\
& -\mathrm{T} \rightarrow \mathrm{~T}^{*} \text { int } \\
& -\mathrm{T} \rightarrow \text { int } \\
& -\mathrm{T} \rightarrow(\mathrm{E})
\end{aligned}
$$

- Is the string int * (int + int) in L(G)?
- Give a derivation or prove that it is not.

Revenge of Theory

- How do we tell if DFA \mathbf{P} is equal to DFA \mathbf{Q} ?
- We can do: "is DFA P empty?"
- How?
- We can do: "P := not Q"
- How?
- We can do: "P := Q intersect R"
- How?
- So do: "is P intersect not Q empty?"
- Does this work for CFG X and CFG Y?
- Can we tell if s is in CFG X?

Outline

- Recursive Descent Parsing
- Left Recursion
- LL(1) Parsing
- LL(1) Parsing Tables
- LP(1) Parsing Algorithm
- Constructing LL(1) Parsing Tables
- First, Follow

In One Slide

- An LL(1) parser reads tokens from left to right and constructs a top-down leftmost derivation. $\operatorname{LL}(1)$ parsing is a special case of recursive descent parsing in which you can predict which single production to use from one token of lookahead. $\operatorname{LL}(1)$ parsing is fast and easy, but it does not work if the grammar is ambiguous, left-recursive, or not left-factored (i.e., it does not work for most programming languages).

Intro to Top-Down Parsing

- Terminals are seen in order of appearance in the token stream:

$$
t_{1} t_{2} t_{3} \quad t_{4} \quad t_{5}
$$

The parse tree is constructed

- From the top
- From left to right

Recursive Descent Parsing

- We'll try recursive descent parsing first
- "Try all productions exhaustively, backtrack"
- Consider the grammar

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow(\mathrm{E}) \mid \text { int | int * } \mathrm{T}
\end{aligned}
$$

- Token stream is: int * int
- Start with top-level non-terminal E
- Try the rules for E in order

Recursive Descent Example

- Try $\mathrm{E}_{0} \rightarrow \mathrm{~T}_{1}+\mathrm{E}_{2}$

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \text { (E) | int | int * T } \\
& \text { Innut = int * int }
\end{aligned}
$$

- Then try a rule for $T_{1} \rightarrow\left(E_{3}\right)$
- But (does not match input token int
- Try $\mathrm{T}_{1} \rightarrow$ int . Token matches.
- But + after T_{1} does not match input token *
- Try $\mathrm{T}_{1} \rightarrow$ int * T_{2}
- This will match but + after T_{1} will be unmatched
- Have exhausted the choices for T_{1}
- Backtrack to choice for E_{0}

Recursive Descent Example (2)

- Try $\mathrm{E}_{0} \rightarrow \mathrm{~T}_{1}$

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \text { (E) | int | int * T } \\
& \text { Input = int * int }
\end{aligned}
$$

- Follow same steps as before for T_{1}
- And succeed with $\mathrm{T}_{1} \rightarrow$ int ${ }^{*} \mathrm{~T}_{2}$ and $\mathrm{T}_{2} \rightarrow$ int
- With the following parse tree

YOUR PARTY ENTERS THE TAVERN.
I GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE AND
GET OUT SOME PARCHMENT
FOR CHARACTER SHEETS.
hEY, NO RECURSING.

Recursive Descent Parsing

- Parsing: given a string of tokens $t_{1} t_{2} \ldots t_{n}$, find its parse tree
- Recursive descent parsing: Try all the productions exhaustively
- At a given moment the fringe of the parse tree is: $\mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{k}} \mathrm{A} \ldots$
- Try all the productions for A : if $A \rightarrow B C$ is a production, the new fringe is $t_{1} t_{2} \ldots t_{k} B C \ldots$
- Backtrack when the fringe doesn't match the string
- Stop when there are no more non-terminals

When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S$ a:
- In the process of parsing S we try the above rule
- What goes wrong?
- A left-recursive grammar has

$$
S \rightarrow^{+} S \alpha \text { for some } \alpha
$$

Recursive descent does not work in such cases

- It goes into an ∞ loop

What's Wrong With That Picture?

Elimination of Left Recursion

- Consider the left-recursive grammar

$$
S \rightarrow S \alpha \mid \beta
$$

- S generates all strings starting with a β and followed by a number of α
- Can rewrite using right-recursion

$$
\begin{aligned}
& \mathrm{S} \rightarrow \beta \mathrm{~T} \\
& \mathrm{~T} \rightarrow \alpha \mathrm{~T} \mid \varepsilon
\end{aligned}
$$

Example of Eliminating Left Recursion

- Consider the grammar $\mathrm{S} \rightarrow 1 \mid \mathrm{S} 0$ ($\beta=1$ and $\alpha=0$)
It can be rewritten as

$$
\begin{aligned}
& \mathrm{S} \rightarrow 1 \mathrm{~T} \\
& \mathrm{~T} \rightarrow 0 \mathrm{~T} \mid \varepsilon
\end{aligned}
$$

More Left Recursion Elimination

- In general

$$
S \rightarrow S \alpha_{1}|\ldots| S \alpha_{n}\left|\beta_{1}\right| \ldots \mid \beta_{m}
$$

- All strings derived from S start with one of $\beta_{1}, \ldots, \beta_{\mathrm{m}}$ and continue with several instances of $\alpha_{1}, \ldots, \alpha_{n}$
- Rewrite as

$$
\begin{aligned}
& \mathrm{S} \rightarrow \beta_{1} \mathrm{~T}|\ldots| \beta_{\mathrm{m}} \mathrm{~T} \\
& \mathrm{~T} \rightarrow \alpha_{1} \mathrm{~T}|\ldots| \alpha_{\mathrm{n}} \mathrm{~T} \mid \varepsilon
\end{aligned}
$$

General Left Recursion

- The grammar

$$
\begin{aligned}
& S \rightarrow A \alpha \mid \delta \\
& A \rightarrow S \beta
\end{aligned}
$$

is also left-recursive because

$$
S \rightarrow^{+} S \beta \alpha
$$

And some of them are not

- This left-recursion can also be eliminated
- See book, Section 2.3
- Detecting and eliminating left recursion are popular test questions

Summary of Recursive Descent

- Simple and general parsing strategy
- Left-recursion must be eliminated first
- ... but that can be done automatically
- Unpopular because of backtracking
- Thought to be too inefficient (repetition)
- We can avoid backtracking
- Sometimes ...

Predictive Parsers

- Like recursive descent but parser can "predict" which production to use
- By looking at the next few tokens
- No backtracking
- Predictive parsers accept LL(k) grammars
- First L means "left-to-right" scan of input
- Second L means "leftmost derivation"
- The k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

Sometimes Things Are Perfect

- The ".ml-lex" format you emit in PA2
- Will be the input for PA3
- actually the reference ".ml-lex" will be used
- It can be "parsed" with no lookahead
- You always know just what to do next
- Ditto with the ".ml-ast" output of PA3
- Just write a few mutually-recursive functions
- They read in the input, one line at a time

LL(1)

- In recursive descent, for each non-terminal and input token there may be a choice of which production to use
- LL(1) means that for each non-terminal and token there is only one production that could lead to success
- Can be specified as a 2D table
- One dimension for current non-terminal to expand
- One dimension for next token
- Each table entry contains one production

Predictive Parsing and Left Factoring

- Recall the grammar

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \| \mathrm{T} \\
& \mathrm{~T} \rightarrow \text { int } \mid \text { int }{ }^{*} \mathrm{~T} \|(\mathrm{E})
\end{aligned}
$$

- Impossible to predict because
- For T two productions start with int
- For E it is not clear how to predict
- A grammar must be left-factored before use for predictive parsing

Left-Factoring Example

- Recall the grammar

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \text { int } \mid \text { int }{ }^{*} \mathrm{~T} \mid(\mathrm{E})
\end{aligned}
$$

- Factor out common prefixes of productions

$$
\begin{aligned}
& E \rightarrow T X \\
& X \rightarrow+E \mid \varepsilon \\
& T \rightarrow(E) \mid \operatorname{int} Y \\
& Y \rightarrow \text { * } T \mid \varepsilon
\end{aligned}
$$

Introducing: Parse Tables

A table for every occasion

LL(1) Parsing Table Example

- Left-factored grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- The $\operatorname{LL}(1)$ parsing table ($\$$ is a special end marker):

	int	$*$	+	$($	$)$	$\$$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		$* \mathrm{~T}$	ε		ε	ε

LL(1) Parsing Table Example Analysis

- Consider the [E, int] entry
- "When current non-terminal is E and next input is int, use production $\mathrm{E} \rightarrow \mathrm{T} X$ "
- This production can generate an int in the first position

	int	*	+	()	\$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

LL(1) Parsing Table Example Analysis

- Consider the [Y,+] entry
- "When current non-terminal is Y and current token is +, get rid of Y"
- We'll see later why this is so

	int	$*$	+	$($	$)$	$\$$
T	$\operatorname{int~Y}$			(E)		
E	TX			TX		
X			+E		ε	ε
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

LL(1) Parsing Tables: Errors

- Blank entries indicate error situations
- Consider the [$\mathrm{E},{ }^{*}$] entry
- "There is no way to derive a string starting with * from non-terminal E"

	int	$*$	+	$($	$)$	$\$$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

Using Parsing Tables

- Method similar to recursive descent, except
- For each non-terminal S
- We look at the next token a
- And choose the production shown at [S, a]
- We use a stack to keep track of pending nonterminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

initialize stack = <S \$>
next = (pointer to tokens)
repeat
match stack with
| <X, rest>: if $T[X, *$ next $]=Y_{1} \ldots Y_{n}$ then stack $\leftarrow<\mathbf{Y}_{1} \ldots \mathbf{Y}_{\mathrm{n}}$ rest> else error ()
| < t , rest>: if $\mathrm{t}==$ *next ++ then stack \leftarrow <rest> else error ()
until stack $==<>$

Stack

	int	${ }^{*}$	+	$($	$)$	$\$$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

Stack
 E \$

Input int * int \$

Action
TX

	int	$*$	+	$($	$)$	$\$$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

Input int * int \$ int * int \$

Action
TX int Y

	int	$*$	+	$($	$)$	$\$$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

Stack
E \$
TX \$
int Y X \$

Input
int * int \$ int * int \$ int * int \$

Action
TX int Y
terminal

	int	$*$	+	$($	$)$	$\$$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

Stack
 E \$
 TX \$
 int Y X \$
 Y X \$

Action
T X int Y
terminal * T

	int	*	+	$($	$)$	$\$$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

Stack
E \$
TX \$
int Y X \$
Y X \$
* T X \$

Input
int * int \$ int * int \$
int * int \$

* int \$
* int \$

Action
TX int Y
terminal * T terminal

	int	*	+	$($	$)$	$\$$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

Stack
E \$
TX \$
int Y X \$
Y X \$
* T X \$
TX \$

Input
int * int \$ int * int \$
int * int \$

* int \$
* int \$
int \$

Action
T X
int Y
terminal

* T
terminal int Y

	int	*	+	$($	$)$	$\$$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

Stack	Input
E \$	int * int \$
T X \$	int * int \$
int Y X \$	int * int \$
Y X \$	* int \$
* T X \$	* int \$
T X \$	int \$
int Y X \$	int \$

Action
T X
int Y
terminal

* T
terminal int Y
terminal

	int	*	+	$($	$)$	$\$$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

Stack
E \$
TX \$
int Y X \$
Y X \$

* T X \$

TX \$
int Y X \$
Y X \$

Input
int * int \$
int * int \$
int * int \$

* int \$
* int \$
int \$
int \$
\$

Action
T X
int Y
terminal

* T
terminal int Y
terminal
ε

	int	*	+	$($	$)$	$\$$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

Stack	Input
E \$	int *int \$
TX \$	int * int \$
int Y X \$	int * int \$
Y X \$	* int \$
*TX \$	*int \$
TX \$	int \$
int Y X \$	int \$
Y X \$	\$
X \$	\$

Action
T X int Y
terminal * T
terminal int Y
terminal
ε
E

	int	*	+	$($	$)$	$\$$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

LL(1) Languages

- LL(1) languages can be LL(1) parsed
- A language Q is $\operatorname{LL}(1)$ if there exists an $\operatorname{LL}(1)$ table such the $\mathrm{LL}(1)$ parsing algorithm using that table accepts exactly the strings in Q
- No table entry can be multiply defined
- Once we have the table
- The parsing algorithm is simple and fast
- No backtracking is necessary
- Want to generate parsing tables from CFG!

Q: Movies (263 / 842)

- This 1982 Star Trek film features Spock nerve-pinching McCoy, Kirstie Alley "losing" the Kobayashi Maru , and Chekov being mind-controlled by a slug-like alien. Ricardo Montalban is "is intelligent, but not experienced. His pattern indicates two-dimensional thinking."

Q: Music (238 / 842)

- For two of the following four lines from the 1976 Eagles song Hotel California, give enough words to complete the rhyme.
- So I called up the captain / "please bring me my wine"
- Mirrors on the ceiling / pink champagne on ice
- And in the master's chambers / they gathered for the feast
- We are programmed to receive / you can checkout any time you like,

Q: Books (727 / 842)

- Name 5 of the 9 major characters in A. A. Milne's 1926 books about a "bear of very little brain" who composes poetry and eats honey.

Top-Down Parsing. Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
- Always expand the leftmost non-terminal

int * int + int

Top-Down Parsing. Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
- Always expand the leftmost non-terminal

- The leaves at any point form a string β A γ
- β contains only terminals
- The input string is β bs
- The prefix β matches
- The next token is b

Top-Down Parsing. Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
- Always expand the leftmost non-terminal

int * int + int
- The leaves at any point form a string $\beta A \gamma$
- β contains only terminals
- The input string is β b δ
- The prefix β matches
- The next token is b

Top-Down Parsing. Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
- Always expand the leftmost non-terminal

- The leaves at any point form a string β A γ
- β contains only terminals
- The input string is β b δ
- The prefix β matches
- The next token is b

Constructing

Predictive Parsing Tables

- Consider the state $S \rightarrow{ }^{*} \beta A \gamma$
- With b the next token
- Trying to match $\beta \mathrm{b} \delta$

There are two possibilities:

- b belongs to an expansion of A
- Any $\mathrm{A} \rightarrow \alpha$ can be used if b can start a string derived from α In this case we say that $b \in \operatorname{First}(\alpha)$

Constructing Predictive Parsing Tables

- b does not belong to an expansion of A
- The expansion of A is empty and b belongs to an expansion of γ (e.g., b ω)
- Means that b can appear after A in a derivation of the form $S \rightarrow * \beta A b \omega$
- We say that $b \in \underline{\text { Follow }}(A)$ in this case
- What productions can we use in this case?
- Any $\mathrm{A} \rightarrow \alpha$ can be used if α can expand to ε
- We say that $\varepsilon \in \operatorname{First}(\mathrm{A})$ in this case

Computing First Sets

Definition $\operatorname{First}(X)=\left\{b \mid X \rightarrow{ }^{*} b \alpha\right\} \cup\left\{\varepsilon \mid X \rightarrow{ }^{*} \varepsilon\right\}$

- First(b) = \{b \}
- For all productions $X \rightarrow A_{1} \ldots A_{n}$
- Add First $\left(A_{1}\right)-\{\varepsilon\}$ to First(X). Stop if $\varepsilon \notin \operatorname{First}\left(\mathrm{A}_{1}\right)$
- $\operatorname{Add} \operatorname{First}\left(A_{2}\right)-\{\varepsilon\}$ to $\operatorname{First}(X)$. Stop if $\varepsilon \notin \operatorname{First}\left(A_{2}\right)$
- Add First $\left(\mathrm{A}_{\mathrm{n}}\right)-\{\varepsilon\}$ to $\operatorname{First}(\mathrm{X})$. Stop if $\varepsilon \notin \operatorname{First}\left(\mathrm{A}_{\mathrm{n}}\right)$
- Add ε to First(X) (ignore A_{i} if it is X)

Example First Set Computation

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- First sets

First(() = \{ (\}
First()) = \{) \}
First (int) $=\{$ int $\}$ First $(X)=\{+, \varepsilon\}$
First(+) $=\{+\}$
First(*) $=\left\{{ }^{*}\right\}$

First(T) = \{int, (\}
First(E) $=\{$ int, ($\}$

First (Y$)=\left\{{ }^{*}, \varepsilon\right\}$

Computing Follow Sets

Definition $\quad \operatorname{Follow}(X)=\left\{b \mid S \rightarrow{ }^{*} \beta \mathrm{Xb} \omega\right\}$

- Compute the First sets for all non-terminals first
- Add $\$$ to Follow(S) (if S is the start non-terminal)
- For all productions $\mathrm{Y} \rightarrow \ldots \mathrm{XA}_{1} \ldots \mathrm{~A}_{\mathrm{n}}$
- Add First $\left(\mathrm{A}_{\mathrm{A}}\right)-\{\varepsilon\}$ to Follow (X). Stop if $\varepsilon \notin$ First $\left(\mathrm{A}_{\mathrm{A}}\right)$
- Add First $\left(A_{2}\right)-\{\varepsilon\}$ to Follow (X). Stop if $\varepsilon \notin \operatorname{First}\left(A_{2}\right)$
- Add First $\left(A_{n}\right)-\{\varepsilon\}$ to Follow (X). Stop if $\varepsilon \notin$ First $\left(A_{n}\right)$
- Add Follow(Y) to Follow(X)

Example Follow Set Computation

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- Follow sets

Follow (+) $=\{$ int, ($\} \quad$ Follow (${ }^{*}$) $=\{$ int, $(\}$
Follow(() = \{int, (\} Follow(E) =\{), \$\}
Follow (X) $=\{\$$,) $\}$
Follow(T) =\{+,) , \$\}
Follow ()) = \{+,) , \$\} Follow (Y) =\{+,) , \$\}
Follow(int) $=\left\{{ }^{*},+\right.$,) , \$\}

Constructing LL(1) Parsing Tables

- Here is how to construct a parsing table T for context-free grammar G
- For each production $\mathrm{A} \rightarrow \alpha$ in G do:
- For each terminal $b \in \operatorname{First}(\alpha)$ do

$$
\cdot T[A, b]=\alpha
$$

- If $\alpha \rightarrow{ }^{*} \varepsilon$, for each $b \in \operatorname{Follow}(A)$ do
-T[A, b] = α

LL(1) Table Construction Example

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- Where in the row of Y do we put $\mathrm{Y} \rightarrow{ }^{*} \mathrm{~T}$?
- In the columns of First(*T) =\{* $\}$

	int	$*$	+	$($	$)$	$\$$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

LL(1) Table Construction Example

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- Where in the row of Y we put $\mathrm{Y} \rightarrow \varepsilon$?
- In the columns of Follow(Y) =\{\$,+,) \}

	int	$*$	+	$($	$)$	$\$$
T	int Y			(E)		
E	TX			TX		
X			+E		ε	ε
Y		$* \mathrm{~T}$	ε		ε	ε

Avoid Multiple Definitions!

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
- If G is ambiguous
- If G is left recursive
- If G is not left-factored
- And in other cases as well
- Most programming language grammars are not LL(1) (e.g., Java, Ruby, C++, OCaml, Cool, Perl, ...)
- There are tools that build LL(1) tables

Simple Parsing Strategies

- Recursive Descent Parsing
- But backtracking is too annoying, etc.
- Predictive Parsing, aka. LL(k)
- Predict production from k tokens of lookahead
- Build LL(1) table
- Parsing using the table is fast and easy
- But many grammars are not LL(1) (or even LL(k))
- Next: a more powerful parsing strategy for grammars that are not LL(1)

Homework

- WA1 (written homework) due
- Turn in to drop-box.
- PA2 (Lexer) due
- You may work in pairs.
- Keep up with the reading ...

