The more things change...


## LR Parsing

## Bottom-Up Parsing



# How To Survive CS 415 

- Writter Assigniments
- Midterms
-Gheat Shegt?
- Final Exam


## Outline

- No Stopping The Parsing!
- LL(1) Construction
- Bottom-Up Parsing
- LR Parsing
- Shift and Reduce
- LR(1) Parsing Algorithm
- LR(1) Parsing Tables

WA1 Average: 3.5 / 5.0 Quiz2 Average: 1.8 / 2.0

## In One Slide

- If the $\operatorname{LL}(1)$ table for a grammar G has multiple entries, then G is not LL(1)!
- An LR(1) parser reads tokens from left to right and constructs a bottom-up rightmost derivation. LR(1) parsers shift terminals and reduce the input by application productions in reverse. LR(1) parsing is fast and easy, and uses a finite automaton with a stack. $L R(1)$ works fine if the grammar is leftrecursive, or not left-factored.


## Computing Follow Sets

Definition $\quad \operatorname{Follow}(X)=\left\{b \mid S \rightarrow{ }^{*} \beta \mathrm{Xb} \omega\right\}$

- Compute the First sets for all non-terminals first
- Add $\$$ to Follow(S) (if $S$ is the start non-terminal)
- For all productions $\mathrm{Y} \rightarrow \ldots \mathrm{XA}_{1} \ldots \mathrm{~A}_{\mathrm{n}}$
- Add First $\left(\mathrm{A}_{1}\right)-\{\varepsilon\}$ to Follow $(\mathrm{X})$. Stop if $\varepsilon \notin \operatorname{First}\left(\mathrm{A}_{1}\right)$
- Add First $\left(A_{2}\right)-\{\varepsilon\}$ to Follow $(X)$. Stop if $\varepsilon \notin \operatorname{First}\left(A_{2}\right)$
- Add First $\left(A_{n}\right)-\{\varepsilon\}$ to Follow $(X)$. Stop if $\varepsilon \notin$ First $\left(A_{n}\right)$
- Add Follow(Y) to Follow(X)


## Example Follow Set Computation

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- Follow sets

Follow( + ) = \{int, ( $\} \quad$ Follow( * ) = ?
Follow( ( ) = \{int, ( \} Follow( E ) = ?
Follow ( $X$ ) $=\{\$$, ) $\}$
Follow ( T ) = ?
Pencil Time!
Follow( ) ) =\{+, ), \$\} Follow( Y ) = ?
Follow( int) $=\left\{{ }^{*},+\right.$, ) , \$\}

## Example Follow Set Computation

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- Follow sets

Follow ( + ) $=\{$ int, ( $\} \quad$ Follow ( ${ }^{*}$ ) $=\{$ int, $( \}$
Follow( ( ) = \{int, ( \} Follow( E ) =\{), \$\}
Follow ( $X$ ) $=\{\$$, ) $\}$
Follow( T ) =\{+, ) , \$\}
Follow ( ) ) = \{+, ) , \$\} Follow ( Y ) =\{+, ) , \$\}
Follow( int) $=\left\{{ }^{*},+\right.$, ) , \$\}

## Constructing LL(1) Parsing Tables

- Here is how to construct a parsing table T for context-free grammar G
- For each production $\mathrm{A} \rightarrow \alpha$ in G do:
- For each terminal $b \in \operatorname{First}(\alpha)$ do

$$
\cdot T[A, b]=\alpha
$$

- If $\alpha \rightarrow{ }^{*} \varepsilon$, for each $b \in \operatorname{Follow}(A)$ do
-T[A, b] = $\alpha$


## LL(1) Table Construction Example

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- Where in the row of Y do we put $\mathrm{Y} \rightarrow{ }^{*} \mathrm{~T}$ ?
- In the columns of First( *T ) =\{* $\}$

|  | int | $*$ | + | $($ | $)$ | $\$$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | int Y |  |  | $(\mathrm{E})$ |  |  |
| E | TX |  |  | TX |  |  |
| X |  |  | +E |  | $\varepsilon$ | $\varepsilon$ |
| Y |  | $* \mathrm{~T}$ | $\varepsilon$ |  | $\varepsilon$ | $\varepsilon$ |

## LL(1) Table Construction Example

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- Where in the row of Y we put $\mathrm{Y} \rightarrow \varepsilon$ ?
- In the columns of $\operatorname{Follow}(\mathrm{Y})=\{\$,+)$,

|  | int | $*$ | + | $($ | $)$ | $\$$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | int Y |  |  | $(\mathrm{E})$ |  |  |
| E | TX |  |  | TX |  |  |
| X |  |  | +E |  | $\varepsilon$ | $\varepsilon$ |
| Y |  | ${ }^{*} \mathrm{~T}$ | $\varepsilon$ |  | $\varepsilon$ | $\varepsilon$ |

## Avoid Multiple Definitions!



## Notes on LL(1) Parsing Tables

- If any entry is multiply defined then $G$ is not LL(1)
- If G is ambiguous
- If $G$ is left recursive
- If G is not left-factored
- And in other cases as well
- Most programming language grammars are not LL(1) (e.g., Java, Ruby, C++, OCaml, Cool, Perl, ...)
- There are tools that build LL(1) tables


## Top-Down Parsing Strategies

- Recursive Descent Parsing
- But backtracking is too annoying, etc.
- Predictive Parsing, aka. LL(k)
- Predict production from $k$ tokens of lookahead
- Build LL(1) table
- Parsing using the table is fast and easy
- But many grammars are not LL(1) (or even LL(k))
- Next: a more powerful parsing strategy for grammars that are not LL(1)


## Bottom-Up Parsing

- Bottom-up parsing is more general than topdown parsing
- And just as efficient
- Builds on ideas in top-down parsing
- Preferred method in practice
- Also called LR parsing
- L means that tokens are read left to right
- R means that it constructs a rightmost derivation


## An Introductory Example

- LR parsers don't need left-factored grammars and can also handle left-recursive grammars
- Consider the following grammar:

$$
E \rightarrow E+(E) \mid \text { int }
$$

- Why is this not LL(1)? (Guess before I show you!)
- Consider the string: int + ( int ) + ( int )


## The Idea

- LR parsing reduces a string to the start symbol by inverting productions:
str $\leftarrow$ input string of terminals repeat
- Identify $\beta$ in str such that $A \rightarrow \beta$ is a production (i.e., str $=\alpha \beta \gamma$ )
- Replace $\beta$ by A in str (i.e., str becomes $\alpha$ A $\gamma$ )
until str = S


## A Bottom-up Parse in Detail (1)

 int + (int) + (int)
int $+($ int $)+($ int $)$

## A Bottom-up Parse in Detail (2)

int + (int) + (int)
$E+(i n t)+(i n t)$

## E

int $+($ int $)+($ int $)$

## A Bottom-up Parse in Detail (3)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& E+(i n t)+(i n t) \\
& E+(E)+(i n t)
\end{aligned}
$$



## A Bottom-up Parse in Detail (4)

int + (int) + (int)
$E+(i n t)+(i n t)$
$E+(E)+(i n t)$
E + (int)


## A Bottom-up Parse in Detail (5)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& E+\text { (int) }+ \text { (int) } \\
& E+(E)+\text { (int) } \\
& E+\text { (int) } \\
& E+(E)
\end{aligned}
$$

## A Bottom-up Parse in Detail (6)

$$
\left\lvert\, \begin{aligned}
& \text { int + (int) + (int) } \\
& E+(\text { int })+\text { (int }) \\
& E+(E)+(\text { int }) \\
& E+(\text { int }) \\
& E+(E) \\
& E
\end{aligned}\right.
$$

A rightmost derivation in reverse


## Important Fact

Important Fact \#1 about bottom-up parsing:

An LR parser traces a rightmost derivation


## Where Do Reductions Happen

Important Fact \#1 has an Interesting
Consequence:

- Let $\alpha \beta \gamma$ be a step of a bottom-up parse
- Assume the next reduction is by $\mathrm{A} \rightarrow \beta$
- Then $\gamma$ is a string of terminals!

Why? Because $\alpha \mathrm{A} \gamma \rightarrow \alpha \beta \gamma$ is a step in a rightmost derivation

## Notation

- Idea: Split the string into two substrings
- Right substring (a string of terminals) is as yet unexamined by parser
- Left substring has terminals and non-terminals
- The dividing point is marked by a
- The $\triangleright$ is not part of the string
- Initially, all input is new: $\Delta x_{1} x_{2} \ldots x_{n}$


## Shift-Reduce Parsing

- Bottom-up parsing uses only two kinds of actions:



## Shift

Shift: Move - one place to the right

- Shifts a terminal to the left string

$$
\begin{gathered}
E+(\triangleright \text { int }) \\
\Rightarrow \\
E+(\text { int } \triangleright)
\end{gathered}
$$

## Reduce

## Reduce: Apply an inverse production at the

 right end of the left string- If $T \rightarrow E+(E)$ is a production, then

$$
\begin{gathered}
E+(E+(E)>) \\
\Rightarrow \\
E+(I \triangleright)
\end{gathered}
$$

## Q: Movies (268 / 842)

- In the 1986 movie Stand By Me, what do the kids journey to see?



## Q: Books (769 / 842)

- Who wrote the 1978 book entitled What is the Name of this Book?, obliquely referenced here by critic Andrew Maizels:
- In fact, between SG\&E and the Illuminatus! trilogy, I was sufficiently intrigued that I went out and bought a copy of Ayn Rand's What is the Name of this Book?. No, sorry, Atlas Shrugged, that's the one. Of course, I haven't actually read it; every so often I pick it up, and say to myself: "it's a lovely day today, I think I shall go for a walk". This book has improved my life immensely.


## Q: Movies (287 / 842)

- This 1995 Pixar animated film featured "Forrest Gump" and "Tim The Tool-Man Taylor". Initially jealous and resentful, the two eventually work together.


## Real-World Languages

- This Eastern Romance language is spoken by about 25 million people. Outside audience may have heard of it through bands such as 0Zone (Dragostea din tei). It borrows many modern words from French and Italian (e.g., birou "desk, office", avion "airplane", exploata "exploit"). It features seven vowels (the more "exotic" ones are / $\ddagger /$ and /ə/). Example:
- Toate ființele omenești se nasc nesupuse și asemenea în prețuire și în drepturi. Ele sunt înzestrate cu înțelegere și cuget și se cuvine să se poarte unele față de altele după firea frăției.


## Shift-Reduce Example

- int + (int) + (int)\$ shift

int + ( int ) + ( int )
$\uparrow$


## Shift-Reduce Example

- int + (int) + (int)\$ shift
int $>+$ (int) + (int) $\$$ red. $E \rightarrow$ int


## Shift-Reduce Example

- int + (int) + (int)\$ shift
int $>+$ (int) + (int) $\$$ red. $E \rightarrow$ int
$E \triangleright+($ int $)+(i n t) \$$ shift 3 times



## Shift-Reduce Example

- int + (int) + (int)\$ shift
int $>+$ (int) + (int) $\$$ red. $E \rightarrow$ int
$E \triangleright+($ int $)+(i n t) \$$ shift 3 times
$\mathrm{E}+($ int $>)+($ int $) \$$ red. $\mathrm{E} \rightarrow$ int



## Shift-Reduce Example

- int + (int) + (int)\$ shift
int $>+$ (int) + (int) $\$$ red. $E \rightarrow$ int
$E \triangleright+($ int $)+(i n t) \$$ shift 3 times
$\mathrm{E}+($ int -$)+($ int $) \$$ red. $\mathrm{E} \rightarrow$ int
$\mathrm{E}+(\mathrm{E} \triangleright)+(\mathrm{int}) \$$ shift



## Shift-Reduce Example

- int + (int) + (int)\$ shift
int $>+$ (int) + (int) $\$$ red. $E \rightarrow$ int
$E \triangleright+($ int $)+(i n t) \$$ shift 3 times
$\mathrm{E}+$ (int-) + (int)\$ red. E $\rightarrow$ int
$E+(E \triangleright)+($ int $) \$$ shift
$\mathrm{E}+(\mathrm{E}) \triangleright+($ int $) \$ \quad$ red. $\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$



## Shift-Reduce Example

- int + (int) + (int)\$ shift
int $>+$ (int) + (int) $\$$ red. $E \rightarrow$ int
$\mathrm{E} \boldsymbol{\square}+(\mathrm{int})+(\mathrm{int}) \$$ shift 3 times
$\mathrm{E}+($ int $>)+($ int $) \$$ red. $\mathrm{E} \rightarrow$ int
$E+(E \triangleright)+($ int $) \$$ shift
$\mathrm{E}+(\mathrm{E})-+$ (int) $\$ \quad$ red. $\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$
E $-+(\mathrm{int}) \$$
shift 3 times

$\uparrow$


## Shift-Reduce Example

- int + (int) + (int)\$ shift
int $\downarrow+$ (int) + (int) $\$$ red. $E \rightarrow$ int
$\mathrm{E} \bullet+$ (int) + (int) $\$$ shift 3 times
$\mathrm{E}+$ (int - ) + (int)\$ red. $\mathrm{E} \rightarrow$ int
$\mathrm{E}+(\mathrm{E} \triangleright)+(\mathrm{int}) \$$ shift
$\mathrm{E}+(\mathrm{E}) \triangleright+($ int $) \$ \quad$ red. $\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$
E -+ (int) \$
shift 3 times
E + (int - ) \$
red. $\mathrm{E} \rightarrow$ int



## Shift-Reduce Example

- int + (int) + (int)\$ shift
int $\downarrow+$ (int) + (int) $\$$ red. $E \rightarrow$ int
$\mathrm{E} \bullet+$ (int) + (int) $\$$ shift 3 times
$\mathrm{E}+$ (int - ) + (int)\$ red. $\mathrm{E} \rightarrow$ int
$\mathrm{E}+(\mathrm{E} \triangleright)+(\mathrm{int}) \$$ shift
$\mathrm{E}+(\mathrm{E}) \triangleright+(\mathrm{int}) \$ \quad$ red. $\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$
E -+ (int) \$
shift 3 times
E + (int - ) \$
E + (E - ) \$
red. $\mathrm{E} \rightarrow$ int
shift



## Shift-Reduce Example

- int + (int) + (int)\$ shift
int $\downarrow+$ (int) + (int) $\$$ red. $E \rightarrow$ int
$\mathrm{E} \bullet+$ (int) + (int) $\$$ shift 3 times
$\mathrm{E}+$ (int - ) + (int)\$ red. $\mathrm{E} \rightarrow$ int
$\mathrm{E}+(\mathrm{E} \triangleright)+(\mathrm{int}) \$$ shift
$\mathrm{E}+(\mathrm{E}) \triangleright+($ int $) \$ \quad$ red. $\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$
E $\downarrow+($ int $) \$$ shift 3 times
E + (int - ) \$
E + (E - ) \$
$E+(E) \triangleright \$$
red. $\mathrm{E} \rightarrow$ int
shift
red. $\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$



## Shift-Reduce Example

- int + (int) + (int)\$ shift
int -+ (int) + (int) $\$$ red. $E \rightarrow$ int
$\mathrm{E} \bullet+$ (int) + (int) $\$$ shift 3 times
$\mathrm{E}+$ (int - ) + (int)\$ red. $\mathrm{E} \rightarrow$ int
$\mathrm{E}+(\mathrm{E} \triangleright)+(\mathrm{int}) \$$ shift
$\mathrm{E}+(\mathrm{E}) \triangleright+(\mathrm{int}) \$ \quad$ red. $\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})$
E $\triangleright+$ (int) $\$$
E + (int - ) \$
E + (E - ) \$
$E+(E) \triangleright \$$
E $-\$$
shift 3 times
red. E $\rightarrow$ int

| $E+(E \triangleright) \$$ | shift |
| :--- | :--- |
| $E+(E) \triangleright \$$ | red. $E \rightarrow E+(E)$ |
| $E \triangleright \$$ | accept |



## The Stack

- Left string can be implemented as a stack
- Top of the stack is the
- Shift pushes a terminal on the stack
- Reduce pops 0 or more symbols from the stack (production RHS) and pushes a nonterminal on the stack (production LHS)


# Key Issue: When to Shift or Reduce? 

- Decide based on the left string (the stack)
- Idea: use a finite automaton (DFA) to decide when to shift or reduce
- The DFA input is the stack
- DFA language consists of terminals and nonterminals
- We run the DFA on the stack and we examine the resulting state $X$ and the token tok after
- If $X$ has a transition labeled tok then shift
- If $X$ is labeled with " $A \rightarrow \beta$ on tok" then reduce


## LR(1) Parsing Example



## Representing the DFA

- Parsers represent the DFA as a 2D table - Recall table-driven lexical analysis
- Lines (rows) correspond to DFA states
- Columns correspond to terminals and nonterminals
- Typically columns are split into:
- Those for terminals: action table
- Those for non-terminals: goto table


## Representing the DFA. Example

- The table for a fragment of our DFA:

|  | int | + | $($ | ) | \$ | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ... 3 |  |  | s4 |  |  |  |
| 4 | s5 |  |  |  |  | g6 |
| 5 |  | $\mathrm{r}_{\mathrm{E} \rightarrow \text { int }}$ |  | $\mathrm{r}_{\mathrm{E} \rightarrow \text { int }}$ |  |  |
| 6 | s8 |  | s7 |  |  |  |
| 7 |  | $\mathrm{r}_{\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})}$ |  |  | $\mathrm{r}_{\mathrm{E} \rightarrow \mathrm{E}+(\mathrm{E})}$ |  |

on \$. +

## The LR Parsing Algorithm

- After a shift or reduce action we rerun the DFA on the entire stack
- This is wasteful, since most of the work is repeated
- Optimization: remember for each stack element to which state it brings the DFA
- LR parser maintains a stack < sym $_{1}$, state $_{1}>\ldots$ < sym $_{n}$, state $_{n}$ > state $_{k}$ is the final state of the DFA on $\operatorname{sym}_{1} \ldots$ sym $_{k}$


## The LR Parsing Algorithm

Let $S=w \$$ be initial input
Let $\mathrm{j}=0$
Let DFA state 0 be the start state
Let stack = < dummy, 0 >
repeat
match action[top_state(stack), S[j]] with
| shift k: push < S[j++], k >
| reduce $\mathrm{X} \rightarrow \alpha$ :
pop $|\alpha|$ pairs,
push < X, Goto[top_state(stack), X] >
| accept: halt normally
| error: halt and report error

## LR Parsing Notes

- Can be used to parse more grammars than LL
- Most PL grammars are LR
- Can be described as a simple table
- There are tools for building the table
- Often called "yacc" or "bison"
- How is the table constructed? Next time!


## Homework

- WA2 due
- Reading
- Next Mon: Midterm 1 In Class
- Next Wes: PA3 due
- Parsing!
- When should I start? Early or late?


