

Type Checking

Previously, in PL...

- Scoping rules match identifier uses with identifier definitions.
- A type is a set of values coupled with a set of operations on those values.
- A type system specifies which operations are valid for which types.
- Type checking can be done statically (at compile time) or dynamically (at run time).

Today, in PL (one slide summary)

- A type environment gives types for free variables. You typecheck a let-body with an environment that has been updated to contain the new let-variable.
- If an object of type X could be used when one of type Y is acceptable then we say X is a subtype of Y, also written $\mathbf{X} \leq \mathbf{Y}$.
- A type system is sound if
\forall E. dynamic_type(E) \leq static_type(E)

Lecture Outline

- Typing Rules
- Typing Environments
- "Let" Rules
- Subtyping
- Wrong Rules

Type Checking Proofs

- A type checker's goal is to make sure that the program follows the rules for the given language's type system.
- Type checking proves facts e:T (read as: the expression e has type T).
- One type rule is used for each kind of expression
- In a type rule used for a node e:
- The hypotheses are the proofs of types of e's subexpressions
- The conclusion is the proof of the type of e itself (the fact that we're trying to prove, namely that e has type T).

Review Example: $1+2$

Soundness

- A type system is sound if
- Whenever $\vdash e: T$
- Then e evaluates to a value of type T

- We only want sound rules
a But some sound rules are better than others:
(i is an integer)
$\vdash \mathrm{i}$: Object

SPEAKERS DOWN. NOW FLIP THAT RED SWITCH.

Soundness: Why we care.

- If the type system is sound, then we can say that "a well-typed program won't have runtime type mistakes."
- Completeness is the converse of soundness: A logical system is complete if
- Whenever e evaluates to a value of type T
- Thenトe:T
- There's a tug-of-war, here; we'll get back to this idea later.

Rules for Constants

\vdash false : Bool [Bool]

[String]
 (s is a string constant)

Rule for New

- new T produces an object of type T
- Ignore SELF_TYPE for now ...

> [New]
\vdash new T:T

Two More Rules

\vdash e: Bool

[Not]
\vdash not e: Bool
$\vdash \mathrm{e}_{1}$: Bool $\vdash \mathrm{e}_{2}: T$
\vdash while e_{1} loop e_{2} pool : Object

Two More Rules

$\vdash \mathrm{e}: \mathrm{Bool}$

\vdash not e : Bool

$\vdash \mathrm{e}_{1}$: Bool

 $\vdash \mathrm{e}_{2}: T$What does a type derivation
using this rule look like?
\vdash while e_{1} loop e_{2} pool : Object

Typing: Example
while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

$$
\text { Loop rule: } \frac{\vdash \mathrm{e}_{1}: \text { Bool }}{\vdash{\text { while } \mathrm{e}_{1} \text { loop } \mathrm{e}_{2} \text { pool }: \text { Object }}_{\vdash \mathrm{e}_{2}: \mathrm{T}}}
$$

Typing: Example

while not false loop $1+2$ * 3 pool
$\vdash \mathrm{e}_{1}$: Bool
Loop rule:
\vdash while e_{1} loop e e_{2} pool: Object

Typing: Example

while not false loop $1+2$ * 3 pool
$\vdash \mathrm{e}_{1}$: Bool

Loop rule:
\vdash while e_{1} loop e e_{2} pool: Object

Typing: Example

while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

Typing: Example

while not false loop $1+2$ * 3 pool

$$
\text { Loop rule: } \frac{\vdash \mathrm{e}_{1}: \text { Bool }}{\vdash{\text { while } \mathrm{e}_{1} \text { loop } \mathrm{e}_{2} \text { pool }: \text { Object }}_{\vdash \mathrm{e}_{2}: \mathrm{T}} \text { 信 }}
$$

Typing: Example

while not false loop $1+2$ * 3 pool
Loop rule: $\frac{\vdash e_{1}: \text { Bool }}{\vdash \text { while }_{1} \text { loop } e_{2} \text { pool : Object }}$

Typing: Example

while not false loop $1+2$ * 3 pool
Loop rule: $\frac{\vdash \mathrm{e}_{1}: \text { Bool }}{\vdash{\text { while } \mathrm{e}_{1} \text { loop } \mathrm{e}_{2} \text { pool }: \text { Object }}_{\vdash \mathrm{e}_{2}: \mathrm{T}}}$

Typing Derivations

- This typing reasoning can be expressed as a tree:
$\frac{\vdash \text { false : Bool }}{\vdash \text { not false : Bool }} \frac{\vdash 1: \text { Int } \frac{\vdash 2: \text { Int } \vdash 3: \text { Int }}{\vdash 2 * 3: \text { Int }}}{\vdash 1+2 * 3: \text { Int }}$
\vdash while not false loop $1+2$ * 3 : Object
- The root of the tree is the whole expression (while not false loop 1 + 2 * 3 pool).
- Each node is an instance of a typing rule.
- Leaves are the rules with no hypotheses

A Problem

- What is the type of a variable reference?

- The local structural rule does not carry enough information to give x a type.

A Problem

- What is the type of a variable reference?

 information to give x a type.

Solution: add information to the rules!

- A type environment gives types for free variables. It is a mapping from Object_Identifiers to Types
- A variable is free in an expression if the expression contains an occurrence of the variable that refers to a declaration outside the expression.
- Examples:
- in the expression " x ", the variable " x " is free
- in "let x : Int in $x+y$ " only " y " is free
a in " $\underline{x}+$ let $x: \operatorname{lnt}$ in $x+y$ " both " \underline{x} ", " y " are free

Type Environments

- Let O be a function from Object_Identifiers to Types
- The sentence $\mathrm{O} \vdash \mathrm{e}: \mathrm{T}$ is read:
- "Under the assumption that variables have the types given by O , it is provable that the expression e has the type T."

Modified Rules

- The type environment is added to the earlier rules:

[Int]
 $0 \vdash \mathrm{i}$: Int (i is an integer)

$0 \vdash \mathrm{e}_{1}$: Int
$0 \vdash \mathrm{e}_{2}$: Int
$O \vdash e_{1}+e_{2}:$ Int

New Rules

- And we can write new rules:

$$
0 \vdash x: T
$$

[Var] $(O(x)=T)$

- Equivalently:

$$
\frac{O(x)=T}{O \vdash x: T}[\operatorname{Var}]
$$

Let

$\mathrm{O}\left[\mathrm{T}_{0} / \mathrm{x}\right] \vdash \mathrm{e}_{1}: \mathrm{T}_{1}$

[Let-No-Init]
$0 \vdash$ let $x: T_{0}$ in $e_{1}: T_{1}$

- $O\left[T_{0} / x\right]$ means "O modified to map x to T_{0} and behaving as O on all other arguments":

$$
\begin{aligned}
O\left[T_{0} / x\right](x) & =T_{0} \\
O\left[T_{0} / x\right](y) & =O(y)
\end{aligned}
$$

- (You can write $O\left[x / T_{0}\right]$ on tests/assignments.)

Let Example

- Consider the Cool expression
let $x: T_{0}$ in (let $y: T_{1}$ in $E_{x, y}$) + (let $x: T_{2}$ in $F_{x, y}$)
(where $E_{x, y}$ and $F_{x, y}$ are some Cool expression that contain occurrences of " x " and " y ")
- Scope
- of " y " is $E_{x, y}$
- of outer " x " is $E_{x, y}$
- of inner " x " is $F_{x, y}$
- This is captured precisely in the typing rule.

Example of Typing "Let"

let $\mathrm{x}: \mathrm{T}_{0}$ in (let $\mathrm{y}: \mathrm{T}_{1}$ in $\left.\mathrm{E}_{\mathrm{x}, \mathrm{y}}\right)+\left(\operatorname{let} \mathrm{x}: \mathrm{T}_{2}\right.$ in $\left.\mathrm{F}_{\mathrm{x}, \mathrm{y}}\right)$

Example of Typing "Let"

AST let $\mathrm{x}: \mathrm{T}_{0}$ in (let $\mathrm{y}: \mathrm{T}_{1}$ in $\left.\mathrm{E}_{\mathrm{x}, \mathrm{y}}\right)+\left(\right.$ let $\mathrm{x}: \mathrm{T}_{2}$ in $\mathrm{F}_{\mathrm{x}, \mathrm{y}}$)

Example of Typing "Let"

AST let $\mathrm{x}: \mathrm{T}_{0}$ in (let $\mathrm{y}: \mathrm{T}_{1}$ in $\left.\mathrm{E}_{\mathrm{x}, \mathrm{y}}\right)+\left(\right.$ let $\mathrm{x}: \mathrm{T}_{2}$ in $\left.\mathrm{F}_{\mathrm{x}, \mathrm{y}}\right)$
Type env.

Example of Typing "Let"

AST let $x: T_{0}$ in (let $y: T_{1}$ in $\left.E_{x, y}\right)+\left(\right.$ let $x: T_{2}$ in $\left.F_{x, y}\right)$
Type env.

Example of Typing "Let"

AST let $x: T_{0}$ in (let $y: T_{1}$ in $\left.E_{x, y}\right)+\left(\right.$ let $x: T_{2}$ in $\left.F_{x, y}\right)$
Type env.

Example of Typing "Let"

AST let $\mathrm{x}: \mathrm{T}_{0}$ in (let $\mathrm{y}: \mathrm{T}_{1}$ in $\left.\mathrm{E}_{\mathrm{x}, \mathrm{y}}\right)+\left(\right.$ let $\mathrm{x}: \mathrm{T}_{2}$ in $\left.\mathrm{F}_{\mathrm{x}, \mathrm{y}}\right)$
Type inv.

Example of Typing "Let"

AST let $\mathrm{x}: \mathrm{T}_{0}$ in (let $\mathrm{y}: \mathrm{T}_{1}$ in $\mathrm{E}_{\mathrm{x}, \mathrm{y}}$) $+\left(\right.$ let $\mathrm{x}: \mathrm{T}_{2}$ in $\left.\mathrm{F}_{\mathrm{x}, \mathrm{y}}\right)$
Type env.

Example of Typing "Let"

AST let $\mathrm{x}: \mathrm{T}_{0}$ in (let $\mathrm{y}: \mathrm{T}_{1}$ in $\mathrm{E}_{\mathrm{x}, \mathrm{y}}$) $+\left(\right.$ let $\mathrm{x}: \mathrm{T}_{2}$ in $\left.\mathrm{F}_{\mathrm{x}, \mathrm{y}}\right)$
Type env.

Example of Typing "Let"

AST let $\mathrm{x}: \mathrm{T}_{0}$ in (let $\mathrm{y}: \mathrm{T}_{1}$ in $\left.\mathrm{E}_{\mathrm{x}, \mathrm{y}}\right)+\left(\right.$ let $\mathrm{x}: \mathrm{T}_{2}$ in $\left.\mathrm{F}_{\mathrm{x}, \mathrm{y}}\right)$
Type env.

Example of Typing "Let"

AST let $\mathrm{x}: \mathrm{T}_{0}$ in (let $\mathrm{y}: \mathrm{T}_{1}$ in $\left.\mathrm{E}_{\mathrm{x}, \mathrm{y}}\right)+\left(\right.$ let $\mathrm{x}: \mathrm{T}_{2}$ in $\left.\mathrm{F}_{\mathrm{x}, \mathrm{y}}\right)$
Type inv.
Types

$O\left[T_{0} / x\right] \vdash$ let $y: T_{1}$ in

$\left(O\left[T_{0} / x\right]\right)\left[T_{1} / y\right] \vdash \quad E_{x, y}: \operatorname{int}$
$O\left[T_{0} / x\right] \vdash$ let $x: T_{2}$ in
$\left(O\left[T_{0} / x\right]\right)\left[T_{2} / x\right] \vdash \quad F_{x, y}$
$\left(O\left[T_{0} / x\right]\right)\left[T_{1} / y\right] \vdash x \vdots T_{0}$

Example of Typing "Let"

AST let $\mathrm{x}: \mathrm{T}_{0}$ in (let $\mathrm{y}: \mathrm{T}_{1}$ in $\left.\mathrm{E}_{\mathrm{x}, \mathrm{y}}\right)+\left(\right.$ let $\mathrm{x}: \mathrm{T}_{2}$ in $\left.\mathrm{F}_{\mathrm{x}, \mathrm{y}}\right)$
Type env.

$O\left[T_{0} / x\right] \vdash$ let $y: T_{1}$ in $\left|\left.\right|_{\left(O\left[T_{0} / x\right]\right)\left[T_{1} / y\right] \vdash} ^{\text {int }} O\left[T_{0} / x\right] \vdash\right.$ let $x: T_{2}$ in
$\left(O\left[T_{0} / x\right]\right)\left[T_{2} / x\right] \vdash \quad F_{x, y}$
$\left(O\left[T_{0} / x\right]\right)\left[T_{1} / y\right] \vdash x: T_{0}$

Example of Typing "Let"

AST let $\mathrm{x}: \mathrm{T}_{0}$ in (let $\mathrm{y}: \mathrm{T}_{1}$ in $\left.\mathrm{E}_{\mathrm{x}, \mathrm{y}}\right)+\left(\right.$ let $\mathrm{x}: \mathrm{T}_{2}$ in $\left.\mathrm{F}_{\mathrm{x}, \mathrm{y}}\right)$
Type env.

$\left(O\left[T_{0} / x\right]\right)\left[T_{2} / x\right] \vdash \mathrm{F}_{x, y}:$ int

Example of Typing "Let"

AST let $x: T_{0}$ in (let $y: T_{1}$ in $\left.E_{x, y}\right)+\left(\right.$ let $x: T_{2}$ in $\left.F_{x, y}\right)$
Type env.

$O\left[T_{0} / x\right] \vdash$ let $y: T_{1}$ in $:$ int $\quad O\left[T_{0} / x\right] \vdash$ let $x: T_{2}$ in $:$ int
$\left(O\left[T_{0} / x\right]\right)\left[T_{1} / y\right] \vdash \quad E_{x, y}: \operatorname{int}$
$\left(O\left[T_{0} / x\right]\right)\left[T_{2} / x\right] \vdash F_{x, y}: \operatorname{int}$

Example of Typing "Let"

AST let $\mathrm{x}: \mathrm{T}_{0}$ in (let $\mathrm{y}: \mathrm{T}_{1}$ in $\mathrm{E}_{\mathrm{x}, \mathrm{y}}$) $+\left(\right.$ let $\mathrm{x}: \mathrm{T}_{2}$ in $\left.\mathrm{F}_{\mathrm{x}, \mathrm{y}}\right)$
Type inv.

Types
Oト let $x: T_{0}$ in $O\left[T_{0} / x\right] \vdash \quad+\quad$ int
$O\left[T_{0} / x\right] \vdash$ let $y: T_{1}$ in $:$ int $\quad O\left[T_{0} / x\right] \vdash$ let $x: T_{2}$ in $:$ int δ
$\left(O\left[T_{0} / x\right]\right)\left[T_{1} / y\right] \vdash \quad E_{x, y}: \operatorname{int}$
$\left(O\left[T_{0} / x\right]\right)\left[T_{2} / x\right] \vdash \quad \mathrm{F}_{x, y}: \operatorname{int}_{\gamma}$

Notes

- The type environment gives types to the free identifiers in the current scope
- The type environment is passed down the AST from the root towards the leaves
- Types are computed up the AST from the leaves towards the root

Example of Typing "Let"

AST let $\mathrm{x}: \mathrm{T}_{0}$ in (let $\mathrm{y}: \mathrm{T}_{1}$ in $\mathrm{E}_{\mathrm{x}, \mathrm{y}}$) $+\left(\right.$ let $\mathrm{x}: \mathrm{T}_{2}$ in $\left.\mathrm{F}_{\mathrm{x}, \mathrm{y}}\right)$
Type inv.

Types
Oト let $x: T_{0}$ in $O\left[T_{0} / x\right] \vdash \quad+\quad$ int
$O\left[T_{0} / x\right] \vdash$ let $y: T_{1}$ in $:$ int $\quad O\left[T_{0} / x\right] \vdash$ let $x: T_{2}$ in $:$ int δ
$\left(O\left[T_{0} / x\right]\right)\left[T_{1} / y\right] \vdash \quad E_{x, y}: \operatorname{int}$
$\left(O\left[T_{0} / x\right]\right)\left[T_{2} / x\right] \vdash \quad F_{x, y}:$ int
$\left(O\left[T_{0} / x\right]\right)\left[T_{1} / y\right] \vdash x: T_{0}$

Q: Movies (362 / 842)

- In this 1992 comedy Dana Carvey and Mike Myers reprise a Saturday Night Live skit, sing Bohemian Rhapsody and say of a guitar: "Oh yes, it will be mine."
Q: General (455 / 842)
- This numerical technique for finding solutions to boundary-value problems was initially developed for use in structural analysis in the 1940's. The subject is represented by a model consisting of a number of linked simplified representations of discrete regions. It is often used to determine stress and displacement in mechanical systems.

Q: Movies (377 / 842)

- Identify the subject or the speaker in 2 of the following 3 Star Wars quotes.
- "Aren't you a little short to be a stormtrooper?"
- "I felt a great disturbance in the Force ... as if millions of voices suddenly cried out in terror and were suddenly silenced."
- "I recognized your foul stench when I was brought on board."

Let with Initialization

- Now consider let with initialization:

$$
\begin{gathered}
\mathrm{O} \vdash \mathrm{e}_{0}: \mathrm{T}_{0} \\
\mathrm{O}\left[\mathrm{~T}_{0} / \mathrm{x}\right] \vdash \mathrm{e}_{1}: \mathrm{T}_{1}
\end{gathered}
$$

[Let-Init]

$0 \vdash$ let $x: T_{0} \leftarrow e_{0}$ in $e_{1}: T_{1}$

- This rule is weak. Why?

Let with Initialization

- Consider the example:
class C inherits P \{ ... \}
let $x: P \leftarrow$ new C in...
- The previous let rule does not allow this code - The rule is too weak or incomplete.

Subtyping

- Define a relation $\mathrm{X} \leq \mathrm{Y}$ on classes to say that:
- An object of type X could be used when one of type Y is acceptable, or equivalently, X conforms with Y
- In Cool, this means that X is a subclass of Y
- Define a relation \leq on classes such that:
$X \leq X$
$X \leq Y$ if X inherits from Y
$X \leq Z$ if $X \leq Y$ and $Y \leq Z$

Let With Initialization (Better)

$$
\begin{gathered}
\mathrm{O} \vdash \mathrm{e}_{0}: \mathrm{T} \\
\mathrm{~T} \leq \mathrm{T}_{0}
\end{gathered}
$$

$$
\mathrm{O}\left[\mathrm{~T}_{0} / \mathrm{x}\right] \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \quad[\text { Let-Init }]
$$

$0 \vdash$ let $x: T_{0} \leftarrow e_{0}$ in $e_{1}: T_{1}$

- Both rules for let are sound
- But more programs type check with this new rule (it is more complete).

Dynamic And Static Types

- The dynamic type of an object is the class C that is used in the "new C" expression that creates the object - A run-time notion.
- Even languages that are not statically typed have the notion of dynamic type.
- The static type of an expression is a notation that captures all possible dynamic types the expression could take.
- A compile-time notion

Dynamic and Static Types. (Cont.)

- In early type systems, the set of static types correspond directly with the dynamic types.
- Soundness theorem: for all expressions E
dynamic_type(E) = static_type(E)
(in all executions, E evaluates to values of the type inferred by the compiler)
- This gets more complicated in advanced type systems (e.g., Java, Cool)

Type System Tug-of-War

- There is a tension between
- Flexible rules that do not constrain programming
- Restrictive rules that ensure safety of execution

Static Type System Expressiveness

- A static type system enables a compiler to detect many common programming errors
- The cost is that some correct programs are disallowed - Some argue for dynamic type checking instead. - ...others argue for more expressive static type checking.
- But more expressive type systems are also more complex

Dynamic and Static Types in COOL

- A variable of static type A can hold values of static type B, if $B \leq A$
x has static type A
class A \{ ... \}
class B inherits A \{...\} class Main \{
A $x \leftarrow$ new ;

$$
\begin{aligned}
& \cdots \\
& x \leftarrow \text { new } B ; ~
\end{aligned}
$$

Here, x's value has dynamic type B

[^0]
Dynamic and Static Types

\square Soundness theorem for the Cool type system: \forall E. dynamic_type(E) \leq static_type(E)
\square Why is this Ok?
a For E, compiler uses static_type(E)

- All operations that can be used on an object of type C can also be used on an object of type C' \leq C
- Examples: fetching the value of an attribute, or invoking a method on the object
- Subclasses can only add attributes or methods
- Methods can be redefined, but with the same types!

Subtyping Example

- Consider the following Cool class definitions

Class A $\{\mathrm{a}(): \operatorname{int}\{0\} ;\}$
Class B inherits A \{ b() : int \{ 1 \}; \}

- An instance of B has methods "a" and "b"
- An instance of A has method "a"
- A type error occurs if we try to invoke method "b" on an instance of A

Example of Wrong Let Rule (1)

- Now consider a hypothetical wrong let rule:

$$
\frac{0 \vdash e_{0}: T \quad T \leq T_{0} \quad 0 \vdash e_{1}: T_{1}}{0 \vdash \text { let } x: T_{0} \leftarrow e_{0} \text { in } e_{1}: T_{1}}
$$

- How is it different from the correct rule?

Example of Wrong Let Rule (1)

- Now consider a hypothetical wrong let rule:

$$
\frac{0 \vdash e_{0}: T \quad T \leq T_{0} \quad 0 \vdash e_{1}: T_{1}}{0 \vdash \text { let } x: T_{0} \leftarrow e_{0} \text { in } e_{1}: T_{1}}
$$

- How is it different from the correct rule?
- The following good program does not typecheck let $x: \operatorname{lnt} \leftarrow 0$ in $x+1$
- Why?

Example of Wrong Let Rule (2)

- Now consider a hypothetical wrong let rule:

$$
\frac{0 \vdash e_{0}: T \quad T_{0} \leq T \quad O\left[T_{0} / x\right] \vdash e_{1}: T_{1}}{0 \vdash \text { let } x: T_{0} \leftarrow e_{0} \text { in } e_{1}: T_{1}}
$$

- How is it different from the correct rule?

Example of Wrong Let Rule (2)

- Now consider another hypothetical wrong let rule:

$$
\frac{0 \vdash e_{0}: T \quad T_{0} \leq T \quad O\left[T_{0} / x\right] \vdash e_{1}: T_{1}}{0 \vdash \text { let } x: T_{0} \leftarrow e_{0} \text { in } e_{1}: T_{1}}
$$

- How is it different from the correct rule?
- The following bad program is well typed let $x: B \leftarrow$ new A in $x . b()$
- Why is this program bad?

Example of Wrong Let Rule (3)

- Now consider a third hypothetical wrong let rule:

$$
\frac{0 \vdash e_{0}: T \quad T \leq T_{0} \quad O[T / x] \vdash e_{1}: T_{1}}{0 \vdash \text { let } x: T_{0} \leftarrow e_{0} \text { in } e_{1}: T_{1}}
$$

- How is it different from the correct rule?

Example of Wrong Let Rule (3)

- Now consider a third hypothetical wrong let rule:

$$
\frac{O \vdash e_{0}: T \quad T \leq T_{0} \quad O[T / x] \vdash e_{1}: T_{1}}{O \vdash \text { let } x: T_{0} \leftarrow e_{0} \text { in } e_{1}: T_{1}}
$$

- How is it different from the correct rule?
- The following good program is not well typed let $x: A \leftarrow$ new B in $\{\ldots x \leftarrow$ new $A ; x . a() ;\}$
- Why is this program not well typed?

Upshot: Typing Rule Notation

- The typing rules use very concise notation
- They are very carefully constructed
- Virtually any change in a rule either:
- Makes the type system unsound (i.e., bad programs are accepted as well typed)
- Or, makes the type system less usable or incomplete (i.e. good programs are rejected)
- But some good programs will always be rejected, because the notion of a good program is undecidable

Assignment

- More uses of subtyping:

$$
\begin{gathered}
\mathrm{O}(\mathrm{id})=\mathrm{T}_{0} \\
\mathrm{O} \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
\mathrm{~T}_{1} \leq \mathrm{T}_{0}
\end{gathered}
$$

[Assign]

$\mathrm{O} \vdash \mathrm{id} \leftarrow \mathrm{e}_{1}: \mathrm{T}_{1}$

Initialized Attributes

- Let $O_{C}(x)=T$ for all attributes $x: T$ in class C
- O_{C} represents the class-wide scope
- Attribute initialization is similar to let, except for the scope of names

$$
\begin{gathered}
\mathrm{O}_{\mathrm{C}}(\mathrm{id})=\mathrm{T}_{0} \\
\mathrm{O}_{\mathrm{C}} \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
\mathrm{~T}_{1} \leq \mathrm{T}_{0}
\end{gathered}
$$

$$
\mathrm{O}_{\mathrm{C}} \vdash \mathrm{id}: \mathrm{T}_{0} \leftarrow \mathrm{e}_{1}
$$

If-Then-Else

\square Consider: if \mathbf{e}_{0} then \mathbf{e}_{1} else \mathbf{e}_{2} fi

- The result can be either e_{1} or e_{2}; the dynamic type is therefore either e_{1} 's or e_{2} 's type.
- The best we can do statically is the smallest supertype larger than both the types of e_{1} and e_{2}

If-Then-Else example

- Consider the class hierarchy

- ... and the expression
if ... then new A else new B fi
- Its type should allow for the dynamic type to be both A or B
- Smallest supertype is P

Least Upper Bounds

- Define: $\operatorname{lub}(X, Y)$ to be the least upper bound of X and Y. lub (X, Y) is Z if
- $\mathbf{X} \leq \mathbf{Z} \wedge \mathbf{Y} \leq \mathbf{Z}$
Z is an upper bound

$$
-\mathrm{X} \leq \mathrm{Z}^{\prime} \wedge \mathrm{Y} \leq \mathrm{Z}^{\prime} \Rightarrow \mathrm{Z} \leq \mathrm{Z}^{\prime}
$$

Z is least among upper bounds

- In Cool, the least upper bound of two types is their least common ancestor in the inheritance tree

If-Then-Else Revisited

$$
\begin{gathered}
\mathrm{O} \vdash \mathrm{e}_{0}: \text { Bool } \\
\mathrm{O} \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
\mathrm{O} \vdash \mathrm{e}_{2}: \mathrm{T}_{2}
\end{gathered}
$$

$0 \vdash$ if e_{0} then e_{1} else $\mathrm{e}_{2} \mathrm{fi}: \operatorname{lub}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$
[If-Then-Else]

Case

- The rule for case expressions takes a lub over all branches

$$
\begin{gathered}
\mathrm{O} \vdash \mathrm{e}_{0}: \mathrm{T}_{0} \\
\left.\mathrm{O}\left[\mathrm{~T}_{1} / \mathrm{x}_{1}\right] \vdash \mathrm{e}_{1}: \mathrm{T}_{1}^{\prime} \quad \text { [Case }\right] \\
\ldots \\
\mathrm{O}\left[\mathrm{~T}_{\mathrm{n}} / \mathrm{x}_{\mathrm{n}}\right] \vdash \mathrm{e}_{\mathrm{n}}: \mathrm{T}_{\mathrm{n}}^{\prime}
\end{gathered}
$$

$0 \vdash$ case e_{0} of $x_{1}: T_{1} \Rightarrow e_{1}$; $\ldots ; x_{n}: T_{n} \Rightarrow e_{n} ;$ esac $: \operatorname{lub}\left(T_{1}{ }^{\prime}, \ldots, T_{n}{ }^{\prime}\right)$

Next Time

- Type checking method dispatch
- Type checking with SELF_TYPE in COOL

Homework

- Get started on PA4
- Checkpoint due March 19
- Before Next Class: Read Chapter 7.2

[^0]: \}

