
Written Assignment 7

This assignment asks you to prepare written answers to questions on garbage col-
lection and exceptions. Each of the questions has a short answer. You may discuss this
assignment with other students and work on the problems together. However, your
write-up should be your own individual work.

Please print your name and email address on your homework!

We need this information so that we can give you credit for the assignment and so that
we can return it to you.

1. Consider Stop & Copy vs. Mark & Sweep garbage collection.

(a) Assume that the garbage collector is run only when the user program runs
out of memory, i.e. when a call to new cannot be satisfied. Is one of these
two GC algorithms ‘faster’ than the other? Which algorithm needs to be
run more frequently?

(b) Does either algorithm use strictly more memory than the other?

Python uses reference counting for its garbage collector. It uses a special ‘cycle
detector’ to clean up cyclical data structures periodically.

(c) Are reference cycles common in everday data structures?

(d) Briefly describe how one might implement a cycle detector. When can a
cycle be cleaned?

2. Imagine that we have an updated version of Cool that supports try, catch
and throw (as in the ‘Exceptions and Error Handling’ lecture notes). Suppose
further that we want to add a new construct to the language: protect e,
which works as follows:

• At compile time, the type checker verifies that the expression e does not
have any uncaught exceptions. In other words, e can contain throw clauses,
but they must all be caught using a try / catch construct. If e does not
meet this requirement, the compiler should reject the program.

• At runtime, protect e simply evaluates to e. Another way to look at
this is that the protect keyword is ignored at runtime.

In order to check protect expressions at compile time, we need to extend our
typing judgments to track a boolean E indicating whether an exception can be
thrown out of the expression:

1



O, M, C ` e : T,E

For example, the extended rule for + would be:

O, M, C ` e1 : Int, E1

O, M, C ` e2 : Int, E2

O, M, C ` e1 + e2 : Int, E1 ∨ E2

[Plus]

(a) Assume that a try / catch block catches all exceptions (i.e. the exception
type being caught is always Object).

Give the new type rules for protect, try / catch, and throw. For
example, the rule for try / catch should look similar to this:

. . .

O, M, C ` try e0 catch x : Object ⇒ e1 : T0 t T1, E ′

(b) The typing system described here is not necessarily safe. Give a code sam-
ple that illustrates this. Your code should pass the type checker, but still
manage to throw an exception out of a protect statement. Briefly ex-
plain how your code manages to fool the type checker.

2


