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Cunning Plan

• Regular expressions provide a concise 
notation for string patterns

• Use in lexical analysis requires small 
extensions
– To resolve ambiguities
– To handle errors

• Good algorithms known (next)
– Require only single pass over the input
– Few operations per character (table lookup)
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One-Slide Summary

• Finite automata are formal models of 
computation that can accept regular languages 
corresponding to regular expressions. 

• Nondeterministic finite automata (NFA) 
feature epsilon transitions and multiple 
outgoing edges for the same input symbol.

• Regular expressions can be converted to NFAs.
• Tools will generate DFA-based lexer code for 

you from regular expressions. 
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Finite Automata

• Regular expressions = specification
• Finite automata = implementation

• A finite automaton consists of
– An input alphabet 
– A set of states S
– A start state n
– A set of accepting states F µ S

– A set of transitions state  input state
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Finite Automata

• Transition

s1 a s2

• Is read
In state s1 on input “a” go to state  s2

• If end of input 
– If in accepting state ) accept

– Otherwise ) reject 

• If still input, no transitions possible ) reject 
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Finite Automata State Graphs

• A state

• The start state

• An accepting state

• A transition
a

You can
hand-write WA1.
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A Simple Example

• A finite automaton that accepts only “1”

• A finite automaton accepts a string if we can 
follow transitions labeled with the 
characters in the string from the start to 
some accepting state

1
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Another Simple Example

• A finite automaton accepting any number of 
1’s followed by a single 0

• Alphabet  {0,1}

• Check that “1110” is accepted but “110…” 
is not 

0

1
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And Another Example
• Alphabet  = {0,1}
• What language does this recognize?

0

1

0

1

0

1
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And A Fourth Example

• Alphabet still  = { 0, 1 }

• The operation of the automaton is not 
completely defined by the input
– On input “11” the automaton could be in either 

state 

1

1
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Epsilon Moves

• Another kind of transition: -moves


• Machine can move from state A to state B 
without reading input

A B
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Deterministic and 
Nondeterministic Automata

• Deterministic Finite Automata (DFA)
– One transition per input per state 
– No -moves

• Nondeterministic Finite Automata (NFA)
– Can have multiple transitions for one input in a 

given state
– Can have -moves

• Finite automata have finite memory
– Need only to encode the current state
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Execution of Finite Automata

• A DFA can take only one path through the 
state graph
– Completely determined by input

• NFAs can choose
– Whether to make -moves
– Which of multiple transitions for a single input to 

take
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Acceptance of NFAs

• An NFA can get into multiple states

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts if it can get in a final state
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NFA vs. DFA (1)

• NFAs and DFAs 
recognize the same 
set of languages 
(regular languages)
– They have the same 

expressive power

• DFAs are easier to 
implement
– There are no choices 

to consider
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NFA vs. DFA (2)

• For a given language the NFA can be simpler 
than the DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

• DFA can be exponentially larger than NFA
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Natural Languages

• This North Germanic language is generally mutually 
intelligible with Norwegian and Danish, and descends 
from Old Norse of the Viking Era to a modern 
speaking population of about 10 million people. The 
language contains two genders, nouns that are rarely 
inflected, and a typical subject-verb-object 
ordering. Its home country is one of the largest 
music exporters of the modern world, often 
targeting English-speaking audiences. Bands such as 
Ace of Base, ABBA and Roxette are examples, with 
over 420m combined album sales. 



#18

Unnatural Languages

• This stack-based structured computer 
programming language appeared in the 1970's 
and went on to influence PostScript and RPL. 
It is typeless and is often used in bootloaders 
and embedded applications. Example: 

25 10 * 50 +

• Simple C Program:
int floor5(int v) { return (v < 6) ? 5 : (v – 1); }

• Same program in this Language:
: FLOOR5 ( n -- n' ) DUP 6 < IF DROP 5 ELSE 1 – THEN ;
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Regular Expressions to Finite 
Automata

• High-level sketch

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven 
Implementation of DFA
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Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA
– Notation: NFA for rexp A        

A

• For 


• For input a
a
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Regular Expressions to NFA (2)

• For AB
A B

• For A | B

A

B
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Regular Expressions to NFA (3)

• For A*
A









#23

Example of RegExp -> NFA 
Conversion

• Consider the regular expression
(1 | 0)* 1

• The NFA is



1C E

0D F




B




G







A H 1I J
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Overarching PlanOverarching Plan

RegularRegular
expressionsexpressions

NFANFA

DFADFA

LexicalLexical
SpecificationSpecification

Table-driven Table-driven 
Implementation of DFAImplementation of DFA

Thomas Cole – Evening in Arcady (1843)
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NFA to DFA: The Trick

• Simulate the NFA
• Each state of DFA 

= a non-empty subset of states of the NFA

• Start state 
= the set of NFA states reachable through -moves 

from NFA start state

• Add a transition S a  S’ to DFA iff
– S’ is the set of NFA states reachable from the 

states in S after seeing the input a
• considering -moves as well
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NFA ! DFA Example

1
0 1 













A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

10 1
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NFA ! DFA: Remark

• An NFA may be in many states at any time

• How many different states?

• If there are N states, the NFA must be in 
some subset of those N states

• How many non-empty subsets are there?
– 2N - 1 = finitely many
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Implementation

• A DFA can be implemented by a 2D table T
– One dimension is “states”
– Other dimension is “input symbols”

– For every transition Si a  Sk define T[i,a] = k

• DFA “execution”
– If in state Si and input a, read T[i,a] = k and skip 

to state Sk

– Very efficient
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Table Implementation of a DFA

S

T

U

0

1

0

10 1

UTU
UTT
UTS
10
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Implementation (Cont.)

• NFA ! DFA conversion is at the heart of 
tools such as flex or ocamllex

• But, DFAs can be huge

• In practice, flex-like tools trade off speed 
for space in the choice of NFA and DFA 
representations
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PA2: Lexical Analysis

• Correctness is job #1.
– And job #2 and #3!

• Tips on building large systems:
– Keep it simple
– Design systems that can be tested 
– Don’t optimize prematurely
– It is easier to modify a working system than to 

get a system working
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Lexical Analyzer Generator

• Tools like lex and flex and ocamllex will 
build lexers for you!

• You must use such a tool for PA2

• I’ll explain ocamllex; others are similar
– See PA2 documentation

Lexer Source
Code

Lexical
Analyzer
Generator

List of Regexps
with code 
snippets
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Ocamllex “lexer.mll” file

{
(* raw preamble code

type declarations, utility functions, etc. *)
}
let re_namei = rei

rule normal_tokens = parse
re1 { token1 } 

| re2 { token2 }

and special_tokens = parse
| ren { tokenn }
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Example “lexer.mll”

{
type token = Tok_Integer of int (* 123 *)

| Tok_Divide (*  /  *)
}
let digit = [‘0’ – ‘9’] 
rule initial = parse

‘/’ { Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in

  let token_val = int_of_string token_string in
      Tok_Integer(token_val) } 
| _ { Printf.printf “Error!\n”; exit 1 } 
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Adding Winged Comments

{
type token = Tok_Integer of int (* 123 *)

| Tok_Divide (*  /  *)
}
let digit = [‘0’ – ‘9’] 
rule initial = parse

“//” { eol_comment }
| ‘/’ { Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in

  let token_val = int_of_string token_string in
        Tok_Integer(token_val) } 
| _ { Printf.printf “Error!\n”; exit 1 } 

and eol_comment = parse
  ‘\n’ { initial lexbuf }
| _ { eol_comment lexbuf } 
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Using Lexical Analyzer Generators

$ ocamllex lexer.mll
45 states, 1083 transitions, table size 4602 bytes

(* your main.ml file … *) 
let file_input = open_in “file.cl” in
let lexbuf = Lexing.from_channel file_input in
let token = Lexer.initial lexbuf in
match token with
| Tok_Divide -> printf “Divide Token!\n”
| Tok_Integer(x) -> printf “Integer Token = %d\n” x
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How Big Is PA2?

• The reference “lexer.mll” file is 88 lines
– Perhaps another 20 lines to keep track of input 

line numbers
– Perhaps another 20 lines to open the file and get 

a list of tokens
– Then 65 lines to serialize the output
– I’m sure it’s possible to be smaller!

• Conclusion:
– This isn’t a code slog, it’s about careful 

forethought and precision.  
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Warning!

• You may be 
tempted to use 
OCaml for PA2 
based on that 
demo.

• However, you 
probably want to 
save OCaml for one 
of the harder 
assignments later.
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Homework
• Textbook Reading, CD Reading – 2.4
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