
#1

Lexical AnalysisLexical Analysis

Finite AutomataFinite Automata

(Part 2 of 2)(Part 2 of 2)

#2

Cunning Plan

• Regular expressions provide a concise
notation for string patterns

• Use in lexical analysis requires small
extensions
– To resolve ambiguities
– To handle errors

• Good algorithms known (next)
– Require only single pass over the input
– Few operations per character (table lookup)

#3

One-Slide Summary

• Finite automata are formal models of
computation that can accept regular languages
corresponding to regular expressions.

• Nondeterministic finite automata (NFA)
feature epsilon transitions and multiple
outgoing edges for the same input symbol.

• Regular expressions can be converted to NFAs.
• Tools will generate DFA-based lexer code for

you from regular expressions.

#4

Finite Automata

• Regular expressions = specification
• Finite automata = implementation

• A finite automaton consists of
– An input alphabet
– A set of states S
– A start state n
– A set of accepting states F µ S

– A set of transitions state input state

#5

Finite Automata

• Transition

s1 a s2

• Is read
In state s1 on input “a” go to state s2

• If end of input
– If in accepting state) accept

– Otherwise) reject

• If still input, no transitions possible) reject

#6

Finite Automata State Graphs

• A state

• The start state

• An accepting state

• A transition
a

You can
hand-write WA1.

#7

A Simple Example

• A finite automaton that accepts only “1”

• A finite automaton accepts a string if we can
follow transitions labeled with the
characters in the string from the start to
some accepting state

1

#8

Another Simple Example

• A finite automaton accepting any number of
1’s followed by a single 0

• Alphabet {0,1}

• Check that “1110” is accepted but “110…”
is not

0

1

#9

And Another Example
• Alphabet = {0,1}
• What language does this recognize?

0

1

0

1

0

1

#10

And A Fourth Example

• Alphabet still = { 0, 1 }

• The operation of the automaton is not
completely defined by the input
– On input “11” the automaton could be in either

state

1

1

#11

Epsilon Moves

• Another kind of transition: -moves

• Machine can move from state A to state B
without reading input

A B

#12

Deterministic and
Nondeterministic Automata

• Deterministic Finite Automata (DFA)
– One transition per input per state
– No -moves

• Nondeterministic Finite Automata (NFA)
– Can have multiple transitions for one input in a

given state
– Can have -moves

• Finite automata have finite memory
– Need only to encode the current state

#13

Execution of Finite Automata

• A DFA can take only one path through the
state graph
– Completely determined by input

• NFAs can choose
– Whether to make -moves
– Which of multiple transitions for a single input to

take

#14

Acceptance of NFAs

• An NFA can get into multiple states

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts if it can get in a final state

#15

NFA vs. DFA (1)

• NFAs and DFAs
recognize the same
set of languages
(regular languages)
– They have the same

expressive power

• DFAs are easier to
implement
– There are no choices

to consider

#16

NFA vs. DFA (2)

• For a given language the NFA can be simpler
than the DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

• DFA can be exponentially larger than NFA

#17

Natural Languages

• This North Germanic language is generally mutually
intelligible with Norwegian and Danish, and descends
from Old Norse of the Viking Era to a modern
speaking population of about 10 million people. The
language contains two genders, nouns that are rarely
inflected, and a typical subject-verb-object
ordering. Its home country is one of the largest
music exporters of the modern world, often
targeting English-speaking audiences. Bands such as
Ace of Base, ABBA and Roxette are examples, with
over 420m combined album sales.

#18

Unnatural Languages

• This stack-based structured computer
programming language appeared in the 1970's
and went on to influence PostScript and RPL.
It is typeless and is often used in bootloaders
and embedded applications. Example:

25 10 * 50 +

• Simple C Program:
int floor5(int v) { return (v < 6) ? 5 : (v – 1); }

• Same program in this Language:
: FLOOR5 (n -- n') DUP 6 < IF DROP 5 ELSE 1 – THEN ;

#19

Regular Expressions to Finite
Automata

• High-level sketch

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven
Implementation of DFA

#20

Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA
– Notation: NFA for rexp A

A

• For

• For input a
a

#21

Regular Expressions to NFA (2)

• For AB
A B

• For A | B

A

B

#22

Regular Expressions to NFA (3)

• For A*
A

#23

Example of RegExp -> NFA
Conversion

• Consider the regular expression
(1 | 0)* 1

• The NFA is

1C E

0D F

B

G

A H 1I J

#24

Overarching PlanOverarching Plan

RegularRegular
expressionsexpressions

NFANFA

DFADFA

LexicalLexical
SpecificationSpecification

Table-driven Table-driven
Implementation of DFAImplementation of DFA

Thomas Cole – Evening in Arcady (1843)

#25

NFA to DFA: The Trick

• Simulate the NFA
• Each state of DFA

= a non-empty subset of states of the NFA

• Start state
= the set of NFA states reachable through -moves

from NFA start state

• Add a transition S a S’ to DFA iff
– S’ is the set of NFA states reachable from the

states in S after seeing the input a
• considering -moves as well

#26

NFA ! DFA Example

1
0 1

A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

10 1

#27

NFA ! DFA: Remark

• An NFA may be in many states at any time

• How many different states?

• If there are N states, the NFA must be in
some subset of those N states

• How many non-empty subsets are there?
– 2N - 1 = finitely many

#28

Implementation

• A DFA can be implemented by a 2D table T
– One dimension is “states”
– Other dimension is “input symbols”

– For every transition Si a Sk define T[i,a] = k

• DFA “execution”
– If in state Si and input a, read T[i,a] = k and skip

to state Sk

– Very efficient

#29

Table Implementation of a DFA

S

T

U

0

1

0

10 1

UTU
UTT
UTS
10

#30

Implementation (Cont.)

• NFA ! DFA conversion is at the heart of
tools such as flex or ocamllex

• But, DFAs can be huge

• In practice, flex-like tools trade off speed
for space in the choice of NFA and DFA
representations

#31

PA2: Lexical Analysis

• Correctness is job #1.
– And job #2 and #3!

• Tips on building large systems:
– Keep it simple
– Design systems that can be tested
– Don’t optimize prematurely
– It is easier to modify a working system than to

get a system working

#32

Lexical Analyzer Generator

• Tools like lex and flex and ocamllex will
build lexers for you!

• You must use such a tool for PA2

• I’ll explain ocamllex; others are similar
– See PA2 documentation

Lexer Source
Code

Lexical
Analyzer
Generator

List of Regexps
with code
snippets

#33

Ocamllex “lexer.mll” file

{
(* raw preamble code

type declarations, utility functions, etc. *)
}
let re_namei = rei

rule normal_tokens = parse
re1 { token1 }

| re2 { token2 }

and special_tokens = parse
| ren { tokenn }

#34

Example “lexer.mll”

{
type token = Tok_Integer of int (* 123 *)

| Tok_Divide (* / *)
}
let digit = [‘0’ – ‘9’]
rule initial = parse

‘/’ { Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in

 let token_val = int_of_string token_string in
 Tok_Integer(token_val) }
| _ { Printf.printf “Error!\n”; exit 1 }

#35

Adding Winged Comments

{
type token = Tok_Integer of int (* 123 *)

| Tok_Divide (* / *)
}
let digit = [‘0’ – ‘9’]
rule initial = parse

“//” { eol_comment }
| ‘/’ { Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in

 let token_val = int_of_string token_string in
 Tok_Integer(token_val) }
| _ { Printf.printf “Error!\n”; exit 1 }

and eol_comment = parse
 ‘\n’ { initial lexbuf }
| _ { eol_comment lexbuf }

#36

Using Lexical Analyzer Generators

$ ocamllex lexer.mll
45 states, 1083 transitions, table size 4602 bytes

(* your main.ml file … *)
let file_input = open_in “file.cl” in
let lexbuf = Lexing.from_channel file_input in
let token = Lexer.initial lexbuf in
match token with
| Tok_Divide -> printf “Divide Token!\n”
| Tok_Integer(x) -> printf “Integer Token = %d\n” x

#37

How Big Is PA2?

• The reference “lexer.mll” file is 88 lines
– Perhaps another 20 lines to keep track of input

line numbers
– Perhaps another 20 lines to open the file and get

a list of tokens
– Then 65 lines to serialize the output
– I’m sure it’s possible to be smaller!

• Conclusion:
– This isn’t a code slog, it’s about careful

forethought and precision.

#38

Warning!

• You may be
tempted to use
OCaml for PA2
based on that
demo.

• However, you
probably want to
save OCaml for one
of the harder
assignments later.

#40

Homework
• Textbook Reading, CD Reading – 2.4

	Lexical Analysis Finite Automata (Part 2 of 2)
	Summary
	Slide 3
	Finite Automata
	Slide 5
	Finite Automata State Graphs
	A Simple Example
	Another Simple Example
	And Another Example
	Slide 10
	Epsilon Moves
	Deterministic and Nondeterministic Automata
	Execution of Finite Automata
	Acceptance of NFAs
	NFA vs. DFA (1)
	NFA vs. DFA (2)
	Slide 17
	Slide 18
	Regular Expressions to Finite Automata
	Regular Expressions to NFA (1)
	Regular Expressions to NFA (2)
	Regular Expressions to NFA (3)
	Example of RegExp -> NFA conversion
	Next
	NFA to DFA: The Trick
	NFA ! DFA Example
	NFA ! DFA: Remark
	Implementation
	Table Implementation of a DFA
	Implementation (Cont.)
	PA1: Lexical Analysis
	Lexical Analyzer Generator
	Ocamllex “lexer.mll” file
	Example “lexer.mll”
	Adding Winged Comments
	Using Lexical Analyzer Generators
	How Big Is PA1?
	Slide 38
	Kinder, Gentler Nation
	Homework

