Lexical Analysis

Finite Automata

(Part 1 of 2)

HOCUS-POCYS, I COMMAND My
@ACADABRA!) TO DO ITSELEY
HOMEWORK, BE DONE !

y
\,(/Vik& ‘,7
S o 0 '

Cunning Plan

e Informal Sketch of Lexical Analysis
- LA identifies tokens from input string

- lexer : (char list) — (token list)

e Issues in Lexical Analysis
- Lookahead
- Ambiguity
e Specifying Lexers
- Regular Expressions
- Examples

#2

One-Slide Summary

e Lexical analysis turns a
stream of characters into a
stream of tokens.

e Regular expressions are a
way to specify sets of strings.
We use them to describe
tokens.

#3

Fold Batter Lightly ...

e fold_leftfa[l;...;n]==f (... (f(fa1)2))n
fold_left (funae->e::a)[][1;2;3] =[3;2;1]
fold_left (funae->a@[e])[][1;2;3] =1[1;2;3]

e fold_right f [1;...;n]b==f1(f2 (... (fnDb)))
fold_right (funae->e::a)[1;2;3][] =1[1;2;3]
fold_right (funea->a @ [e]) [1;2;3] [] =[3;2;1]

Internet Explorer

! Question of the day: Which technological invention do you think has impacted our
b 7 lives more - the telephone or the internet?

' Bilky You know you can post Polls on facebook now, right?
IE, Always a litte behind the times.

seconds ago - Like 44

Interpreter and Compiler

Structure
=
(Inter
Lexical
Analysis
l (Compiler)

Code
Generation

#5

Detail: Modern Reality
PA2 PA3

Lexical Analysis

« What do we want to do? Example:
if (i ==])
z = 0;
else
z=1;
e The input is just a sequence of characters:
if (1 == j)\n\tz = O;\nelse\n\tz = 1;
e Goal: partition input strings into substrings
- And classify them according to their role

#7

What's a Token?

e Output of lexical analysis is a list of tokens

e A token is a syntactic category
- In English:
e houn, verb, adjective, ...
- In a programming language:
e [dentifier, Integer, Keyword, Whitespace, ...
e Parser relies on token distinctions:

- e.g., identifiers are treated differently than
keywords

#8

Tokens

e Tokens correspond to sets of strings.

 Ildentifier: strings of letters or digits, starting
with a letter

e Integer: a non-empty string of digits
 Keyword: “else” or “if” or “begin” or ...

 Whitespace: a non-empty sequence of
blanks, newlines, and/or tabs

e OpenPar: a left-parenthesis

#9

Lexical Analyzer: Build It!

e An implementation must do two things:
« Recognize substrings corresponding to tokens

« Return the value or lexeme of the token
- The lexeme is the substring

R
What have I done... :f

3 minubes ago via Maobike * Like * Comment
T - = Facchook status

& rminutes ago * Like ' g5 2 people

SN |- =<ty shut up!

5 minutes ago * Like &b 1 person

Example

e Recall:
if (1 == j)\n\tz = O;\nelse\n\tz = 1;
e Token-lexeme pairs returned by the lexer:

- <Keyword, “if”>
- <Whitespace, “ 7>
- <OpenPar, “(7>
- <ldentifier, “7>
- <Whitespace, “ 7>
- <Relation, “=="">

€&

- <Whitespace, >

#11

Lexical Analyzer: Implementation

e The lexer usually discards “uninteresting”
tokens that don't contribute to parsing.

« Examples: Whitespace, Comments

- Exception: which language cares about
whitespace?
e Question: What happens if we remove all
whitespace and comments prior to lexing?

|=‘;\ Failed to print document

Printing is not supported on this printer.

Close
e . #12

Lookahead

e The goal is to partition the string. That is
implemented by reading left-to-right,
recognizing one token at a time.

e Lookahead may be required to decide where
one token ends and the next token begins

- Even our simple example has lookahead issues
- i vs. if
- = VS, ==

#13

Still Needed

e A way to describe the
lexemes of each token
- Recall: lexeme = “the

substring corresponding
to the token”

e A way to resolve
ambiguities
- Is if two variables i and f?
- Is == two equal signs = =? FACT

You never get away with pretend writing.

Languages

e Definition. Let > be a set of
characters. A language over 2 is
a set of strings of characters
drawn from 2. 2 is called the
alphabet. .

Examples of Languages

e Alphabet = English Characters

e Language = English Sentences

- Note: Not every string of English characters is an
English sentence.

- Example: xayenb sbe’
e Alphabet = ASCII characters
e Language = C Programs

- Note: ASCII character set is different from English
character set.

#16

Notation

e Languages are sets of strings

« We need some notation for specifying which
sets we want

- that is, which strings are in the set

e For lexical analysis we care about regular
languages, which can be described using
regular expressions.

#17

Regular Expressions

e Each regular expression is a notation for a
regular language (a set of words)

- You'll see the exact notation in minute!

e If Ais a regular expression then we write L(A)
to refer to the language denoted by A

ReportManager T |

Erraor Retrieving walues in YE &pp.
Either wou didn't enter the data properly, or the developer For this screwed up rovally, I'm leaning towards ‘&',

| 8] 4 I

Base Regular Expression

e Single character: 'c
- L(c)={“c”} (foranyc € 2)

e Concatenation: AB
- A and B are other regular expressions

- L(AB)={ab | a€ L(A) and b € L(B) }
e Example: L(7 f') ={ “if” }
- We abbreviate 1 f' as ‘if’

#19

Compound Regular Expressions

e Union
-L(A| B)={s | s&€L(A) or s&€L(B)}

o Examples:
- L(if" | 'then' | 'else’) = { “if”, “then”, “else” }
- L(O 1M 1'271'371'4° 1’516 '77'8"|'9") = what?

e Fun Example:
_ L((IO'|I1') (IO'|'1')) — {“OO”,”O»I ”’”10”,”11”}

#20

Starz!

» 50 far we have only finite languages
e [teration: A*

- L(A*) = {“"3 U L(A) U L(AA) U L(AAA) ...
. Example5°

() — {“ b “O” “OO” “OOO” “OOOO” }
(O) {“1 b3 “10” “100” “1000” }

« Empty: € Micresoft
699 Help and Support
() { } Help and Support Home Select a Product | Advanced Search

Error Message: Your Password Must Be at Least 18770
Characters and Cannot Repeat Any of Your Previous
30689 Passwords

Q: Advertising (810 / 842)

e The United States
Forest Service's ursine
mascot first appeared
in 1944. Give his catch-
phrase safety message.

Natural Languages

e These languages, of which there are about
250, are often mutually intelligible and
constitute a major branch of the Niger-Congo
languages. They are spoken largely in central,
east and southern Africa. Popular examples
include Swabhili, with 80 million speakers,
Shona, with 11 million, and Zulu, with 10
million. They commonly use words such as
muntu or mutu for “person”. Words such as
bongos, chimpanzee, gumbo, jumbo, mambo,
rumba and safari come from these languages.

Q: Music (150 / 842)

e In this 1958 Sheb Wooley song
the pigeon-toed title character
wears short shorts and wants to
get a job in a rock'nroll band
playing the horn, but is perhaps
best known for his skin tone and
non-standard diet.

Example: Keyword

o Keyword: “else” or “if” or “begin” or ...

‘else’ | if' | 'begin’ | ...
(Recall: ‘else’ abbreviates ‘e 'l 's" 'e’)

1. You have entered invalid data in your Security Image
Please do not use any of the following characters or words: 'SELECT FROM' 'DELETE
FROM' "UPDATE SET" "INSERT INTO' DROP NULL .. --

Example: Integers

e Integer: a non-empty string of digits
digit="0 111721314

S [6 [7|89
number = digit digit*

Abbreviation: A+ = AA* @ @

Example: ldentifier

 Identifier: string of letters or digits, starting
with a letter

letter="A"| ... |Z |d | ...|Z

ident = letter (letter | digit)*

Is (letter® | digit*) the same?

#27

Example: Whitespace

 Whitespace: a non-empty sequence of blanks,
newlines, and tabs

(I | | I\tl | I\nl) +
or
(l | | l\tl | I\nl | l\rl) +

Example:
Phone Numbers

e Regexps are everywhere! :

e Consider: (434) 924-1021 SMARTPHONES
2 = {O: 1) 2: 3: XXP 9’ (a)’ '}

area = digit digit digit

exch = digit digit digit

phone = digit digit digit digit
number ='("area’)’' exch '-' phone

#29

Example: Email Addresses

o Consider weimer®cs.virginia.edu

> ={a, b, ..., z, ., @}

name = letter+

address = name '@’ name ('.' name)*

@ Thunderbird thinks this message is junk.

Welcome to Thunderbird!

Mezilla's Thunderbird email application is more powerful than ever. It's now
even easier to organize, secure and customize your mail.

Experience the difference. Thunderbird is developed and supported by Mozilla, a global communit
Internet a better place for everyone

For frequently asked questions, tips and general help, visit Thunderbird Help Center

Far product information, visit the Thunderbird Home Page

#30

mailto:weimer@cs.virginia.edu

Regexp Summary

e Regular expressions describe many useful
languages

e Next: Given a string s and a regexp R, is
s € L(R)
e But a yes/no answer is not enough!

e Instead: partition the input into lexemes
 We will adapt regular expression to this goal

#31

Subsequent Outline

e Specifying lexical structure using regexps

e Finite Automata
- Deterministic Finite Automata (DFAs)
- Non-deterministic Finite Automata (NFAs)

o Implementation of Regular Expressions
- Regexp -> NFA -> DFA -> Tables

- The tables are the heart of the lexer, which is just
a while loop that takes in the current input
character and looks up the new state in the

transition table.
#32

Lexical Specification (1)

e Select a set of tokens
- Number, Keyword, ldentifier, ...
e Write a regexp for the lexemes of each token
- Number = digit+
- Keyword = if" | ‘else’ | ...
- ldentifier = letter (letter | digit) *
- OpenPar ='(’

#33

Lexical Specification (2)

e Construct R, matching all lexemes for all
tokens:

R = Keyword | Identifier | Number
R =R1 | R2 | R3

e Fact: if s € L(R) then s is a lexeme

- Furthermore, s € L(Rj) for some j

- This j determines the token that is reported

#34

Lexical Specification (3)

Let the input be x_ ... X

n

- Each X is in the alphabet =
For 1 <1 <n, check

- X .. X E L(R)

If so, it must be that

- X, ... x. € L(Ry) for some |

Remove x_ ... x from the mput and restart

#35

Lexing Example

« R = Whitespace | Integer | Identifer | Plus
e Parse “f +3 +g”
- “f” matches R, more precisely Identifier

- matches R, more precisely Whitespace
- “+” matches R, more precisely Plus

- The token-lexeme pairs are

< - re £ In the future, we'll just
Ident]ﬁer f> drop whitespace.
{3 “

- <Whitespace,

~ <Plus, “+”>
#36

Ambiguities

e Our algorithm is ambiguous!
e Example:
- R = Whitespace | Integer | Identifier | Plus

e Parse “foo+3”
- “f” matches R, more precisely Identifier

- But also “fo” matches R, and “foo”, but not
“f00+”

« How much input is used?

- Maximal Munch rule: Pick the longest possible
substring that matches R

#37

Ambiguities (2)

« R = Whitespace | 'new' | Integer | ldentifier
e Parse “new foo”

- “new” matches R, more precisely 'new’
- but also Identifier - which one do we pick?

e In general, use the rule listed first.
- No, really.

e 50 we must list 'new’ (and other keywords)
before ldentifier.

#38

Error Handling

« R = Whitespace | Integer | Identifier | '+
e Parse “=56"

- No prefix matches R: not “=", nor “=5”, nor “=56"
e Problem: we can't just get stuck and die

e Solution: _
- New rule matches all “bad” strings & 9oV

ing. Bneakthru gh Enterta g .

- Put it last |

| Inmovative solution beought toyou by McrOSOft - @

e Lexer tools allow the writing of:
-R=R1 | R2 | ... | Rn| Error

Summary Coo

Demo?

e Regular expressions provide a concise
notation for string patterns

e Their use in lexical analysis requires small
extensions
- To resolve ambiguities
- To handle errors
e Good algorithms known (next)
- Requiring only a single pass over the input
- And few operations per character (table lookup)

#40

	Lexical Analysis Finite Automata (Part 2 of 2)
	Summary
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Q: Advertising (810 / 842)
	Slide 23
	Q: Music (150 / 842)
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

