

#2

Cunning Plan

• Informal Sketch of Lexical Analysis
– LA identifies tokens from input string

– lexer : (char list) → (token list)

• Issues in Lexical Analysis
– Lookahead
– Ambiguity

• Specifying Lexers
– Regular Expressions
– Examples

#3

One-Slide Summary

•Lexical analysis turns a
stream of characters into a
stream of tokens.

•Regular expressions are a
way to specify sets of strings.
We use them to describe
tokens.

#4

Fold Batter Lightly ...

• fold_left f a [1;...;n] == f (... (f (f a 1) 2)) n
fold_left (fun a e -> e :: a) [] [1;2;3] = [3;2;1]
fold_left (fun a e -> a @ [e]) [] [1;2;3] = [1;2;3]

• fold_right f [1;...;n] b == f 1 (f 2 (... (f n b)))
fold_right (fun a e -> e :: a) [1;2;3] [] = [1;2;3]
fold_right (fun e a -> a @ [e]) [1;2;3] [] = [3;2;1]

#5

 Interpreter and Compiler
Structure

Source

Lexical
Analysis

List of
Tokens

Abstract
Syntax Tree

Parsing

Optimization

Run It!

Code
Generation

Assembly
Code

(Interpreter)

(Compiler)

#6

Detail: Modern Reality
PA2 PA3

Lexical
AnalysisSource

Token
List

Parsing
Syntax
Tree

Lexical
Analyzer

Generator

Token
List

Regular
Expressions

Parser
Generator

Context-Free
Grammar

#7

Lexical Analysis

• What do we want to do? Example:
if (i == j)
 z = 0;
else
 z = 1;

• The input is just a sequence of characters:
if (i == j)\n\tz = 0;\nelse\n\tz = 1;

• Goal: partition input strings into substrings
– And classify them according to their role

#8

What's a Token?

• Output of lexical analysis is a list of tokens
• A token is a syntactic category

– In English:
• noun, verb, adjective, ...

– In a programming language:
• Identifier, Integer, Keyword, Whitespace, ...

• Parser relies on token distinctions:
– e.g., identifiers are treated differently than

keywords

#9

Tokens

• Tokens correspond to sets of strings.

• Identifier: strings of letters or digits, starting
with a letter

• Integer: a non-empty string of digits
• Keyword: “else” or “if” or “begin” or ...
• Whitespace: a non-empty sequence of

blanks, newlines, and/or tabs
• OpenPar: a left-parenthesis

#10

Lexical Analyzer: Build It!

• An implementation must do two things:
• Recognize substrings corresponding to tokens
• Return the value or lexeme of the token

– The lexeme is the substring

#11

Example
• Recall:

if (i == j)\n\tz = 0;\nelse\n\tz = 1;

• Token-lexeme pairs returned by the lexer:
– <Keyword, “if”>
– <Whitespace, “ ”>
– <OpenPar, “(”>
– <Identifier, “i”>
– <Whitespace, “ ”>
– <Relation, “==”>
– <Whitespace, “ ”>
– ...

#13

Lookahead

• The goal is to partition the string. That is
implemented by reading left-to-right,
recognizing one token at a time.

• Lookahead may be required to decide where
one token ends and the next token begins
– Even our simple example has lookahead issues
– i vs. if
– = vs. ==

#14

Still Needed

• A way to describe the
lexemes of each token
– Recall: lexeme = “the

substring corresponding
to the token”

• A way to resolve
ambiguities
– Is if two variables i and f?
– Is == two equal signs = =?

#15

Languages

•Definition. Let Σ be a set of
characters. A language over Σ is
a set of strings of characters
drawn from Σ. Σ is called the
alphabet.

#16

Examples of Languages

• Alphabet = English Characters
• Language = English Sentences

– Note: Not every string of English characters is an
English sentence.

– Example: xayenb sbe'

• Alphabet = ASCII characters
• Language = C Programs

– Note: ASCII character set is different from English
character set.

#17

Notation

• Languages are sets of strings

• We need some notation for specifying which
sets we want
– that is, which strings are in the set

• For lexical analysis we care about regular
languages, which can be described using
regular expressions.

#19

Base Regular Expression

• Single character: 'c'

– L('c') = { “c” } (for any c ∈ Σ)

• Concatenation: AB
– A and B are other regular expressions

– L(AB) = { ab | a ∈ L(A) and b ∈ L(B) }

• Example: L('i' 'f') = { “if” }
– We abbreviate 'i' 'f' as 'if'

#20

Compound Regular Expressions

• Union

– L(A | B) = { s | s ∈ L(A) or s ∈ L(B) }

• Examples:
– L('if' | 'then' | 'else') = { “if”, “then”, “else” }
– L('0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9') = what?

• Fun Example:
– L(('0'|'1') ('0'|'1')) = {“00”,”01”,”10”,”11”}

Q: Advertising (810 / 842)

•The United States
Forest Service's ursine
mascot first appeared
in 1944. Give his catch-
phrase safety message.

Natural Languages

• These languages, of which there are about
250, are often mutually intelligible and
constitute a major branch of the Niger-Congo
languages. They are spoken largely in central,
east and southern Africa. Popular examples
include Swahili, with 80 million speakers,
Shona, with 11 million, and Zulu, with 10
million. They commonly use words such as
muntu or mutu for “person”. Words such as
bongos, chimpanzee, gumbo, jumbo, mambo,
rumba and safari come from these languages.

Q: Music (150 / 842)

•In this 1958 Sheb Wooley song
the pigeon-toed title character
wears short shorts and wants to
get a job in a rock'n'roll band
playing the horn, but is perhaps
best known for his skin tone and
non-standard diet.

#25

Example: Keyword

• Keyword: “else” or “if” or “begin” or ...

'else' | 'if' | 'begin' | ...
(Recall: 'else' abbreviates 'e' 'l' 's' 'e')

#26

Example: Integers

• Integer: a non-empty string of digits

digit = '0' | '1' | '2' | '3' | '4'
 | '5' | '6' | '7' | '8' | '9'
number = digit digit*

Abbreviation: A+ = A A*

#27

Example: Identifier

• Identifier: string of letters or digits, starting
with a letter

letter = 'A' | ... | 'Z' | 'a' | ... | 'z'
ident = letter (letter | digit)*

Is (letter* | digit*) the same?

#28

Example: Whitespace

• Whitespace: a non-empty sequence of blanks,
newlines, and tabs

(' ' | '(' ' | '\t\t' | '' | '\n\n') +') +
or

(' ' | '(' ' | '\t\t' | '' | '\n\n' | '' | '\r\r') +') +

#29

Example:
Phone Numbers

• Regexps are everywhere!
• Consider: (434) 924-1021

Σ = {0, 1, 2, 3, ..., 9, (,), -}
area = digit digit digit
exch = digit digit digit
phone = digit digit digit digit
number = '(' area ')' exch '-' phone

#30

Example: Email Addresses

• Consider weimer@cs.virginia.edu
Σ = {a, b, ..., z, ., @}
name = letter+
address = name '@' name ('.' name)*

mailto:weimer@cs.virginia.edu

#31

Regexp Summary

• Regular expressions describe many useful
languages

• Next: Given a string s and a regexp R, is

s ∈ L(R)

• But a yes/no answer is not enough!
• Instead: partition the input into lexemes
• We will adapt regular expression to this goal

#32

Subsequent Outline

• Specifying lexical structure using regexps
• Finite Automata

– Deterministic Finite Automata (DFAs)
– Non-deterministic Finite Automata (NFAs)

• Implementation of Regular Expressions
– Regexp -> NFA -> DFA -> Tables
– The tables are the heart of the lexer, which is just

a while loop that takes in the current input
character and looks up the new state in the
transition table.

#33

Lexical Specification (1)

• Select a set of tokens
– Number, Keyword, Identifier, ...

• Write a regexp for the lexemes of each token
– Number = digit+
– Keyword = 'if' | 'else' | ...
– Identifier = letter (letter | digit) *
– OpenPar = '('
– ...

#34

Lexical Specification (2)

• Construct R, matching all lexemes for all
tokens:
R = Keyword | Identifier | Number | ...
R = R1 | R2 | R3 | ...

• Fact: if s ∈ L(R) then s is a lexeme

– Furthermore, s ∈ L(Rj) for some j

– This j determines the token that is reported

#35

Lexical Specification (3)

• Let the input be x
1
 ... x

n

– Each x
i
 is in the alphabet Σ

• For 1 ≤ i ≤ n, check

– x1 ... xi ∈ L(R)

• If so, it must be that

– x1 ... xi ∈ L(Rj) for some j

• Remove x1 ... xi from the input and restart

#36

Lexing Example

• R = Whitespace | Integer | Identifer | Plus
• Parse “f +3 +g”

– “f” matches R, more precisely Identifier
– “ “ matches R, more precisely Whitespace
– “+” matches R, more precisely Plus
– ...
– The token-lexeme pairs are
– <Identifier, “f”>
– <Whitespace, “ “>
– <Plus, “+”> ...

In the future, we'll just
drop whitespace.

#37

Ambiguities

• Our algorithm is ambiguous!
• Example:

– R = Whitespace | Integer | Identifier | Plus

• Parse “foo+3”
– “f” matches R, more precisely Identifier
– But also “fo” matches R, and “foo”, but not

“foo+”

• How much input is used?
– Maximal Munch rule: Pick the longest possible

substring that matches R

#38

Ambiguities (2)

• R = Whitespace | 'new' | Integer | Identifier
• Parse “new foo”

– “new” matches R, more precisely 'new'
– but also Identifier – which one do we pick?

• In general, use the rule listed first.
– No, really.

• So we must list 'new' (and other keywords)
before Identifier.

#39

Error Handling

• R = Whitespace | Integer | Identifier | '+'
• Parse “=56”

– No prefix matches R: not “=”, nor “=5”, nor “=56”

• Problem: we can't just get stuck and die
• Solution:

– New rule matches all “bad” strings
– Put it last

• Lexer tools allow the writing of:
– R = R1 | R2 | ... | Rn | Error

#40

Summary

• Regular expressions provide a concise
notation for string patterns

• Their use in lexical analysis requires small
extensions
– To resolve ambiguities
– To handle errors

• Good algorithms known (next)
– Requiring only a single pass over the input
– And few operations per character (table lookup)

Cool
Demo?

	Lexical Analysis Finite Automata (Part 2 of 2)
	Summary
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Q: Advertising (810 / 842)
	Slide 23
	Q: Music (150 / 842)
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

