
CoqCoq

 Westley Weimer 2

Outline

● Curry-Howard Isomorphism
● Calculus of Inductive Constructions
● Theorem Provers and Meta Languages
● Coq
● Further Resources

 Westley Weimer 3

● On the one hand, Coq can seem “way out
there”

● On the other hand, Coq can seem like a
natural unification of every class topic
● Theorem proving, type systems, lambda calculus,

dependent types, polymorphism, truth vs.
provability, small-step opsem and normal forms,
etc.

 Westley Weimer 4

Curry-Howard Isomorphism

● There is a direct equivalence between
computer programs and mathematical proofs

● The (Intuitionistic) Natural Deduction Proof
System can be directly interpreted as the
Typed Lambda Calculus [Howard, 1969]

● “A proof is a program, and the formula it
proves is the type for the program.”

● How?

 Westley Weimer 5

Curry-Howard Correspondences

Logic Programming

Implication Function Type

Conjunction Product Type

Disjunction Sum Type

True Formula Unit Type

False Formula Bottom Type

Hypotheses Free Variables

Implication Elimination Application

Implication Introduction Abstraction

Universal Quantification Generalized Product Type (Π)

Existential Quantification Generalized Sum Type (Σ)

Natural Deduction Type System for Lambda
Calculus

 Westley Weimer 6

One Example

● Consider: P (Q P)→ →
● It is an axiom (tautology) in logic

P Q Q → P P → (Q → P)

T T T T

T F T T

F T F T

F F T T

 Westley Weimer 7

One Example

● Consider: P (Q P)→ →
● It is an axiom (tautology) in logic

● So a program exists with type σ (→ τ →σ)

P Q Q → P P → (Q → P)

T T T T

T F T T

F T F T

F F T T

 Westley Weimer 8

Curry-Howard Correspondence 2

 Westley Weimer 9

Constructive Logic

● In Constructive (or Intuitionistic) Logic a
statement is only true if there is a
constructive proof for it

● Competing Philosophies:
● Formalism. A statement is either true or false

regardless of whether we have evidence.
Thus P || !P (excluded middle).
Thus !!P P (double negation elim). → [Hilbert]

● Intuitionism. A statement is only true if there is a
proof for it. [LEJ Brouwer]

 Westley Weimer 10

Intuition Was Radical

● "At issue in the sometimes bitter disputes was
the relation of mathematics to logic, as well
as fundamental questions of methodology,
such as how quantifiers were to be construed,
to what extent, if at all, nonconstructive
methods were justified, and whether there
were important connections to be made
between syntactic and semantic notions."
● Dawson's biography of Godel

 Westley Weimer 11

Intuitionism Was Radical 2

● "Taking the principle of excluded middle [P or
not P] from the mathematician would be the
same, say, as proscribing the telescope to the
astronomer or to the boxer the use of his fists.
To prohibit existence statements and the
principle of excluded middle is tantamount to
relinquishing the science of mathematics
altogether."
● Hilbert

 Westley Weimer 12

Constructive Implications

● In a constructive logic, you do not have
● Excluded Middle: P || !P
● Double Negation Elimination: !!P P→

● However, you do have the existence property
● The existence property or witness property is

satisfied by a theory if, whenever a sentence
(x)A(x) is a theorem, where A(x) has no other ∃
free variables, then there is some term t such that
the theory proves A(t)

 Westley Weimer 13

Lambda Cube
[Barendregt, 1991]

A
d

d
 P

o
ly

m
o

rp
h

is
m

 →

Add Dependent Types →

Add T
yp

e
Oper

at
ors

 →

 Westley Weimer 14

Lambda Cube
[Barendregt, 1991]

A
d

d
 P

o
ly

m
o

rp
h

is
m

 →

Add Dependent Types →

Add T
yp

e
Oper

at
ors

 →

Lambda Calculus

System F

Calculus of
Inductive
Constructions

 Westley Weimer 15

Calculus of Inductive Constructions

● It is a Type Theory and Programming Language
(higher-order typed lambda calculus)

● Also a Foundation for Mathematics
● It is Strongly Normalizing

● Every sequence of rewrites terminates with a
normal form

● That is, every program terminates
● Not provable inside the the system itself [Godel]

 Westley Weimer 16

Aside: Theorem Provers and ML

● “Historically, ML was conceived to develop
proof tactics in the LCF theorem prover
(whose language, pplambda, a combination of
the first-order predicate calculus and the
simply-typed polymorphic lambda calculus,
had ML as its metalanguage).”

● Compare: SQL for Database Queries

 Westley Weimer 17

Aside: Theorem Provers and ML 2

● “In ML the various parts of the object language---terms,
declarations, proofs and rules---are data types. By defining a
formal metalanguage we have made concrete the structure
and elements of the object language. We can then write ML
programs that manipulate objects of the object language.
Thus, for example, we can write a program to return the
subterms of a term or one that substitutes a term for a free
variable in a term. More importantly, we can write ML
functions which search for or transform proofs. We can then
use such automated proof techniques and theorem-proving
heuristics, tactics, while writing proofs.

● A tactic is a function written in ML which partially automates
the process of theorem proving […].”

 Westley Weimer 18

Coq

● Coq is a dependently typed functional
programming language based on the calculus
of constructions

● Associated with an interactive theorem prover
● Influential author: Thierry Coquand

● “CoC” “Coq” (French for rooster) →
● 2013 ACM Software System Award
● Associated with the CompCert project

 Westley Weimer 19

Coq's Magic Power

● Recall the existence property: whenever a
sentence (x)A(x) is a theorem, where A(x) has ∃
no other free variables, then there is some
term t such that the theory proves A(t)

● So if you can prove “There exists x such that x
is a function that sorts a list of numbers” in
Coq

● Then Coq will produce a program x doing so
● Coq will write the source code to “sort” for you!

 Westley Weimer 20

This Merits Repeating

● Because Coq is constructive and because
proofs are related to programs …

… if you can prove something in Coq, you get
the corresponding program for free!

● “An interesting additional feature of Coq is
that it can automatically extract executable
programs from specifications, as either
Objective Caml or Haskell source code.”

 Westley Weimer 21

Coq Example: Naturals

● “Proof development in Coq is done through a
language of tactics that allows a user-guided
proof process. […] the curious user can check
that tactics build lambda-terms.”

● Coq “data type”:

 Inductive nat : Set :=

 | 0 : nat

 | S : nat -> nat.

 Westley Weimer 22

Coq Example: Lists

● Naturals:

 Inductive nat : Set :=

 | 0 : nat

 | S : nat -> nat.

● Lists with element type A:

 Inductive list (A:Type) : Type :=

 | nil : list A

 | cons : A -> list A -> list A.

 Westley Weimer 23

Coq Example: Function

● Addition of Naturals:

Fixpoint plus (n m:nat) {struct n} : nat :=

 match n with

 | O => m

 | S p => S (plus p m)

 end

where "p + m" := (plus p m).

 Westley Weimer 24

Coq Example: Function

● Addition of Naturals:

Fixpoint plus (n m:nat) {struct n} : nat :=

 match n with

 | O => m

 | S p => S (p + m)

 end

where "p + m" := (plus p m).

Which structure are we
inducting on? Recall:
strongly normalizing!

 Westley Weimer 25

Coq Example:
Proof that “length” is correct

Inductive seq : nat -> Set :=

| niln : seq 0

| consn : forall n : nat, nat -> seq n -> seq (S n).

Fixpoint length (n : nat) (s : seq n) {struct s} : nat :=

 match s with

 | niln => 0

 | consn i _ s' => S (length i s')

 end.

Each sequence is
a list that also stores
its own length!

What if I try to recompute
the length recursively?
will I get the same answer
as the “stored” length?

 Westley Weimer 26

Coq Example: A Theorem

Theorem length_corr :

 forall (n : nat) (s : seq n),

 length n s = n.

● Recall: Coq is an interactive theorem prover!

Proof.

● To prove “forall n”, we say “introduce an
arbitrary n about which we know nothing”

 intros n s.

 Westley Weimer 27

Coq Example: A Proof

forall (n : nat) (s : seq n), length n s = n.

Proof.

 Intros n s.

● Now we decide to reason by [structural] induction
on s. It has two cases, niln and consn, so we have
two subgoals.

 induction s.

 Westley Weimer 28

Coq Example: A Proof

forall (n : nat) (s : seq n), length n s = n.

Proof.

 Intros n s.

 induction s.

● We are in the case where s is niln. We simply
substitute that into the body of length …
Fixpoint length (n : nat) (s : seq n) {struct s} : nat :=

 match s with | niln => 0 | consn i _ s' => S (length i s')

 end.

● … and get length 0 niln = 0.

 simpl.

 Westley Weimer 29

Coq Example: A Proof

forall (n : nat) (s : seq n), length n s = n.

Proof.

 Intros n s.

 induction s.

 simpl.

● Now we have to prove the equality between
length n s and n. But currently length 0 niln = 0,
so we just have to prove 0 = 0.

 trivial.

 Westley Weimer 30

Coq Example: A Proof

forall (n : nat) (s : seq n), length n s = n.

Proof. Intros n s.

 induction s.

 simpl. Trivial. (* base case *)

● Now the inductive case where s = consn n e s. We
again simply substitute in the body of length …
Fixpoint length (n : nat) (s : seq n) {struct s} : nat :=

 match s with | niln => 0 | consn i _ s' => S (length i s')

… but we also have an inductive hypothesis for
any smaller sequence s'.

 simpl.

 Westley Weimer 31

Coq Example: A Proof

forall (n : nat) (s : seq n), length n s = n.

Proof. Intros n s.

 induction s.

 simpl. Trivial. (* base case *)

 simpl.

● The inductive hypothesis has type length n s = n
(for smaller sequences). We apply it!

 rewrite Ihs.

● This rewrites length i s' into n
 match s with | niln => 0 | consn i _ s' => S (length i s')

 Westley Weimer 32

Coq Example: A Proof

forall (n : nat) (s : seq n), length n s = n.

Proof. Intros n s.

 induction s.

 simpl. Trivial. (* base case *)

 simpl. rewrite IHs.

● Now the goal is S n = S n, which is trivial.

 Trivial. (* inductive step *)

● And now both sub-cases are handled, so we close off
the inductive case analysis and forall-introductions:

 Qed.

 Westley Weimer 33

That Interactive Session Generates
A Machine-Checkable Proof

● Coq is an interactive theorem prover. Here's the proof:

 length_corr =

 fun (n : nat) (s : seq n) =>

 seq_ind (fun (n0 : nat) (s0 : seq n0) => length n0 s0 = n0)

 (refl_equal 0)

 (fun (n0 _ : nat) (s0 : seq n0) (IHs : length n0 s0 = n0) =>

 eq_ind_r

 (fun n2 : nat => S n2 = S n0)

 (refl_equal (S n0)) IHs) n s

 : forall (n : nat) (s : seq n), length n s = n

 Westley Weimer 34

Generating OCaml

● Consider:

forall b:nat, b > 0 -> forall a:nat, diveucl a b
● where diveucl is a [dependent] type (i.e., a

specification) for the pair of the quotient and
the modulo

● That is, we are saying “there exists a function
that takes all naturals a and b with b>0 and
returns the euclidean division of them”
● Once we prove that theorem, Coq will generate a

correct OCaml implementation for us!

 Westley Weimer 35

type nat =| O | S of nat

type sumbool =| Left | Right

(** val sub : nat -> nat -> nat **)

let rec sub n m =

 match n with

 | O -> n

 | S k -> (match m with

 | O -> n

 | S l -> sub k l)

(** val le_lt_dec : nat -> nat -> sumbool **)

let rec le_lt_dec n m =

 match n with

 | O -> Left

 | S n0 -> (match m with

 | O -> Right

 | S m0 -> le_lt_dec n0 m0)

(** val le_gt_dec : nat -> nat -> sumbool **)

let le_gt_dec =

 le_lt_dec

type diveucl =

| Divex of nat * nat

(** val eucl_dev : nat -> nat -> diveucl **)

let rec eucl_dev n m =

 let s = le_gt_dec n m in

 (match s with

 | Left ->

 let d = let y = sub m n in eucl_dev n y in

 let Divex (q, r) = d in Divex ((S q), r)

 | Right -> Divex (O, m))

 Westley Weimer 36

Rosetta Stone

euclid(m, n):

 r = m;

 q = 0;

 while (r >= n):

 r = r - n;

 q = q + 1;

 return (q,r);

let rec eucl_dev n m =

 let s = le_gt_dec n m in

 (match s with

 | Left ->

 let d =

 let y = sub m n in

 eucl_dev n y in

 let Divex (q, r) = d in

 Divex ((S q), r)

 | Right -> Divex (O, m))

(* Left means >= is true *)

(* Right: >= is false *)

 Westley Weimer 37

Further Resources

● Certified Programming with Dependent Types
● Adam Chlipala

http://adam.chlipala.net/cpdt/
● “A traditional hardcopy version is available

from MIT Press, who have graciously agreed to
allow distribution of free versions online
indefinitely, minus the benefits of the Press'
copy editing!”

● Outside of France, Adam is our leading Coq
wizard …

http://adam.chlipala.net/cpdt/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

