

Grad PL Conclusions

e YOU are now equipped to read

the most influential papers in
PL.

e YOu can also recognize PL
concepts and will know what to
do when they come up in your
research.

#2

Questions

e Model Checking, Abstraction Refinement,
SLAM, Large-Step Opsem, Contextual Opsem,
Structural Induction, Theorem Proving,
Simplex, Proof Checking, Axiomatic
Semantics, VCGen, Symbolic Execution,
Invariant Detection, Abstract Interpretation,
Lambda Calculus, Monomorphic and
Polymorphic Type Systems, Recursive and
Dependent Types, Pi Calculus, Machine
Learning, Fault Localization, Program Repair,
Instructor.

#3

ACM SIGPLAN

Most Influential Paper Awards

e SIGPLAN presents these awards to the
author(s) of a paper presented at ICFP,
OOPSLA, PLDI, and POPL held 10 years prior
to the award year. The award includes a prize
of $1,000 to be split among the authors of the
winning paper. The papers are judged by
their influence over the past decade. Each
award is presented at the respective
conference.

#4

e 2008 (POPL 1998): From System F to Typed
Assembly Language, Greg Morrisett, David
Walker, Karl Crary, and Neal Glew.

e ... began a major development in the application of type
system ideas to low level programming. The paper shows how
to compile a high-level, statically typed language into TAL, a
typed assembly language defined by the authors. The type
system for the assembly language ensures that source-level
abstractions like closures and polymorphic functions are
enforced at the machine-code level while permitting
aggressive, low-level optimizations such as register allocation
and instruction scheduling. This infrastructure provides the
basis for ensuring the safety of untrusted low-level code
artifacts, regardless of their source. A large body of
subsequent work has drawn on the ideas in this paper, including
work on proof-carrying code and certifying compilers.

#5

From System F to Typed
Assembly Language

Polymorphic -
Function Type
appears belows

types 7T u= a|int|n— a.7 | {11,y Tn)
terms e u= z|i|fizz(ziin)ime.e]eiez|Ace]
»ef[7] | {e1,-++,en) | mile) |
e1 p ez | if0(ey, ez e3)
e

Polymorphic Function
Type Application

T Polymorphic Function
Creation

#6

From System F to Typed
Assembly Langp—-

... but you know it.

We interpret A¥ with a convegfional call-by-value oper-
ational semantics (not presented here). The static se-
mantics is specified as a set of inference rules that allow
us to conclude judgments of the form A;I' Fr e : 7

where A is a set containing the free type bles of T,
e, and 7; I assigns types to the free varigbles of e; and
T is the type Of €. _

As a running example, we will be considering compila-~
tion and evaluation of 6 factorial: e

(ﬁ:nﬁn:int):int. 1f0(n,1,n x f(n —1))) 6.

The operational semantics of TAL is presented in Fig-
ure 7 as a deterministic rewriting system P —— P’ that

maps programs to programs. Althoufﬂ

1= |
Operational Semantics,
Forward Symex

(H,R,S) — P where

fS=

then P =

add rq, 7s,v; S

Y
(H, R{ra = R(rs) + B(v)}, S')
and similarly for mul and sub

bnz 7,v; S
when R(r) =0

bnz r,v; S
when R(r) =iand i # 0

(H,R,S5)
(#,R,5" [’F;;N
(G

and H({) = codela|l’.5"

jmp v (H,R,5'[7/al)
where R(v) = €7} “L” is fresh.
and H{£) = code{a|".8’ Small-step opsem
] 1d rg, rsfif; S’ (H,R{ra v w;},S) For allocation.
‘ where R(r,) =¢

/ Wny) With0< i< n

and H(E) ot (woy

{malloc TalTiyees s ™)} S

(H{e Lancs {?1'1, ol 3 ?‘I‘n)
where £€ H

’ R{Td = f}r Si)

From System F to Typed

Assembly Language

Lemma 5.1 (Subject Reduction) If trar. P and
Pl—'—'}Pr then Frparn P'. —

Type Preservation

Lemma 5.2 (Progress) If bray P then either:
[t Docomposiion

-
1. there exists P' such that P+— P', or

2. P is of the form (H, R{r1 + w},halt|r]) where
there exists ¥ such that Fpar H : ¥ and ;0 Frar
w:T.

Corollary 5.3 (Type Soundness) If brar, P, then
there is no stuck P’ such that P +—" P'. "

« 2011 (POPL 2001): Anytime, Anywhere:
Modal Logics for Mobile Ambients, Luca
Cardelli and Andrew D. Gordon.

e ... helped spur a flowering of work in the area of process
calculi that continues today. The paper focused on
modal logics for reasoning about both temporal and
spacial modalities for ambient behaviours,
demonstrating techniques that also apply to other
process calculi (even those without an explicit notion of
location), so contributing to excitement in an area that
was growing at that time and continues. The work has
led to application of concurrency theory in fields as
diverse as security, safety critical applications, query
languages for semistructured data, and systems biology.

#10

Anytime, Anywhere: Modal
Logics for Mobile Ambients

Processes
| P,OR .= processes 1
0 /\ “Pi Calculus”-esque
PtQ composition spatial
\P replication
MIP] ambient
M.P capability action
(n).P input action } temporal
M) ‘WM/ _
M .= messages
n name > names
inM can enter into M
out M can exit out of M } capabilities
open M can open M

£ null ks
MM’ composite P
| ! #11

Anytime, Anywhere: Modal
Logics for Mobile Ambients

Structural Congruence
I

P=P (Struct Refl)

P=Q = Q=P (Struct) Pi Calculus

P=0,0=R = P=R ruct Trans)

P=Q = PIR=QIR (Struct Par)

P=0 = P=10 (Struct Repl)

P=Q = M[P]=M[(Q] (Struct Amb)

PIlOQ=QIP (Struct Par Comm)

(PIQ)IR=PI(QIR) Reduction

P10=P " nlin m. P1 Q11 m[R) — m[n[P} Q)| (Red In)

PIQ)=!PI!Q m[nfout m. P1 Q]| R] — n[P| Q]| m[R] (Red Our)

:‘;i‘;l » openn.P\n[Q] — PI|Q (Red Open)

iP; el (n).P | (M) — P{n«M} < (Red Comm)
P— Q0 = n[P]— n[Q] (Red Amb)
P—(0 = PIR— QIR (Red Par)
PP=P,P—-0,0=0 = P —Q’ (Red =)

—* is the reflexive and transitive closure of —

e 2011 (PLDI 2001): Automatic predicate
abstraction of C programs, Thomas Ball,
Rupak Majumdar, Todd Millstein, Sriram K.
Rajamani.

e ... presented the underlying predicate abstraction
technology of the SLAM project for checking that
software satisfies critical behavioral properties of the
interfaces it uses and to aid software engineers in
designing interfaces and software that ensure reliable
and correct execution. The technology is now part of
Microsoft's Static Driver Verifier in the Windows Driver
Development Kit. This is one of the earliest examples of
automation of software verification on a large scale and
the basis for numerous efforts to expand the domains
that can be verified.

#13

Automatic predicate
abstraction of C programs

4.1 Weakest Precow SA::,?::::;
For a statement s and gpredicate ¢, let W P(s,) denote

the weakest liberal precondition {16, 20] of ¢ with respect to
statement s. WP(s,¢) is defined as the weakest predicate
whose truth before s entails the truth of ¢ after s terminates
(if it terminates). Let “x = e” be an assignment, where z
is a scalar variable and e is an expression of the appropriate
type. Let ¢ be a predicate. By definition WP(x = e,) is
¢ with all occurrences of z replaced with e, denoted yle/x].
For example:

WP(x=x+1,2<5) = (z+1)<5 = (z < 4)

#14

e 2009 (PLDI 1999): A Fast Fourier Transform
Compiler, Matteo Frigo

e ... describes the implementation of genfft, a special-purpose compiler
that produces the performance critical code for a library, called FFTW
(the “Fastest Fourier Transform in the West”), that computes the
discrete Fourier transform. FFTW is the predominant open fast Fourier
transform package available today, as it has been since its
introduction a decade ago. genfft demonstrated the power of domain-
specific compilation—FFTW achieves the best or close to best
performance on most machines, which is remarkable for a single
package. By encapsulating expert knowledge from the FFT algorithm
domain and the compiler domain, genfft and FFTW provide a
tremendous service to the scientific and technical community by
making highly efficient FFTs available to everyone on any machine. As
well as being the fastest FFT in the West, FFTW may be the last FFT in
the West as the quality of this package and the maturity of the field
may mean that it will never be superseded, at least for computer

architectures similar to past and current ones.
#15

A Fast Fourier
Transform Compiler

type node =
| Num of Number.number

Load of Variable.variable

Store of Variable.variable * node

Plus of node list

Times of node * node

Uminus of node

Figure 3: Objective Caml code that defines the node data type,

which encodes an exprcssiml‘dag.\ _

#16

e 2014 (POPL 2004): Abstractions from proofs,
Thomas Henzinger, Ranjit Jhala, Rupak

Majumdar, and Kenneth McMillan.

e ... the authors demonstrated a fundamental
generalization of Craig interpolation to program
analysis by predicate abstraction, opening the door
for interpolation to be applied to abstraction

refinement of infinite-state systems. T

Nis work

showed how interpolation offers a fundamental way

to explain abstraction refinement in a

logical

framework and has led to many extensions to
increase the power of abstraction in program

analysis.

#17

HypP cT
o ‘ T Side
Condition
FTFo<xTHO<y —

COMPTT O < ety 270 -
{q)ln°°~nq)n} F0<c
CONTRA c<0
I'F _lq)lj...j_lq)h,) s S rae
F'E{o}UO T'F{-0}UuE® P
RES 'FOUE
N~— P->X,IP->Y
Figure 3. Proof system. X1y

#18

« 2012 (PLDI 2002): Extended Static Checking
for Java, Cormac Flanagan, K. Rustan M.
Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, Raymie Stata

e ... marks a turning point in the field of static
checking, describing pragmatic design decisions that
promote practicality over completeness. Pioneered
in ESC/Modula-3, techniques from ESC/Java are now
widely used in various forms in Microsoft’s
development tools, notably as part of Code
Contracts which ships with VisualStudio. Recent
innovations strongly influenced by ESC/Java include
refinement types for Haskell, and verification of

Eiffel programs.
#19

Annotated Java Program

f

Invariant
4| Front End | Generation
Type- &Abstract Syntax Trees
specific | Translator | (ASTs)
Background ‘ Guarded Commands ‘7
Predicate | VC Generator | (GCs) -
‘Veriﬁcation Conditions

—=] Theorem Prover (VCs)

Universal ‘ Prover Results SA::T?;‘:::Z

Backgroundl Postprocessor |

Predicate ’
UBP) Ouputto User | MAMBSY

#20

« 2017 (POPL 2007): JavaScript
Instrumentation for Browser Security,
Dachuan Yu, Ajay Chander, Nayeem Islam,

lgor Serikov.

e ... presents one of the earliest models of the interaction between
the browser and JavaScript. It uses this model to work out the
formalization and dynamic enforcement of rich security policies.
Since then, people have routinely discovered additional, pernicious
security problems based on this model. Eliminating these problems
remains an important challenge to this day.

o Looking back, the selected paper made a prescient, and
influential, contribution to understanding these JavaScript-based
security problems. The authors chose a formal, semantic approach
to model these problems and potential solutions, while remaining
true to the complicated characteristics that make both JavaScript
and the browser real-world artifacts.

#21

Secretly IMP?

(Script) P :=skip|x=FE|P;P

if £ then P else P

while E do P | f(E) | act(A)
write(E)

(Expression) FE =z | D | op(E)

(Action) A ::= €| newWin(x, F) | closeWin(F)
| loadURL(F) | readCki(x)
| writeCki(E) | secOp(E)

(Value Action) A" ::=¢€|newWin(_, D) | closeWin(D)
| LloadURL(D) | readCki(_)

—

| writeCki(D) | secOp(D)

Figure 4. CoreScript syntax

#22

e Read and explain their “if” and “while” rules

to me ...
If D= then focus(D) = and stepDoc(D, x) =
js P where P € {skip,z=F, |P e (empty string)
act(A)}
Js write(F) write(£) D wherexFFE | D
3s P Py focus(gs Pr) jux D (js P») where D = stepDoc(js P, x)
9s if F/ then P else P» if I then P else Po|j3s P if y FH E || true
gs Po ity E | false
js while F do P while ' do P js if F then (P;while F do P) else skip
js f(E) f(E) js P[D/&] where x - E |} D and x(f) = (Z)P
F DvD'D focus(D'") F D*D"D
where D’ is not a value document where D" = stepDoc(D’, x)

#23

What is
“type preservation”?

Lemma 2 (Orthodoxy Preservation) If W is orthodox and
s (W, q) ~ (W', q") : AV, then W' is orthodox.

Proof sketch: By definition of the step relation (~+), with induction
on the structure of documents. The case of executing write(F)
is no possible because W is orthodox. In the case of executing
instr(F), the operational semantics produces an instrumented
document to replace the focus node. Orthodoxy thus follows from
Lemma 1. In all other cases, the operational semantics may obtain
document pieces from other program components, which are ortho-
dox by assumption. O

e

#24

Your Questions

Model Checking, Abstraction Refinement, SLAM, Large-Step Opsem,
Contextual Opsem, Structural Induction, Theorem Proving, Simplex,
Proof Checking, Axiomatic Semantics, VCGen, Symbolic Execution,
Invariant Detection, Abstract Interpretation, Lambda Calculus,
Monomorphic and Polymorphic Type Systems, Recursive and
Dependent Types, Pi Calculus, Machine Learning, Fault Localization,
Program Repair, Instructor.

HEY, You WHAT;‘\ YOU'VE NEVER ¥ HOW DO 00 I REALLY Y HOW AN |V age vou WHAT DO
WANNA PLAY THAT ? HEARD OF THE You HAVE To I PLAY IF | PUTTING YOL
THE ﬂﬁ%ﬂaﬁ ' ﬂussngu PLAY? EXFPLAIN 177 gﬂg}% ME ON? MEAN 7

Grad PL Conclusions

e YOU are now equipped to read

the most influential papers in
PL.

e YOu can also recognize PL
concepts and will know what to
do when they come up in your
research.

#26

	Lambda Calculus
	Substitution
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

