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The Story So Far ...

e Quality assurance is critical to software engineering.

e Testing is the most common dynamic approach to QA.
e But: race conditions, information flow, profiling ...

e Code review and code inspection are the most common
static approaches to QA.

e \What other static analyses are commonly used and how do
they work?



Review and Wrap-up: Dynamic Analysis

Programs with no arror | Frograms with an arror

* Dynamic analyses involve running the program

* You instrument the source code

e Consider: what property do you care about?

* What information do you need to understand that property?
 What mechanisms can be used to collect that information?

* What post-hoc analyses must be conducted on that information? .

* You compile the instrumented source code
* You execute the instrumented program on test inputs

pE
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* Analyses of this sampled data entails statistical errors
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One-Slide Summary

e Static analysis is the systematic examination of an
abstraction of program state space with respect to a
property. Static analyses reason about all possible
executions but they are conservative.

e TL;DR analyses of code (i.e., not runtime)

e Dataflow analysis is a popular approach to static analysis. It
tracks a few broad values (“secret information” vs. “public
information”) rather than exact information. It can be
computed in terms of a local transfer of information.
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Fundamental Concepts

e Abstraction

e Capture semantically-relevant details
e Elide other details
e Handle “l don't know”: think about developers

e Programs As Data

e Programs are just trees, graphs or strings

e And we know how to analyze and manipulate those (e.g., visit every
node in a graph)



/]

goto fail
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“Unimportant” SSL Example

static 0SStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
SSLBuffer signedParams,
uint8_t #*signature,
UInt16 signaturelLen) {
OSStatus err;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

fail:

SSLFreeBuffer (&signedHashes) ;

SSLFreeBuffer(&hashCtx) ;

return err;



Linux Driver Example

/* from Linux 2.3.99 drivers/block/raid5.c */
static struct buffer_head =*
get_free_buffer(struct stripe_head * sh,
int b_size) {

struct buffer_head *bh;

unsigned long flags;

save_flags(flags);

cli(); // disables interrupts

if ((bh = sh->buffer_pool) == NULL)

return NULL;

sh->buffer_pool = bh -> b_next;

bh->b_size = b_size;

restore_flags(flags); // enables interrupts

return bh;

22



Could We Have Found Them?

e How often would those bugs trigger?

e Linux example:

e What happens if you return from a device driver with interrupts disabled?

e Consider: that's just one function
... in a 2,000 LOC file

... in @ 60,000 LOC module

... in the Linux kernel

e Some defects are very difficult to find via testing or manual
Inspection



CNET » News * Security & Privacy * Klocwork: Our source code analyzer caught Apple's '...

Klocwork: Our source code

analyzer caught Apple's
'gotofail’ bug

If Apple had used a third-party source code analyzer on its encryption

library, it could have avoided the "gotofail" bug.

by Declan McCullagh | February 28, 2014 1:13 PM PST
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Klocwork's Larry Edelstein sent us this screen snapshot, complete with the arrows, showing how the company's

product would have nabbed the "goto fail" bug.
(Credit: Klocwork)

It was a single repeated line of code -- "goto fail" -- that left millions of Apple users

vulnerable to Internet attacks until the company finally fixed it Tuesday.
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Many Interesting Defects

e ...are on uncommon or difficult-to-exercise execution paths
e Thus itis hard to find them via testing

e Executing or dynamically analyzing all paths concretely to
find such defects is not feasible

e We want to learn about “all possible runs” of the program
for particular properties

e Without actually running the program!
e Bonus: we don't need test cases!



Static Analyses Often Focus On

e Defects that result from inconsistently following simple,
mechanical design rules

Security: buffer overruns, input validation
Memory safety: null pointers, initialized data
Resource leaks: memory, OS resources

API Protocols: device drivers, GUI frameworks
Exceptions: arithmetic, library, user-defined
Encapsulation: internal data, private functions
Data races (again!): two threads, one variable

? I Am Deviloper

Knock knock
Hace condition
Who's there?

V" PePOTP501L



How And Where Should We Focus?
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Static Analysis

e Static analysis is the systematic examination of an
abstraction of program state space

e Static analyses do not execute the program!

e An abstraction is a selective representation of the program
that is simpler to analyze

e Abstractions have fewer states to explore

e Analyses check if a particular property holds

e Liveness: “some good thing eventually happens”
e Safety: “some bad thing never happens”



Syntactic Analysis Example

e Find every instance of this pattern:
public foo() {

logger.debug(“We have ” + conn + “connections.”);

¥

public foo() {

if (logger.inDebug()) {
logger.debug(“We have ” + conn + “connections.”);

}
¥

e What could go wrong? First attempt:
grep logger\.debug -r source dir

29



Abstraction: Abstract Syntax Tree

e An AST is a tree representation of the syntactic structure of
source code

e Parsers convert concrete syntax into abstract syntax

e Records only semantically-relevant information
e Abstracts away (, etc. Example: 5 + (2 + 3)

+

e AST captures program structure

30



Programs As Data

e “grep” approach: treat program as string
e AST approach: treat program as tree

eThe notion of treating a program as data is fundamental
e Recall from 370: instructions are input to a CPU
e Writing different instructions causes different execution
e |t relates to the notion of a Universal Turing Machine.

e Finite state controller and initial tape represented with a string
e Can be placed as tape input to another TM



Dataflow Analysis

e Dataflow analysis is a technique for gathering information
about the possible set of values calculated at various points
In @ program

e We first abstract the program to an AST or CFG

e We then abstract what we want to learn (e.g., to help
developers) down to a small set of values

e We finally give rules for computing those abstract values
e Dataflow analyses take programs as input



Two Exemplar Analyses

e Definite Null Dereference

* “Whenever execution reaches *ptr at program location L, ptr will be
NULL"

e Potential Secure Information Leak

e “We read in a secret string at location L, but there is a possible future
public use of it”

WELL THERE'S YOUR
PROBLEM .




Discussion

e These analyses are not trivial to check

e “Whenever execution reaches” - “all paths” - includes
paths around loops and through branches of conditionals

e We will use (global) dataflow analysis to learn about the
program

e Global = an analysis of the entire method body, not just one { block }

34



Analysis Example

* [s ptr always null when it is dereferenced?

ptr = new AVL () ;
1f (B > 0)

/\

ptr = 0; X = 2

*

3;

— -

print (ptr->data) ;

35



Correctness

* To determine that a use of x is always null, we must know
this correctness condition:

* On every path to the use of x,
the last assignment to xis x :=0 **

Test. [ 1 do Met BELIEVE iM LiNEsR WWEM 1N DOURT,

| *iME. THERE is Ne Past awnd DENY ALL TERMS
1. What important event tock fuluRE: aLL is oNE, add | AND DEFIMITIONS .
place on December 16, 177537 EXiSTENCE iM HE YEMPoRal SEMSE
i5 ILLUSeRY. THIS QUESHoN, M
My HWIEREFORE , 1S MEANiNGLESS and al == =
| MpessiBLE Yo ANSwER. by

=
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Analysis Example Revisited

* |s ptr always null when it is dereferenced?

prftc (ptr->data) ;

37



Static Dataflow Analysis

e Static dataflow analyses share several traits:

The analysis depends on knowing a property P at a particular point in
program execution

Proving P at any point requires knowledge of the entire method body
e Property P is typically undecidable!

K i Word cannot edit the Unknown.

38



Undecidability of Program Properties

e Rice’s Theorem: Most interesting dynamic properties of a
program are undecidable:

e Does the program halt on all (some) inputs?
e This is called the halting problem

e |sthe result of a function F always positive?
e Assume we can answer this question precisely
e QOops: We can now solve the halting problem.

e Take function H and find out if it halts by testing function
F(x) = { H(x); return 1; } to see if it has a positive result

e Contradiction!

static int IsNegative(float arg)
{
char*p = (char*) malloc(20);
sprintf (p, "%f", arg):;

return p[0]=="'-";
1




Undecidability of Program Properties

eSo, if interesting properties are
out, what can we do?

e Syntactic properties are decidable!

o, . ”n

e e.g., How many occurrences of “x” are
there?

e Programs without looping are also
decidable!




Looping

e Almost every important program has a loop
e (Often based on user input

e An algorithm always terminates

*So a dataflow analysis algorithm must terminate even if the
input program loops

eThis is one source of imprecision

e Suppose you dereference the null pointer on the 500" iteration but
we only analyze 499 iterations

41



Conservative Program Analyses

e We cannot tell for sure that ptr is always null
e So how can we carry out any sort of analysis?

e |t is OK to be conservative.

42



Conservative Program Analyses

e We cannot tell for sure that ptr is always null
e So how can we carry out any sort of analysis?

|t is OK to be conservative. If the analysis depends on
whether or not P is true, then want to know either

1

|
‘ Truthiness

-
.
. -

e Pisdefinitely true

e Don’t know if Pis true

i

¢t
N
*; ,! = g 3




Conservative Program Analyses

e |t is always correct to say “don’t know”
e We try to say don’t know as rarely as possible

e All program analyses are conservative

e Must think about your software engineering process

e Bug finding analysis for developers?
They hate “false positives”, so if we don't know, stay silent.
e Bug finding analysis for airplane autopilot?
Safety is critical, so if we don't know, give a warning.




Definitely Null Analysis

* |s ptr always null when it is dereferenced?

ptr = new AVL() ptr = 0;
if (B > 0) if (B > 0)
ptr = 0; X =2 * 3; foo = myAVL; ptr = 0;

~. 7

print (ptr->data) ; print (ptr->data);




Definitely Null Analysis

* |s ptr always null when it is dereferenced?

46



Definitely Null Analysis

* |s ptr always null when it is dereferenced?

print (ptr-®data) ; print (ptr-

No, not always. Yes, always.

On every path to the use of ptr, the
last assignment to ptris ptr :=0 **



Definitely Null Information

e \We can warn about definitely null pointers at any point

where ** holds

e Consider the case of computing ** for a single variable ptr

at all program points
e Valid points cannot hide!

e We will find you!

e (sometimes)

| don’t know for sure if you exist, but

I'might find you without/overclaiming
knowledge of your existence, and'l
acnkowledge that | occasionally produce
false positives and negatives

48



Definitely Null Analysis (Cont.)

* To make the problem precise, we associate one of the
following values with ptr at every program point

e Recall: abstraction and property

value interpretation

1 This statement is
(called Bottom) not reachable

C X = constant c

T Don’t know if X is a
(called Top) constant




Example

Let's fill in these blanks now.

«— X=T
X:=3 -
B>O
Xl/-\x:
Yi=Z+W Y =
X= —> >
X:i=4 «— X-=
X= — X =
A=2*X

Recall: L = not reachable, ¢ = constant, T = don't know.

50



Example Answers

< X=T
X=3 e x=3
B>0

XV\X:B

Yi=Z+W Vi 0

X=3 —>

X::4_‘ JX:3

X=4 —> X=T
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Programs as Data

e This person is credited with the creation of the Princeton architecture.
Every modern computer derives from this architecture!

e Notably, these machines treat programs as data
e Load program and into same memory
e CPU executes instructions at that memory location
e Instructions can refer to memory locations nearby

e Enables self-modifying programs

e In contrast, the Harvard architecture treats programs and
data separately

e Security implications?




Psychology: Predictions

eYou are asked to read about a conflict and are given two
alternative ways of resolving it.

e You are then asked to do:

e Say which option you would pick

e Guess which option other people will pick

e Describe the attributes of a person who would choose each of the
two options

e (Actually, let's be more specific ...)




Psychology: Prediction

e Would you be willing to walk around campus for 30 minutes
holding a sign that says “Eat at Joe's”?

e (No information about Joe's restaurant is provided, you are free to
refuse, but we claim you will learn “something useful” from the
study.)

* \Would you do it?




Psychology: False Consensus Effect

e Of those who agreed to carry the sign, 62% thought others would
also agree

e Of those who refused, 67% thought others would also refuse

e We think others will do the same as us, regardless of what we
actually do

e We make extreme predictions about the personalities of those who chose
differently

e But choosing “like me” does not imply anything: it's common!
e “Must be something wrong with you!”




Psychology: False Consensus Effect

e Replications with 200 college students, etc.

e [Kathleen Bauman, Glenn Geher. WE think you agree: the detrimental
impact of the false consensus effect on behavior. J. Current
Psychology, 2002, 21(4). ]

e Implications for SE: Myriad, whenever you design
something someone else will use. Example: Do you think
this static analysis should report possible defects or certain
defects? By the way, what do you think the majority of our
customers want?




Using Abstract Information

e Given analysis information (and a policy about false
positives/negatives), it is easy to decide whether or not to

Issue a warning
e Simply inspect the x = ? associated with a statement using x

e |[fxisthe constant 0 at that point, issue a warning!

e But how can an algorithm compute x = ?



The Idea

* The analysis of a complicated program can be expressed as

a combination of simple rules relating the change in
information between adjacent statements

LIFE HAS GOTTEM TOO COMAL-
CATED.. TWAT WEVE ACCUMIAATED
MORE THAR WE FEMLY MEED..

SMETIMES T FREL LWWE QUR |

TUAT WEVE MEFTED Too MANY |

WELL, THOREM) SAYS, " SIMPLIRY,

SIMPLIFY." MAYEE WE NEED |

58



Explanation

eThe idea is to “push” or “transfer” information from one
statement to the next

e For each statement s, we compute information about the
value of x immediately before and after s

* C..(x,s) = value of x before s

* C,.:(x,s) = value of x after s



Transfer Functions

e Define a transfer function that transfers information from
one statement to another

60



Rule 1

* C i(x,x:=c)=c if cisaconstant

61



Rule 2

* Coix,s)=LifC (x,5)=1

Recall: L = “unreachable code”

62



Rule 3

«— X=7?

x = f(..)

l «— X=T

* C ., x:=1(...))=T

This is a conservative approximation! It might be possible
to figure out that f(...) always returns 0, but we won't even try!

63



Rule 4

64



The Other Half

e Rules 1-4 relate the in of a statement to the out of the same
statement

e they propagate information across statements

e Now we need rules relating the out of one statement to the
in of the successor statement

e to propagate information forward along paths

*|n the following rules, let statement s have immediate
predecessor statements p,,...,p,



Rule 5

*if C (X, p;) =T for somei, thenC (x,s)=T

66



Rule 6

if Coue(X, ;) =c and C,(x, p;) =d and d#c ,thenC, (x,s)=T

67



Rule 7

if C_(x, p,)=c orl foralli,thenC (x,s)=c

68



Rule 8

if C,.(x, p;) =41 foralli,thenC, (x,s)=1

69



Static Analysis Algorithm

e For every entry s to the program, set
C.(x,s)=T

eSet C, (x,s) =C,_,(x, s) =1 everywhere else

e Repeat until all points satisfy 1-8:

* Pick s not satisfying 1-8 and update using the appropriate rule



The Value

e To understand why we need 1, look at a loop

«— X=T

X :=3
B>0

«— X=3

X;i;jf”/;~\\\\::$¥:3

Y=Z+W

X:S\/

Yi=0

Az2*X
A<B

71



The Value

e To understand why we need 1, look at a loop

Az2*X
A<B

72



The Value 1L (Cont.)

e Because of cycles, all points must have values at all times
during the analysis

e Intuitively, assighing some initial value allows the analysis to
break cycles

eThe initial value L means “we have not yet analyzed control
reaching this point”

73



Sometimes

74

all paths
lead to the




Another Example

X:=3 Analyze the value of X ...
B>0
Yi=Z+W Yi=0 S
A=2*X
X




Another Example: Answer

<€

X=T
X=3 e X=4><3
B>0

X:%‘S’ /\X:%3

Y=Z+W Yi=0

—X= X 4
X=X 3 \A%XT
T e XK

X:=4
. X = 4>< 4 Must continue
A < until all rules

\ are satisfied !
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Orderings

e We can simplify the presentation of the analysis by ordering
the values

e] < c < T

* Making a picture with “lower” values drawn lower, we get

‘ lamcalled
 a lattice!

77



Orderings (Cont.)

T is the greatest value, L is the least

e All constants are in between and incomparable

e (with respect to this analysis)

e et lub be the least-upper bound in this ordering
o cf. “least common ancestor” in Java/C++

e Rules 5-8 can be written using lub:

*C.(x,s)=lub{C_,(x, p) | pisa predecessor of s}



Termination

e Simply saying “repeat until nothing changes” doesn’t
guarantee that eventually nothing changes

e The use of lub explains why the algorithm terminates

e \alues start as 1L and only increase

1 can change to a constant, and a constant to T
e Thus, C (x, s) can change at most twice



Number Crunching

* The algorithm is polynomial in program size:
* Number of steps =
* Number of C_{(....) values changed * 2 =

* (Number of program statements)? * 2

80



“Potential Secure Information Leak” Analysis

* Could sensitive information possibly reach an insecure use?

str := get password()

If B >0

/\

str := sanitize(str) Y :=0

\x/

display (str)

In this example, the password contents can
potentially flow into a public display
(depending on the value of B)

81



Live and Dead X3

eThe first value of x is dead (never used)

e The second value of x is live (may be used)

e|iveness is an important concept

e We can generalize it to reason about “potential secure information
leaks”

82



Sensitive Information

* A variable x at stmt s is a possible sensitive (high-security)
information leak if

e There exists a statement s’ that uses x

e Thereisapathfromstos’

e That path has no intervening low-security assignment to x

Chronicle.com - Today's News ==X

Textbook Sales Drop, and University Presses Search for
Reasons Why

students Flock to Web Sites Offering Pirated Textbooks




Computing Potential Leaks

e \We can express the high- or low-security status of a variable
in terms of information transferred between adjacent
statements, just as in our “definitely null” analysis

e |n this formulation of security status we only care about
“high” (secret) or “low” (public), not the actual value

e \We have abstracted away the value

e This time we will start at the public display of information
and work backwards



Secure Information Flow Rule 1

1 <«— X = true

display (x)

«— X=7?

H. (x, s) = true if s displays x publicly
true means “if this ends up being a secret variable

then we have a bug!”
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Secure Information Flow Rule 2

1 <«— X = false

X := sanitize (x)

«— X=7?

H. (X, x := e) = false

(any subsequent use is safe)



Secure Information Flow Rule 3

* H (x,s)=H

out

l «<— X-=-a

S

«— X-=-a

(x, s) if s does not refer to x

87



Secure Information Flow Rule 4

P

mtrue

X=72? X=7? X = true X=7?

*H_..(x, p) = V{H._(x,s) | sasuccessorof p}

(if there is even one way to potentially have a leak, we potentially have a leak!)

88



Secure Information Flow Rule 5 (Bonus!)

* Hily, x:=y) =Hy,(x, x:=y)
(To see why, imagine the next statement is

display(x). Do we care about y above?)

89



Algorithm

elLetall H (...) = false initially

e Repeat process until all statements s satisfy rules 1-4 :

* Pick s where one of 1-4 does not hold and update using
the appropriate rule



Secure Information Flow Example

X := passwd()

h
X := sanitize (X)
B >0 E

H(X) = false
H(X) = false

H(X) = famx) = false

Y ;=2 + W

Y :

=0 <_H(X) = fa/Se

HX) - W} = falde
h

H(X) = false
display (X)
< H(X) = false
X := passwd()
A <p STH(X) = falte
N—

<—H(X) = false
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Secure Information Flow Example

X := passwd()

h
X := sanitize (X)
B >0 E

H(X) = false
H(X) = false

H(X) = famx) = false

Y ;=2 + W

Y :

=0 <_H(X) = fa/Se

HX) - W} = falde
h

H(X) = TRUE
display (X)
< H(X) = false
X := passwd()
A <p STH(X) = falte
N

<—H(X) = false

92



Secure Information Flow
X := passwd()
X := sanitize(§7_
B > 0 <

Example

H(X) = false
H(X) = TRUE

H(X) = T’V\H{X) = TRUE

X := passwd()

A <B
\

< H(X) = TRUG

Y :=Z + W vy := 0 & H(X)=TRUE
H(X) = W) = TA/E
<— H(X) = TRUE
display (X)

<—H(X) = TRUE

93



Secure Information Flow Example

No possible leak
Starting here

X := passwd()
X := sanitize (X) HO-=>Talse
B > 0 <—H(X) = TRUE

Z

+

W

0 T’MX) - TRUE

Y :

POSSIBLE LEAK

Y :=0
<— H(X) = TRUE

<—H(X) = TRUE

display (X)
S

—H(X) = TRU
RO=T

E

From high-security W
value starting here A < B
\

<—H(X) = TRUE
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Termination

e A value can change from false to true, but not the other way
around

e Each value can change only once, so termination is
guaranteed

e Once the analysis is computed, it is simple to issue a
warning at a particular entry point for sensitive information



Static Analysis Limitations

e \Where might a static analysis go wrong?

e |f | asked you to construct the shortest program you can
that causes one of our static analyses to get the “wrong”

answer, what wou

d you do?

YOU KNOW THIS METAL
RECTANGLE FULL OF
LTTLE LIGHTSY

K e

Vil

L SPEND MOST oF MY UFE
PRESSING BUTTONS TO MAKE
THE PATTERN OF LIGHTS

CHANGE HOWEVER T WANT:

k scuND:a

BUT TODAY, THE PATTERN
oF LIGHT".:'r 15 ALL WRONG!

QH GOD! TRY
PRESSING MORE
;mmr rsurrms

HELPING!

445

g
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Static Analysis

eYou are asked to design a static analysis to detect bugs
related to file handles

e A file starts out closed. A call to open() makes it open; open() may
only be called on closed files. read() and write() may only be called

on open files. A call to close() makes a file closed; close may only be
called on open files.

e Report if a file handle is potentially used incorrectly

e \What abstract information do you track?

e \What do your transfer functions look like?



Abstract Information

e We will keep track of an abstract value for a given file
handle variable

eValues and Interpretations
T file handle state is unknown

1 haven't reached here yet
closed file handle is closed

open file handle is open



Rules

. e Now: “file handles”
e Previously: “null ptr”

1 <« ptr=0 1 <— f = closed
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Rules: open

1 <«— f = closed

open

(£)

\ 4

<— f = open

1 <«— f =T oropen
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Rules: close

1 <— f =open

close (f)

\ 4

<«— f = closed

1 <«— f =T or closed

close (f)
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Rules: read/write

* (write is identical)

1 <«— f = open 1 <«— f =T or closed
read (f) read (f)
<— f = open \ Report
Error!

\ 4 \ 4
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Rules: Assignment

\ 4

f

g :=f
@

a

a
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Rules: Multiple Possibilities

<« f=a
«— f=-1
«— f=b «— f=a
«— f=a
«— f=T «— f=a
v v
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A Tricky Program

start:

switch (a)
case 1: open(f); read(f); close(f); goto start
default: open(f);

do {
write(f) ;
if (b): read(f);
else: close(f);

} while (b)

open(f);

close(f);



closed
\

1
1
start: open(f)
1 1
open(f) .
i 1
write(f) close(f)
read(f) N
i 1
close(f) read(f) 1
1
1
J_ N
close(f) open(f)
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closed

closed
\

closed

start:

closed

open(f)

open

read(f)

open

close(f)

close(f)

open(f)

1
1
write(f) close(f)
1
1
read(f)
1
1

open(f)
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closed

closed
\

closed
closed
start: open(f)
closed Open
open(f) open
open open
write(f) close(f)
read(f) N
open open
losed
close(f) read(f) close
open
J_ N
close(f) open(f)
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closed

closed
\

closed
closed
start: open(f)
closed open
open(f) open
open open
write(f) close(f)
read(f) -
open open
losed
close(f) read(f) close
open
T
J_ N
close(f) open(f)
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closed

closed
\

closed
closed
start: open(f)

closed open
open(f) !

oPen write(f)
read(f) -

T

open

close(f) read(f)
T
T
close(f) open(f)

close(f)
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closed

closed
\

closed
closed
start: open(f)

closed open
open(f) !

oPen write(f)
read(f) T

T

open

close(f) read(f)
T
T
close(f) open(f)

close(f)
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s There Really A Bug?

start:

switch (a)
case 1: open(f); read(f); close(f); goto start
default: open(f);

do {
write(f) ;
if (b): read(f);
else: close(f);

} while (b)

open(f);

close(f);



Forward vs. Backward Analysis

* We've seen two kinds of analysis:

* Definitely null (cf. constant propagation) is a forwards
analysis: information is pushed from inputs to outputs

* Secure information flow (cf. liveness) is a backwards
analysis: information is pushed from outputs back towards
Inputs



Questions?

e How's the homework going?

eExam 10/8

e Practice exam on piazza

e 2 hour limit, any time during 10/8
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