\WMBRGINE "TRUTH \S A SPHERE:

UE SPUSRE THE GPMERE
S BLL S A
BLACK WHIE/

9
S Jy

Static and

Dataflow

b Analysis

THE SPUERE THE SPUERE

\S BLL \S AL
Y) WHITE/ (two-part lecture)
)| S

¢

The Story So Far ...

e Quality assurance is critical to software engineering.

e Testing is the most common dynamic approach to QA.
e But: race conditions, information flow, profiling ...

e Code review and code inspection are the most common
static approaches to QA.

e \What other static analyses are commonly used and how do
they work?

Review and Wrap-up: Dynamic Analysis

Programs with no arror | Frograms with an arror

* Dynamic analyses involve running the program

* You instrument the source code

e Consider: what property do you care about?

* What information do you need to understand that property?
 What mechanisms can be used to collect that information?

* What post-hoc analyses must be conducted on that information? .

* You compile the instrumented source code
* You execute the instrumented program on test inputs

pE

A —buvch of |

* Analyses of this sampled data entails statistical errors

g I‘mteb Melbobmt Cbmcﬁ %

Semantlcs,.rnll;

One-Slide Summary

e Static analysis is the systematic examination of an
abstraction of program state space with respect to a
property. Static analyses reason about all possible
executions but they are conservative.

e TL;DR analyses of code (i.e., not runtime)

e Dataflow analysis is a popular approach to static analysis. It
tracks a few broad values (“secret information” vs. “public
information”) rather than exact information. It can be
computed in terms of a local transfer of information.

18

Fundamental Concepts

e Abstraction

e Capture semantically-relevant details
e Elide other details
e Handle “l don't know”: think about developers

e Programs As Data

e Programs are just trees, graphs or strings

e And we know how to analyze and manipulate those (e.g., visit every
node in a graph)

/]

goto fail

20

“Unimportant” SSL Example

static 0SStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
SSLBuffer signedParams,
uint8_t #*signature,
UInt16 signaturelLen) {
OSStatus err;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

fail:

SSLFreeBuffer (&signedHashes) ;

SSLFreeBuffer(&hashCtx) ;

return err;

Linux Driver Example

/* from Linux 2.3.99 drivers/block/raid5.c */
static struct buffer_head =*
get_free_buffer(struct stripe_head * sh,
int b_size) {

struct buffer_head *bh;

unsigned long flags;

save_flags(flags);

cli(); // disables interrupts

if ((bh = sh->buffer_pool) == NULL)

return NULL;

sh->buffer_pool = bh -> b_next;

bh->b_size = b_size;

restore_flags(flags); // enables interrupts

return bh;

22

Could We Have Found Them?

e How often would those bugs trigger?

e Linux example:

e What happens if you return from a device driver with interrupts disabled?

e Consider: that's just one function
... in a 2,000 LOC file

... in @ 60,000 LOC module

... in the Linux kernel

e Some defects are very difficult to find via testing or manual
Inspection

CNET » News * Security & Privacy * Klocwork: Our source code analyzer caught Apple's '...

Klocwork: Our source code

analyzer caught Apple's
'gotofail’ bug

If Apple had used a third-party source code analyzer on its encryption

library, it could have avoided the "gotofail" bug.

by Declan McCullagh | February 28, 2014 1:13 PM PST
=
W Follow

ﬁs:r Wzasmzs

[t Trasapar b
P ———re if ((err = Reodytosh{BSSiMashSHAL, Bhash{tx)) != @)
* [N isCuretranapats o h 64 goto foll;

B etues TrasapartPrie = g

411 5 More +

* [§ wlh () goto foll;
» [wi3Calouts 627 if ((err = SSLHoshSHAL.updote(Bhash(tx, AserverRondon)) |= @)
* [ssTdmecoeaCalivers. o 628 goro fall;

B WA LA L
B isAbeniessage b
Lty - ¥y

if ({err = SSLMashSHAL.update{Bhashltx, SsignedParams)) != @)

fail;
» 5 sSWERLL 631 ::3 r:gur Apple, we need to tal
B [N awBaidiags b 0 637 |[Cesde & enveachasie . final(BhashCtx, BhashOut)) 1= @) -

* [ssCerec // goto fail;

* & s hangeCipher.c .

B 4] 8 it £ err = sslRowVerify{ctx,

[fucemneat Static code analysis wins! chx->peerfubkey,
e AR
* [sirmec

LT <0

* [N ssDebug s

& coowork ssues H

Fites rrnched | of 4 s Grouged by Deeomey, somod by Destrigtion, then By Besource.

¥ & ssDigessic O pture Tanirniersy N

* [ssDigestsh ¥ T U e e n (a0 o - | OUR PRecarity- 55T 1/ seseny il
* o wnHasovhaRe o

* Lk asFastihane b

* & anassns i o
* L& asFansdihaetelio
b wwieprhain g

F |k ASME s

® i wekrpfachange o

Winitulbie Smvart imsary BiY . &0

if ((err = SSLMoshSHAL. update(Bhash(tx, &clientfandon)) 1= @)

]
-

O UnFEACH CEN. Code b usreshabde CamdCon | LeyEnchange o

TUNELALM CEN DWarevesgl Mo evhereal o
Ceahe 14 smmesrhabie.

Comments | 25

Tracesack:
*) [Users) bedelvoen iwerazace fean- 109

O aleyEahasges G137 The (ode ity

Carmest vigisa: Asalydt

- e n
LoCatos Sty
1% Warrng (31
& :

Klocwork's Larry Edelstein sent us this screen snapshot, complete with the arrows, showing how the company's

product would have nabbed the "goto fail" bug.
(Credit: Klocwork)

It was a single repeated line of code -- "goto fail" -- that left millions of Apple users

vulnerable to Internet attacks until the company finally fixed it Tuesday.

Featured Posts

Google unveils Androi

wearables
Internet & Media

Motorol;

poweret
Internet

0K, Gla
in my fa
Cutting E

Apple iF
product
Apple

iPad wit
comeba
Apple

Most Popular

Giant 3[
house
6k Facel

Exclusiv
, Doeschi
716 Twe
Google'
.. four can
N 771 Goo
Connect With CNET
Facebook
Like Us

=3l -~ .

24

Many Interesting Defects

e ...are on uncommon or difficult-to-exercise execution paths
e Thus itis hard to find them via testing

e Executing or dynamically analyzing all paths concretely to
find such defects is not feasible

e We want to learn about “all possible runs” of the program
for particular properties

e Without actually running the program!
e Bonus: we don't need test cases!

Static Analyses Often Focus On

e Defects that result from inconsistently following simple,
mechanical design rules

Security: buffer overruns, input validation
Memory safety: null pointers, initialized data
Resource leaks: memory, OS resources

API Protocols: device drivers, GUI frameworks
Exceptions: arithmetic, library, user-defined
Encapsulation: internal data, private functions
Data races (again!): two threads, one variable

? I Am Deviloper

Knock knock
Hace condition
Who's there?

V" PePOTP501L

How And Where Should We Focus?

27

Static Analysis

e Static analysis is the systematic examination of an
abstraction of program state space

e Static analyses do not execute the program!

e An abstraction is a selective representation of the program
that is simpler to analyze

e Abstractions have fewer states to explore

e Analyses check if a particular property holds

e Liveness: “some good thing eventually happens”
e Safety: “some bad thing never happens”

Syntactic Analysis Example

e Find every instance of this pattern:
public foo() {

logger.debug(“We have ” + conn + “connections.”);

¥

public foo() {

if (logger.inDebug()) {
logger.debug(“We have ” + conn + “connections.”);

}
¥

e What could go wrong? First attempt:
grep logger\.debug -r source dir

29

Abstraction: Abstract Syntax Tree

e An AST is a tree representation of the syntactic structure of
source code

e Parsers convert concrete syntax into abstract syntax

e Records only semantically-relevant information
e Abstracts away (, etc. Example: 5 + (2 + 3)

+

e AST captures program structure

30

Programs As Data

e “grep” approach: treat program as string
e AST approach: treat program as tree

eThe notion of treating a program as data is fundamental
e Recall from 370: instructions are input to a CPU
e Writing different instructions causes different execution
e |t relates to the notion of a Universal Turing Machine.

e Finite state controller and initial tape represented with a string
e Can be placed as tape input to another TM

Dataflow Analysis

e Dataflow analysis is a technique for gathering information
about the possible set of values calculated at various points
In @ program

e We first abstract the program to an AST or CFG

e We then abstract what we want to learn (e.g., to help
developers) down to a small set of values

e We finally give rules for computing those abstract values
e Dataflow analyses take programs as input

Two Exemplar Analyses

e Definite Null Dereference

* “Whenever execution reaches *ptr at program location L, ptr will be
NULL"

e Potential Secure Information Leak

e “We read in a secret string at location L, but there is a possible future
public use of it”

WELL THERE'S YOUR
PROBLEM .

Discussion

e These analyses are not trivial to check

e “Whenever execution reaches” - “all paths” - includes
paths around loops and through branches of conditionals

e We will use (global) dataflow analysis to learn about the
program

e Global = an analysis of the entire method body, not just one { block }

34

Analysis Example

* [s ptr always null when it is dereferenced?

ptr = new AVL () ;
1f (B > 0)

/\

ptr = 0; X = 2

*

3;

— -

print (ptr->data) ;

35

Correctness

* To determine that a use of x is always null, we must know
this correctness condition:

* On every path to the use of x,
the last assignment to xis x :=0 **

Test. [1 do Met BELIEVE iM LiNEsR WWEM 1N DOURT,

| *iME. THERE is Ne Past awnd DENY ALL TERMS
1. What important event tock fuluRE: aLL is oNE, add | AND DEFIMITIONS .
place on December 16, 177537 EXiSTENCE iM HE YEMPoRal SEMSE
i5 ILLUSeRY. THIS QUESHoN, M
My HWIEREFORE , 1S MEANiNGLESS and al == =
| MpessiBLE Yo ANSwER. by

=

4\!%

Analysis Example Revisited

* |s ptr always null when it is dereferenced?

prftc (ptr->data) ;

37

Static Dataflow Analysis

e Static dataflow analyses share several traits:

The analysis depends on knowing a property P at a particular point in
program execution

Proving P at any point requires knowledge of the entire method body
e Property P is typically undecidable!

K i Word cannot edit the Unknown.

38

Undecidability of Program Properties

e Rice’s Theorem: Most interesting dynamic properties of a
program are undecidable:

e Does the program halt on all (some) inputs?
e This is called the halting problem

e |sthe result of a function F always positive?
e Assume we can answer this question precisely
e QOops: We can now solve the halting problem.

e Take function H and find out if it halts by testing function
F(x) = { H(x); return 1; } to see if it has a positive result

e Contradiction!

static int IsNegative(float arg)
{
char*p = (char*) malloc(20);
sprintf (p, "%f", arg):;

return p[0]=="'-";
1

Undecidability of Program Properties

eSo, if interesting properties are
out, what can we do?

e Syntactic properties are decidable!

o, . ”n

e e.g., How many occurrences of “x” are
there?

e Programs without looping are also
decidable!

Looping

e Almost every important program has a loop
e (Often based on user input

e An algorithm always terminates

*So a dataflow analysis algorithm must terminate even if the
input program loops

eThis is one source of imprecision

e Suppose you dereference the null pointer on the 500" iteration but
we only analyze 499 iterations

41

Conservative Program Analyses

e We cannot tell for sure that ptr is always null
e So how can we carry out any sort of analysis?

e |t is OK to be conservative.

42

Conservative Program Analyses

e We cannot tell for sure that ptr is always null
e So how can we carry out any sort of analysis?

|t is OK to be conservative. If the analysis depends on
whether or not P is true, then want to know either

1

|
‘ Truthiness

-
.
. -

e Pisdefinitely true

e Don’t know if Pis true

i

¢t
N
*; ,! = g 3

Conservative Program Analyses

e |t is always correct to say “don’t know”
e We try to say don’t know as rarely as possible

e All program analyses are conservative

e Must think about your software engineering process

e Bug finding analysis for developers?
They hate “false positives”, so if we don't know, stay silent.
e Bug finding analysis for airplane autopilot?
Safety is critical, so if we don't know, give a warning.

Definitely Null Analysis

* |s ptr always null when it is dereferenced?

ptr = new AVL() ptr = 0;
if (B > 0) if (B > 0)
ptr = 0; X =2 * 3; foo = myAVL; ptr = 0;

~. 7

print (ptr->data) ; print (ptr->data);

Definitely Null Analysis

* |s ptr always null when it is dereferenced?

46

Definitely Null Analysis

* |s ptr always null when it is dereferenced?

print (ptr-®data) ; print (ptr-

No, not always. Yes, always.

On every path to the use of ptr, the
last assignment to ptris ptr :=0 **

Definitely Null Information

e \We can warn about definitely null pointers at any point

where ** holds

e Consider the case of computing ** for a single variable ptr

at all program points
e Valid points cannot hide!

e We will find you!

e (sometimes)

| don’t know for sure if you exist, but

I'might find you without/overclaiming
knowledge of your existence, and'l
acnkowledge that | occasionally produce
false positives and negatives

48

Definitely Null Analysis (Cont.)

* To make the problem precise, we associate one of the
following values with ptr at every program point

e Recall: abstraction and property

value interpretation

1 This statement is
(called Bottom) not reachable

C X = constant c

T Don’t know if X is a
(called Top) constant

Example

Let's fill in these blanks now.

«— X=T
X:=3 -
B>O
Xl/-\x:
Yi=Z+W Y =
X= —> >
X:i=4 «— X-=
X= — X =
A=2*X

Recall: L = not reachable, ¢ = constant, T = don't know.

50

Example Answers

< X=T
X=3 e x=3
B>0

XV\X:B

Yi=Z+W Vi 0

X=3 —>

X::4_‘ JX:3

X=4 —> X=T

51

Programs as Data

e This person is credited with the creation of the Princeton architecture.
Every modern computer derives from this architecture!

e Notably, these machines treat programs as data
e Load program and into same memory
e CPU executes instructions at that memory location
e Instructions can refer to memory locations nearby

e Enables self-modifying programs

e In contrast, the Harvard architecture treats programs and
data separately

e Security implications?

Psychology: Predictions

eYou are asked to read about a conflict and are given two
alternative ways of resolving it.

e You are then asked to do:

e Say which option you would pick

e Guess which option other people will pick

e Describe the attributes of a person who would choose each of the
two options

e (Actually, let's be more specific ...)

Psychology: Prediction

e Would you be willing to walk around campus for 30 minutes
holding a sign that says “Eat at Joe's”?

e (No information about Joe's restaurant is provided, you are free to
refuse, but we claim you will learn “something useful” from the
study.)

* \Would you do it?

Psychology: False Consensus Effect

e Of those who agreed to carry the sign, 62% thought others would
also agree

e Of those who refused, 67% thought others would also refuse

e We think others will do the same as us, regardless of what we
actually do

e We make extreme predictions about the personalities of those who chose
differently

e But choosing “like me” does not imply anything: it's common!
e “Must be something wrong with you!”

Psychology: False Consensus Effect

e Replications with 200 college students, etc.

e [Kathleen Bauman, Glenn Geher. WE think you agree: the detrimental
impact of the false consensus effect on behavior. J. Current
Psychology, 2002, 21(4).]

e Implications for SE: Myriad, whenever you design
something someone else will use. Example: Do you think
this static analysis should report possible defects or certain
defects? By the way, what do you think the majority of our
customers want?

Using Abstract Information

e Given analysis information (and a policy about false
positives/negatives), it is easy to decide whether or not to

Issue a warning
e Simply inspect the x = ? associated with a statement using x

e |[fxisthe constant 0 at that point, issue a warning!

e But how can an algorithm compute x = ?

The Idea

* The analysis of a complicated program can be expressed as

a combination of simple rules relating the change in
information between adjacent statements

LIFE HAS GOTTEM TOO COMAL-
CATED.. TWAT WEVE ACCUMIAATED
MORE THAR WE FEMLY MEED..

SMETIMES T FREL LWWE QUR |

TUAT WEVE MEFTED Too MANY |

WELL, THOREM) SAYS, " SIMPLIRY,

SIMPLIFY." MAYEE WE NEED |

58

Explanation

eThe idea is to “push” or “transfer” information from one
statement to the next

e For each statement s, we compute information about the
value of x immediately before and after s

* C..(x,s) = value of x before s

* C,.:(x,s) = value of x after s

Transfer Functions

e Define a transfer function that transfers information from
one statement to another

60

Rule 1

* C i(x,x:=c)=c if cisaconstant

61

Rule 2

* Coix,s)=LifC (x,5)=1

Recall: L = “unreachable code”

62

Rule 3

«— X=7?

x = f(..)

l «— X=T

* C ., x:=1(...))=T

This is a conservative approximation! It might be possible
to figure out that f(...) always returns 0, but we won't even try!

63

Rule 4

64

The Other Half

e Rules 1-4 relate the in of a statement to the out of the same
statement

e they propagate information across statements

e Now we need rules relating the out of one statement to the
in of the successor statement

e to propagate information forward along paths

*|n the following rules, let statement s have immediate
predecessor statements p,,...,p,

Rule 5

*if C (X, p;) =T for somei, thenC (x,s)=T

66

Rule 6

if Coue(X, ;) =c and C,(x, p;) =d and d#c ,thenC, (x,s)=T

67

Rule 7

if C_(x, p,)=c orl foralli,thenC (x,s)=c

68

Rule 8

if C,.(x, p;) =41 foralli,thenC, (x,s)=1

69

Static Analysis Algorithm

e For every entry s to the program, set
C.(x,s)=T

eSet C, (x,s) =C,_,(x, s) =1 everywhere else

e Repeat until all points satisfy 1-8:

* Pick s not satisfying 1-8 and update using the appropriate rule

The Value

e To understand why we need 1, look at a loop

«— X=T

X :=3
B>0

«— X=3

X;i;jf”/;~\\\\::$¥:3

Y=Z+W

X:S\/

Yi=0

Az2*X
A<B

71

The Value

e To understand why we need 1, look at a loop

Az2*X
A<B

72

The Value 1L (Cont.)

e Because of cycles, all points must have values at all times
during the analysis

e Intuitively, assighing some initial value allows the analysis to
break cycles

eThe initial value L means “we have not yet analyzed control
reaching this point”

73

Sometimes

74

all paths
lead to the

Another Example

X:=3 Analyze the value of X ...
B>0
Yi=Z+W Yi=0 S
A=2*X
X

Another Example: Answer

<€

X=T
X=3 e X=4><3
B>0

X:%‘S’ /\X:%3

Y=Z+W Yi=0

—X= X 4
X=X 3 \A%XT
T e XK

X:=4
. X = 4>< 4 Must continue
A < until all rules

\ are satisfied !

76

Orderings

e We can simplify the presentation of the analysis by ordering
the values

e] < c < T

* Making a picture with “lower” values drawn lower, we get

‘ lamcalled
 a lattice!

77

Orderings (Cont.)

T is the greatest value, L is the least

e All constants are in between and incomparable

e (with respect to this analysis)

e et lub be the least-upper bound in this ordering
o cf. “least common ancestor” in Java/C++

e Rules 5-8 can be written using lub:

*C.(x,s)=lub{C_,(x, p) | pisa predecessor of s}

Termination

e Simply saying “repeat until nothing changes” doesn’t
guarantee that eventually nothing changes

e The use of lub explains why the algorithm terminates

e \alues start as 1L and only increase

1 can change to a constant, and a constant to T
e Thus, C (x, s) can change at most twice

Number Crunching

* The algorithm is polynomial in program size:
* Number of steps =
* Number of C_{(....) values changed * 2 =

* (Number of program statements)? * 2

80

“Potential Secure Information Leak” Analysis

* Could sensitive information possibly reach an insecure use?

str := get password()

If B >0

/\

str := sanitize(str) Y :=0

\x/

display (str)

In this example, the password contents can
potentially flow into a public display
(depending on the value of B)

81

Live and Dead X3

eThe first value of x is dead (never used)

e The second value of x is live (may be used)

e|iveness is an important concept

e We can generalize it to reason about “potential secure information
leaks”

82

Sensitive Information

* A variable x at stmt s is a possible sensitive (high-security)
information leak if

e There exists a statement s’ that uses x

e Thereisapathfromstos’

e That path has no intervening low-security assignment to x

Chronicle.com - Today's News ==X

Textbook Sales Drop, and University Presses Search for
Reasons Why

students Flock to Web Sites Offering Pirated Textbooks

Computing Potential Leaks

e \We can express the high- or low-security status of a variable
in terms of information transferred between adjacent
statements, just as in our “definitely null” analysis

e |n this formulation of security status we only care about
“high” (secret) or “low” (public), not the actual value

e \We have abstracted away the value

e This time we will start at the public display of information
and work backwards

Secure Information Flow Rule 1

1 <«— X = true

display (x)

«— X=7?

H. (x, s) = true if s displays x publicly
true means “if this ends up being a secret variable

then we have a bug!”

85

Secure Information Flow Rule 2

1 <«— X = false

X := sanitize (x)

«— X=7?

H. (X, x := e) = false

(any subsequent use is safe)

Secure Information Flow Rule 3

* H (x,s)=H

out

l «<— X-=-a

S

«— X-=-a

(x, s) if s does not refer to x

87

Secure Information Flow Rule 4

P

mtrue

X=72? X=7? X = true X=7?

*H_..(x, p) = V{H._(x,s) | sasuccessorof p}

(if there is even one way to potentially have a leak, we potentially have a leak!)

88

Secure Information Flow Rule 5 (Bonus!)

* Hily, x:=y) =Hy,(x, x:=y)
(To see why, imagine the next statement is

display(x). Do we care about y above?)

89

Algorithm

elLetall H (...) = false initially

e Repeat process until all statements s satisfy rules 1-4 :

* Pick s where one of 1-4 does not hold and update using
the appropriate rule

Secure Information Flow Example

X := passwd()

h
X := sanitize (X)
B >0 E

H(X) = false
H(X) = false

H(X) = famx) = false

Y ;=2 + W

Y :

=0 <_H(X) = fa/Se

HX) - W} = falde
h

H(X) = false
display (X)
< H(X) = false
X := passwd()
A <p STH(X) = falte
N—

<—H(X) = false

91

Secure Information Flow Example

X := passwd()

h
X := sanitize (X)
B >0 E

H(X) = false
H(X) = false

H(X) = famx) = false

Y ;=2 + W

Y :

=0 <_H(X) = fa/Se

HX) - W} = falde
h

H(X) = TRUE
display (X)
< H(X) = false
X := passwd()
A <p STH(X) = falte
N

<—H(X) = false

92

Secure Information Flow
X := passwd()
X := sanitize(§7_
B > 0 <

Example

H(X) = false
H(X) = TRUE

H(X) = T’V\H{X) = TRUE

X := passwd()

A <B
\

< H(X) = TRUG

Y :=Z + W vy := 0 & H(X)=TRUE
H(X) = W) = TA/E
<— H(X) = TRUE
display (X)

<—H(X) = TRUE

93

Secure Information Flow Example

No possible leak
Starting here

X := passwd()
X := sanitize (X) HO-=>Talse
B > 0 <—H(X) = TRUE

Z

+

W

0 T’MX) - TRUE

Y :

POSSIBLE LEAK

Y :=0
<— H(X) = TRUE

<—H(X) = TRUE

display (X)
S

—H(X) = TRU
RO=T

E

From high-security W
value starting here A < B
\

<—H(X) = TRUE

94

Termination

e A value can change from false to true, but not the other way
around

e Each value can change only once, so termination is
guaranteed

e Once the analysis is computed, it is simple to issue a
warning at a particular entry point for sensitive information

Static Analysis Limitations

e \Where might a static analysis go wrong?

e |f | asked you to construct the shortest program you can
that causes one of our static analyses to get the “wrong”

answer, what wou

d you do?

YOU KNOW THIS METAL
RECTANGLE FULL OF
LTTLE LIGHTSY

K e

Vil

L SPEND MOST oF MY UFE
PRESSING BUTTONS TO MAKE
THE PATTERN OF LIGHTS

CHANGE HOWEVER T WANT:

k scuND:a

BUT TODAY, THE PATTERN
oF LIGHT".:'r 15 ALL WRONG!

QH GOD! TRY
PRESSING MORE
;mmr rsurrms

HELPING!

445

g

96

Static Analysis

eYou are asked to design a static analysis to detect bugs
related to file handles

e A file starts out closed. A call to open() makes it open; open() may
only be called on closed files. read() and write() may only be called

on open files. A call to close() makes a file closed; close may only be
called on open files.

e Report if a file handle is potentially used incorrectly

e \What abstract information do you track?

e \What do your transfer functions look like?

Abstract Information

e We will keep track of an abstract value for a given file
handle variable

eValues and Interpretations
T file handle state is unknown

1 haven't reached here yet
closed file handle is closed

open file handle is open

Rules

. e Now: “file handles”
e Previously: “null ptr”

1 <« ptr=0 1 <— f = closed

99

Rules: open

1 <«— f = closed

open

(£)

\ 4

<— f = open

1 <«— f =T oropen

100

Rules: close

1 <— f =open

close (f)

\ 4

<«— f = closed

1 <«— f =T or closed

close (f)

101

Rules: read/write

* (write is identical)

1 <«— f = open 1 <«— f =T or closed
read (f) read (f)
<— f = open \ Report
Error!

\ 4 \ 4

102

Rules: Assignment

\ 4

f

g :=f
@

a

a

103

Rules: Multiple Possibilities

<« f=a
«— f=-1
«— f=b «— f=a
«— f=a
«— f=T «— f=a
v v

104

A Tricky Program

start:

switch (a)
case 1: open(f); read(f); close(f); goto start
default: open(f);

do {
write(f) ;
if (b): read(f);
else: close(f);

} while (b)

open(f);

close(f);

closed
\

1
1
start: open(f)
1 1
open(f) .
i 1
write(f) close(f)
read(f) N
i 1
close(f) read(f) 1
1
1
J_ N
close(f) open(f)

106

closed

closed
\

closed

start:

closed

open(f)

open

read(f)

open

close(f)

close(f)

open(f)

1
1
write(f) close(f)
1
1
read(f)
1
1

open(f)

107

closed

closed
\

closed
closed
start: open(f)
closed Open
open(f) open
open open
write(f) close(f)
read(f) N
open open
losed
close(f) read(f) close
open
J_ N
close(f) open(f)

108

closed

closed
\

closed
closed
start: open(f)
closed open
open(f) open
open open
write(f) close(f)
read(f) -
open open
losed
close(f) read(f) close
open
T
J_ N
close(f) open(f)

109

closed

closed
\

closed
closed
start: open(f)

closed open
open(f) !

oPen write(f)
read(f) -

T

open

close(f) read(f)
T
T
close(f) open(f)

close(f)

110

closed

closed
\

closed
closed
start: open(f)

closed open
open(f) !

oPen write(f)
read(f) T

T

open

close(f) read(f)
T
T
close(f) open(f)

close(f)

111

s There Really A Bug?

start:

switch (a)
case 1: open(f); read(f); close(f); goto start
default: open(f);

do {
write(f) ;
if (b): read(f);
else: close(f);

} while (b)

open(f);

close(f);

Forward vs. Backward Analysis

* We've seen two kinds of analysis:

* Definitely null (cf. constant propagation) is a forwards
analysis: information is pushed from inputs to outputs

* Secure information flow (cf. liveness) is a backwards
analysis: information is pushed from outputs back towards
Inputs

Questions?

e How's the homework going?

eExam 10/8

e Practice exam on piazza

e 2 hour limit, any time during 10/8

	Slide Number 1
	The Story So Far …
	Review and Wrap-up: Dynamic Analysis
	One-Slide Summary
	Fundamental Concepts
	goto fail;
	“Unimportant” SSL Example
	Linux Driver Example
	Could We Have Found Them?
	Slide Number 24
	Many Interesting Defects
	Static Analyses Often Focus On
	How And Where Should We Focus?
	Static Analysis
	Syntactic Analysis Example
	Abstraction: Abstract Syntax Tree
	Programs As Data
	Dataflow Analysis
	Two Exemplar Analyses
	Discussion
	Analysis Example
	Correctness
	Analysis Example Revisited
	Static Dataflow Analysis
	Undecidability of Program Properties
	Undecidability of Program Properties
	Looping
	Conservative Program Analyses
	Conservative Program Analyses
	Conservative Program Analyses
	Definitely Null Analysis
	Definitely Null Analysis
	Definitely Null Analysis
	Definitely Null Information
	Definitely Null Analysis (Cont.)
	Example
	Example Answers
	Programs as Data
	Psychology: Predictions
	Psychology: Prediction
	Psychology: False Consensus Effect
	Psychology: False Consensus Effect
	Using Abstract Information
	The Idea
	Explanation
	Transfer Functions
	Rule 1
	Rule 2
	Rule 3
	Rule 4
	The Other Half
	Rule 5
	Rule 6
	Rule 7
	Rule 8
	Static Analysis Algorithm
	The Value #
	The Value #
	The Value ⊥ (Cont.)
	Slide Number 74
	Another Example
	Another Example: Answer
	Orderings
	Orderings (Cont.)
	Termination
	Number Crunching
	“Potential Secure Information Leak” Analysis
	Live and Dead
	Sensitive Information
	Computing Potential Leaks
	Secure Information Flow Rule 1
	Secure Information Flow Rule 2
	Secure Information Flow Rule 3
	Secure Information Flow Rule 4
	Secure Information Flow Rule 5 (Bonus!)
	Algorithm
	Secure Information Flow Example
	Secure Information Flow Example
	Secure Information Flow Example
	Secure Information Flow Example
	Termination
	Static Analysis Limitations
	Static Analysis
	Abstract Information
	Rules
	Rules: open
	Rules: close
	Rules: read/write
	Rules: Assignment
	Rules: Multiple Possibilities
	A Tricky Program
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Is There Really A Bug?
	Forward vs. Backward Analysis
	Questions?

