
#1

Security and Security and
Software EngineeringSoftware Engineering

#3

One-Slide Summary

• Physical security and operating system
security are of critical importance and
must be understood.

• Key issues in security, including buffer
overruns, virus detection, spam
filtering, SQL code-injection attacks,
and cross-site scripting all involve
cost/benefit deployment tradeoffs
relevant to project management.

#4

The State of Legacy
Programming

• Buffer overruns are common
– Programmers must do their own bounds checking

– Easy to forget or be off-by-one or more

– Program still appears to work correctly

• In C, with respect to buffer overruns, it is
– Easy to do the wrong thing

– Hard to do the right thing

• Java, C#, Rust, etc., all avoid this, but …

#5

The State of Hacking
• Buffer overruns remain an attack of choice

– 40-50% of new vulnerabilities are buffer overruns
– Many recent attacks of this flavor: Code Red,

Nimda, MS-SQL server, yada yada
– “Buffer overflows have been the most common

form of security vulnerability for the past ten
years …” [OGI DARPA 2000]

– From 2007 on, XSS and SQL-CIV are more
popular, and buffer overruns are now #2

• Highly automated toolkits are available to
exploit known buffer overruns
– Look up “script kiddie”

#6

The Sad Reality

• Even well-known buffer overruns are still
widely exploited
– Hard to get people to upgrade millions of

vulnerable machines

– Recall Equifax patch deployment timeline

• We assume that there are many more
unknown buffer overrun vulnerabilities
– At least unknown to white hats

#7

Static Analysis to
Detect Buffer Overruns

• Detecting buffer overruns before distributing
code would be better

• Idea: Build a static analysis tool to detect
buffer overruns

• This is a popular research area; we’ll present
one idea at random
– (cf. David Wagner at Berkeley, Alex Aiken at Stanford, etc.)

#8

Focus on Strings

• Most important buffer overrun exploits are
through string buffers
– Reading an untrusted string from the network,

keyboard, etc.

• Focus the tool only on arrays of characters

#9

Idea 1: Strings as an
Abstract Data Type

• A problem: Pointer operations and array
dereferences are very difficult to analyze
statically
– Where does *ptr point?

– What does buf[j] refer to?

• Idea: Model effect of string library functions
directly
– Write down the effects of strcpy, strcat, etc.

#10

Idea 2: The Abstraction

• Model buffers as pairs of integer ranges
– Alloc min allocated size of the buffer in bytes

– Used max number of bytes actually in use

• Recalling our Dataflow Analysis for Null or
Constant values, we'll use integer ranges
– [x,y] = { x, x+1, …, y-1, y }

– Alloc and used cannot be computed exactly
(undecideable) but can be approximated

#11

The Strategy

• For each program expression, write
constraints capturing the alloc and used of
its string subexpressions
– Recall constraints from Test Input Generation,

where they appeared as path conditions

• Solve the constraints for the entire program

• Check for each string variable s
used(s) · alloc(s)

#12

The Constraints
char s[n]; n = alloc(s)

strcpy(dst,src) used(src) · used(dst)

p = strdup(s) used(s) · used(p) &

alloc(s) · alloc(p)

p[n] = ‘\0’ min(used(p),n+1)) · used(p)

#13

Constraint Solving

• We can solve these constraints by building on
the techniques we used for dataflow analysis
– (Recall Liveness and our Null Pointer / Constant

analyses)

• Build a graph
– Nodes are len(s), alloc(s)
– Edges are constraints len(s) · len(t)

• Propagate information forward through the
graph
– Special handling of loops in the graph

#14

Results

• This technique found new buffer overruns in
sendmail
– Which is like “shooting fish in a barrel” …

• Found new exploitable overruns in Linux
nettools package

• Both widely used
• Previously hand-audited packages

#15

Limitations

• Tool produces many false positives (why?)
– 1 out of 10 warnings is a real bug

• Tool has false negatives (why?)
– Unsound: may miss some overruns

• But still productive to use (when?)

• (This “put it all together” slide is the thing
to think about when studying for an exam.)

#16

Physical Security

• It is generally accepted that anyone with
physical access to a machine (i.e., anyone
who can open the case) can compromise that
entire machine.

• Given physical access ...
– How would I read your personal files?

– How would I leave a backdoor (rootkit) for myself?

– How would I log in as you?

• Ignore networked/encrypted filesystems for
now ...

#17

A Fairy Tale? Not Quite.

#18

Hey You!
Get Off Of My Lawn!

• Must keep people out
of the server room ...

• Heavy-weight physical
security measures are
often skipped entirely

• They are “not worth
it” to the people
involved

• Social engineering

#19

Corporate Espionage
• The cost of local corporate espionage is $1.1

trillion annually vs. $0.4 trillion for critical
data stolen remotely (G4S, for 2019+)

• Office card keys (“no drafting”) and
dumpster-diving prevention are two Top Five
ways to defeat espionage

• Social engineering
awareness is much
more important,
however!

#21

Is Unix Any Better?
• No; if you have physical access to a unix

machine you can get root access.
– Linux example: reboot, wait for GRUB/LILO, ask

for the bootloader prompt, and type:
 linux init=/bin/bash

• One solution: store important files on
encrypted (sub-)filesystem
– Either requires frequent password entry or stores

password in memory

– This is only secure if no malicious programs run

– Thus: we still need operating system security!

#22

Unix Security Model

• All files in Unix filesystems have permissions
– -rwxr-xr-x 1 root root 735004 2008-01-15 09:29 /bin/bash

• Three levels: user, group, others
• Exception: a special root user can change the

permissions on any file (and thus do anything)
• Passwords must be stored for login to work
• Password file stores hashes:

– smt6k:SASsHTBDJKdsa4:510:511:Sean Talts:/home/smt6k:/bin/bash

– eas2h:p3612PxZBAx37ne:511:513:Elizabeth Soechting:/home/eas2h:/bin/bash

– dsn9m:aw73sXHa3I3dn348:512:514:David Noble:/home/dsn9m:/bin/bash

#23

Trojan Horses
• root is convenient ... but also dangerous!
• Suppose you are running out of disk space and

are hunting around for files to remove
– Evil user makes evil files called “ls” and “dir”

– These trojan horses email your password to
Microsoft and then list the files

• This single concept accounts for the vast
majority of Windows vulnerabilities
– Pre-Vista you were always “root”, so if I could get

you to click on some evil program I send over the
network, I could take over your computer.

#24

Detecting Malicious Programs
• So we need to detect viruses/trojans/worms
• This is done by regular expressions (really)
• A virus or trojan typically leaves most of the

program unchanged (to avoid suspicion) and
tacks on a special payload for dirty work

• Make one regular expression for each payload
– Called the virus signature

• Scan programs with union of regexps
– A virus database file is basically just huge list of

regular expressions

#25

Escalation

• One key problem with this approach is that
you must constantly update your database in
response to new virus inventions

• cf. are post-release changes easy or hard?

Q: Events (597 / 842)

•Identify the speaker: "This is a
court of law, young man, not a
court of justice." and "I have no
respect for the passion of
equality, which seems to me
merely idealizing envy."

Q: Games (536 / 842)

•These 1912 ring-shaped hard
candies traditionally came in
five flavors and were packaged
in "rolls" of fifteen pieces.

Q: Games (572 / 842)

•Which of the following mythical
creatures cannot traditionally
turn people to stone?
– Basilisk
– Cockatrice
– Golem
– Gorgon

Real-World Languages

• This West Germanic language features about
400 million native speakers. It is strongly
stressed, uses minimal inflection, and an
almost-exclusive SVO word ordering.
Vocabulary choices are strongly influenced by
French, Latin and Germanic roots. Writing is
rendered using a Latin script; orthography is
not phonemic.

• Hint: It is the most spoken language in the world (if you separate

Mandarin from Cantonese, etc.).

#31

Does This Work?

• Assume we've solved the update problem.
• What could go wrong with searching for exact

code sequences?

#32

Stealth
• Any change to the virus defeats the signature
• Beware: self-modifying virus!
• Encryption with a new key per file

– payload = decrypt module + encrypted virus code

• Polymorphic Virus: new decrypt per file
– payload = unique decrypt + encrypted virus code

• Metamorphic Virus: rewrite each time
– Basically: insert no-ops, “optimize” virus, etc.

– Win32/Smile is >14000 lines of ASM, 90% of which
is metamorphic engine ... and was out in 2002

#33

My Secret Identity
• If you know another user's password, you can

become that user (i.e., substitute its userid
for yours --- like logging in as that person)

• The su and sudo programs implements this
Using a root account is rather like being
Superman; an administrator's regular user is
more like Clark Kent. Clark Kent becomes
Superman for only as long as necessary, in
order to save people. He then reverts to his
"disguise". Root access should be used in the
same fashion. The Clark Kent disguise doesn't
really restrict him though, as he is still able
to use his super powers. This is analogous to
using the sudo program.

#34

Design Principle / Pattern

• The Principle of Least Privilege (or principle
of minimal privilege or principle of least
authority), requires that in a particular
abstraction layer of a computing
environment, every module (such as a
process, a user, or a program) must be able to
access only the information and resources
that are necessary for its legitimate purpose

• When designing software, separate the notion
of a user account from a role.

#35

A Sendmail Dilemma

• Some programs, such as sendmail, must run
as root to do useful work
– Mail programs must be able to append incoming

mail to the end of a given user's mailbox file

• These programs also do less-critical work
– Mail programs may run a user-specified “vacation”

program that responds to mail with “I'm away for
two weeks”-style messages

• Any possible problems?

#36

Dropping Privileges

• Important system tasks that must run as root
try to drop those privileges as quickly as
possible
– Sendmail appends incoming mail to your inbox,

then throws away its super powers, then runs your
vacation program

• However, if you have a buffer overrun (or
somesuch) I may be able to trick you into
doing something before you drop privileges

#37

Setuid Demystified
• Dropping privileges correctly is tricky, but

that's another story ... [Chen, Wagner, Dean. Usenix '02]

#38

Leaking Information
• Consider this version of login: what's wrong?
let name = recv_from_network () in

let pword = recv_from_network () in

let file = open_in (“/etc/passwd”) in

while not end_of_file(file) do

 let name2, hpword2 = read_from (file) in

 if name = name2 then

 return (hash(pword) = hpword2)

done ;

return false

#39

Side-Channel Attacks
• Imagine it takes t microseconds to read in the

entire password file
– Then it takes t microseconds to return false for a

made-up username

– But t/2 microseconds (on average) to return false
for a real username with a bad password

• A side-channel attack is any attack based on
information gained from the implementation
of a cryptosystem, not from a theoretical
weakness
– Examples: timing info, power consumption,

electromagnetic leaks, Spectre, Meltdown

#40

spam bacon sausage ...

• Not everyone is running a server that I can exploit ... how
can I get a payload to you?

• Spamming is abusing an electronic messaging system (i.e.,
email) to send unsolicited bulk messages.

• Started in the mid-1990s, spam now accounts for 80-85% of
all email in the world (conservative) to as much as 95% of all
world email.

– Cost of spam estimated at $20 Billion every year, with
85% of organizations targeted by phishing scams in 2020+

• Today most spam is sent from zombie networks of virus-
infected machines

#41

Why does spam work?
• Based on physical-world direct mail, bulk

mail, targeted marketing, etc.
– Like mailed advertising with grocery coupons

– Those work because you can get huge amounts of
statistical information just from the zip code

– ... and because people go to nearby supermarkets

• Example: if you live in 48109
– AGI of $32,020, 69.7% white, 5.7% Black, 3.8%

Hispanic, average commute 11.8 minutes, …

• Bulk physical mail is not a shot in the dark
– Benefit (medium) exceeds cost (low)

#42

SPAM

• Spam also works
because of a cost-
benefit analysis
– Benefit (mico)

– Cost (none) (why?)

• Ultimately, some
people click on
spam.
– Not just phishing

spam either!

#43

Harvesting
• How do I get a list of email addresses?
• Dictionary Spamming

– Guess by using a dictionary of plausible names as
prefixes to known (registered) domain names

• Spambot Web Crawling
– Gather from web sites, newsgroups, special-

interest group postings, chat-room conversations

– Basically, regular expressions!

• Selling email lists is a big business ...

#44

Stopping Spam

• Blocklisting (or “blacklisting”) – do not
accept messages from domain X?
– Defeated by zombie botnets, remailers, ...

• How to find domain X?
– Wait for users to report it ...

– List poisoning: subscribe fake “honeypot” email
addresses to mailing lists, post them on web: any
email that gets to them is spam

• Other, more technical approaches (e.g.,
greylisting), but mostly ...

#45

Filtering

• Filtering – examine the
contents of an email
message and try to
predict mechanically if it
is spam or not
– Simplest approach: block

words (e.g., viagra)

– Easily thwarted: (v1agra)

– More complex: bayesian
network filtering ...

#46

SPAM Solutions

• Ultimate problem is that sending email is free
– The Tragedy of the Commons (read on Wikipedia)

• SMTP, the current mail protocol, is an
entrenched legacy problem

• Thus only incremental solutions are viable
• Training models to discriminate between

spam and valid email is an open area of
research!

• Crackpot solutions are a dime a dozen, as we
can see by this idea rejection simple chart ...

#47

Your post advocates a

() technical () legislative () market-based () vigilante

approach to fighting spam. Your idea will not work because:

() Spammers can easily use it to harvest email addresses

() Mailing lists and other legitimate email uses would be affected

() No one will be able to find the guy or collect the money

() It is defenseless against brute force attacks

() It will stop spam for two weeks and then we'll be stuck with it

() Users of email will not put up with it

() Microsoft will not put up with it

() The police will not put up with it

() Requires too much cooperation from spammers

() Requires immediate total cooperation from everybody at once

() Many email users cannot afford to lose business or alienate potential
employers

() Spammers don't care about invalid addresses in their lists

() Anyone could anonymously destroy anyone else's career or business

Specifically, your plan fails to account for:

() Laws expressly prohibiting it

() Lack of centrally controlling authority for email

() Open relays in foreign countries

() Ease of searching tiny alphanumeric address space of all email addresses

() Asshats

() Jurisdictional problems

() Unpopularity of weird new taxes

() Public reluctance to accept weird new forms of money

() Huge existing software investment in SMTP

() Susceptibility of protocols other than SMTP to attack

() Willingness of users to install OS patches received by email

() Armies of worm riddled broadband-connected Windows boxes

() Eternal arms race involved in all filtering approaches

() Extreme profitability of spam

() Joe jobs and/or identity theft

() Technically illiterate politicians

() Extreme stupidity on the part of people who do business with spammers

() Dishonesty on the part of spammers themselves

() Bandwidth costs that are unaffected by client filtering

() Outlook

and the following philosophical objections may also apply:

() Ideas similar to yours are easy to come up with, yet none have ever been
shown practical

() Any scheme based on opt-out is unacceptable

() SMTP headers should not be the subject of legislation

() Blacklists suck

() Whitelists suck

() We should be able to talk about Viagra without being censored

() Countermeasures should not involve wire fraud or credit card fraud

() Countermeasures should not involve sabotage of public networks

() Countermeasures must work if phased in gradually

() Sending email should be free

() Why should we have to trust you and your servers?

() Incompatiblity with open source or open source licenses

() Feel-good measures do nothing to solve the problem

() Temporary/one-time email addresses are cumbersome

() I don't want the government reading my email

() Killing them that way is not slow and painful enough

#48

Cat and Mouse
• Suppose I have a server (e.g., Amazon.com)
• Let's imagine that I have solved ...

– Viruses: no malicious code on machine

– Buffer overruns: no injection of evil code (etc.)

– Privileges: no running as root

– Spam: as long as I'm dreaming, I'd like a pony ...

• I can still convince the server to do the wrong
thing with the resources it legitimately has
access to ...

#49

Three-Tier Web Application

• This is how
Amazon is
structured

• Query is a
SQL
database
command
generated
by program
logic

#50

The Problem In The Logic Tier
$userid = read_from_network();

if (!eregi('[0-9]+', $userid)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

$user = $DB->query(“SELECT * FROM `unp_user`”.
 “WHERE userid='$userid'”);

if (!DB->is_single_row($user)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

#51

$userid = read_from_network();

if (!eregi('[0-9]+', $userid)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

$user = $DB->query(“SELECT * FROM `unp_user`”.
 “WHERE userid='$userid'”);

if (!DB->is_single_row($user)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

The Problem

Matches any string that
contains a sequence of

digits...

#52

The Bad Place
// $userid == “1'; DROP TABLE unp_user; --”

if (!eregi('[0-9]+', $userid)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

$user = $DB->query(“SELECT * FROM `unp_user`”.
 “WHERE userid='$userid'”);

if (!DB->is_single_row($user)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

#53

The Bad Place: Destroying Data
// $userid == “1'; DROP TABLE unp_user; --”

if (!eregi('[0-9]+', $userid)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

$user = $DB->query(“SELECT * FROM `unp_user`”.
 “WHERE userid='$userid'”);

if (!DB->is_single_row($user)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

SELECT * FROM `unp_user`
 WHERE userid='1';
DROP TABLE unp_user;
--'

#54

Also A Bad Place: Viewing Data
// $userid == “1' OR 1 = 1 --”

if (!eregi('[0-9]+', $userid)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

$user = $DB->query(“SELECT * FROM `unp_user`”.
 “WHERE userid='$userid'”);

if (!DB->is_single_row($user)) {
 unp_msg('You entered an invalid user ID.');
 exit;
}

SELECT * FROM `unp_user`
 WHERE userid='1'
 OR 1 = 1
--'

#55

SQL Code-Injection Vulnerabilities

• A SQL injection attack exploits a
vulnerability in the database layer of an
application whereby user input is incorrectly
filtered for string literal escape characters or
otherwise unexpected executed.

• Very common type of vulnerability (2006+)
• Attacks are easy and expose valuable data

#56

Exploits Of A Mom

• The essence of SQL injection:

#57

Cross-Site Scripting
• Cross-Site Scripting (XSS): the same flavor
• Evil X posts a message with evil JavaScript in

it (e.g., send passwords to me) to Blog B
– Blog B can also be a Piazza forum, etc.

• Later, Luser browses Blog B
• Blog B sends over data, including Evil X's

Message
• Luser thinks it is from Blog B (misplaced trust)
• Luser's browser renders and interprets it

#58

Stopping Evil Posts

• Evil network-crawling robots try to post evil
JavaScript to every forum they can find

• Let's require a real human when posting
• Increases cost
• CAPTCHA

Complete Automated

Public Turing test

to tell Computers

and Humans Apart

#59

Have We Won Yet?

• CAPTCHAs fail in theory and in practice
• The overarching problem is exactly the same:

– The server takes input from an untrusted user

– That input may be interpreted by another parser
later
• In SQL-CIVs, by the database's SQL parser

• In XSS, by a user's JavaScript parser

– So all of the same techniques apply for XSS

• Also, machines routinely win the Turing Test
– http://en.wikipedia.org/wiki/Turing_test#Loebner_Prize

http://en.wikipedia.org/wiki/Turing_test#Loebner_Prize

	Language Security
	Slide 2
	Slide 3
	The State of C Programming
	The State of Hacking
	The Sad Reality
	Static Analysis to Detect Buffer Overruns
	Focus on Strings
	Idea 1: Strings as an Abstract Data Type
	Idea 2: The Abstraction
	The Strategy
	The Constraints
	Constraint Solving
	Results
	Limitations
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Q: Events (597 / 842)
	Q: Games (536 / 842)
	Slide 28
	Q: Games (572 / 842)
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

