THIS 1S WHAT T
LIKE ABOUT

\gﬁ S | PUOTOGRAPHY.

= L PEOPLE THINK

CAMERAS ALWAIS
TELL THE TRUTH.

THEY THINK THE CAMERS, FOR BXAMPLE, I'VE CLEARED | IS THIS BVEN WAIT, LET
IS A DISPASSIONATE
MACHINE THAT RECORDS TAKE A PICTURE OF ME HERE,
ONLY FACTS, BUT REAUM, | |BUT CROP OUT ALL THE MESS
CAMERAS LIE ALL ARUND WIE, S0 1T LookS LIkE
THE TIME/ SELECT] | T KEEP W RoOM TIDY.

THE FACTS AND
You MANIPULKTE

OFF THIS CORNER oF MY BED. LEGALT ME COMR
MY HAIR

AND PUT O
A TIE.

SN

¥ ANIOME HITS ME WITH
A SHOWEBARLL, T'U WiT MM
— WiTH 250

—

WHAT 'F SOMERDIM HITS
Yo Wit 250 SHOWRALLST

—l'.'.

14

Topic:
Software Model Checking via
Counter-Example Guided

Abstraction Refinement

e There are easily two dozen
SLAM/BLAST/MAGIC papers; | will skim.

#2

SLAM Overview

e INPUT: Program and Specification
- Standard C Program (pointers, procedures)

- Specification = Partial Correctness
« Given as a finite state machine (typestate)
o “l use locks correctly”, not “lI am a webserver”

« OUTPUT: Verified or Counterexample

- Verified = program does not violate spec
« Can come with proof!

- Counterexample = concrete bug instance
o A path through the program that violates the spec

#3

Take-Home Message

« SLAM is a software model checker. It
abstracts C programs to boolean
programs and model-checks the boolean
programs.

e No errors in the boolean program implies
no errors in the original.

e An error in the boolean program may be a
real bug. Or SLAM may refine the
abstraction and start again.

#4

Property 1: Double Locking

“An attempt to re-acquire an acquired lock or
release a released lock will cause a deadlock.”

Calls to lock and unlock must alternate.

#5

Property 2: Drop Root Privilege

setuid(1)

setuid(‘l)l

R=0E=1,8=0)) setuid(1) @

setuid(0) setwd

R=0,E=0,S= setuid(0) i setuid(1)

[Chen-Dean-Wagner '02]

“User applications must not run with root
privilege”

When execyv is called, must have suid = 0

#6

Property 3 : IRP Handler

start NP

completion

completion

return
child status

CallDriver

Complete

return
not Pend

start P Mark |Pending SKIP1 Callbriver sip2
\ CallDriver

synch

MPRZ/ QaIIDrive

MPR

] completion
- MPR1

completion
N/A

Complete

y WhveLy IPC
: v
;9&:/ NP « CallDriver \ return

/Pending

[Fahndrich]

uest

CallDriver

#7

Example SLAM Input

Example () {
1l: dof
lock () ;
old = new;
g = g->next;
2: 1if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4: } while(new != old);
5: unlock ()
return;

lock

#8

SLAM in a Nutshell

SLAM(Program p, Spec s) = // program
Program q = incorporate_spec(p,Ss); /] slic
mutable PredicateSet abs = { };
while true do
BooleanProgram b = abstract(q,abs); /]l c2bp
match model_check(b) with // bebop
| No_Error — printf(“no bug”); exit(0)
| Counterexample(c) —

if is_valid_path(c, p) then // newton
printf(“real bug”); exit(1)

else
abs + abs U new_preds(c) // newton

done

#9

Incorporating Specs

Example () {
1: do{
lock () ;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4: } while(new != old);

5: unlock ()
return;

Example) A
1: dof{
if L=1 goto ERR;
else L=1;
old = new;
q g->next;
2: if (g != NULL) {
3: g—->data = new;

}

if L=0 goto ERR;
else L=0;
new ++;

4: } while(new != old);
5: 1if L=0 goto ERR;

else L=0;
return;
ERR: abort()c

}

riginal program
violates spec iff
new program

#10

Program As
Labeled Transition System

41 e— o o —&—l State

Q_i J Q 1 i\l . Transition . .

l e o @ o o @ l pc 3 3: unlock(); pPc —4
T T lock — @ new++; lock QO
Tﬁﬁ ? % old ~5 4:) .. old 5
l ® 14.. new — 5 new — 6
/T T I q > 0x133a q > 0x133a
e e—e 9
T Example () {
® 1l: do {

e g T o lock () ;
old = new;
4 q = g->next;
T \\\\ 2: if (g != NULL) {
L)——@ L @) D = new;

3: g->data

unlock () ;
g while (new != old);

#11

The Safety Verification Problem

C]

J @ e

T
.1

Is there a path from an

Error

(e.g., states with
PC = Err)

| Safe States

(never reach
Error)

to an error state ?
Problem: Infinite state graph (old=1, old=2, old=...)

Solution : Set of states ~ logical formula

#12

Representing
[Sets of States] as Formulas

[F] F

states satisfying F {s | sEF }| FO fmla over prog. vars
[F 1N [F.] FiNF,
[F1UIF.] F,VF,

[F] - F

[F:] € [F,] F,=F,

i.e. F,A=F, unsatisfiable
#13

ldea 1: Predicate Abstraction

Rl R
d O e R
e 7
i k.
S S
BB ./
B RN

Predicates on program state:
lock
old = new

(i.e., lock=true)

States satisfying same predicates

are equivalent
- Merged into one abstract state

#abstract states is finite

- Thus model-checking the
abstraction will be feasible!

#14

Abstract States and Transitions

State

¢ -~ @

3: unlock() ;

| new++;
>

Theorem Prover

lock = lock
old=new — old=new

#15

Abstraction

T S e
v | $| | |
\ b
I I
EHENEREY
?._“_.. -—>1""*’|{:iz;!

Existential Lifting

(i.e., A,—A, iff Ic,€A,. Jc,€A,. c,—c,)

State

4.

“IIID

3: unlock() ;
new++,;

b

A1 AZ
>
Theorem Prover
lock = lock
old=new — old=new

Abstraction

State

-~ @

3: unlock() ;

new++,;
4:} ..
>
lock = lock
old=new — old=new

#17

Analyze Abstraction

AL A [4
vi | 1I
A
SN EREEL
iy N BN

Analyze finite graph

Over Approximate:
Safe = System Safe

No false negatives

Problem
Spurious counterexamples

#18

ldea 2: Counterex.-Guided Refinement

Solution

Use spurious counterexamples

? to refine abstraction!

#19

ldea 2: Counterex.-Guided Refinement

Solution
Use spurious counterexamples

to refine abstraction

1. Add predicates to distinguish

states across cut
—_ — 2. Build refined abstraction
/ e

Imprecision due to merge

#20

lterative Abstraction-Refinement

Solution
Use spurious counterexamples

to refine abstraction

T 1. Add predicates to distinguish
\1\ states across cut

— _IF‘> 2. Build refined abstraction
| e—— e
/ -eliminates counterexample

3. Repeat search

[Kurshan et al 93] [Clarke et al 00] Untill real counterexample

[Ball-Rajamani 01] or system proved safe

#21

Problem: Abstraction is Expensive

Problem

#abstract states = 2#predicates
Exponential Thm. Prover queries

|/

_—

Reachable

Observe

Fraction of state space reachable
#Preds ~ 100’s, #States ~ 2100
#Reach ~ 1000’s

#22

: Only Abstract Reachable States

|/

"
Safe

Problem Solution

#abstract states = 2#predicates Build abstraction during search

Exponential Thm. Prover queries

#23

: Don’t Refine Error-Free Regions

Problem Solution

#abstract states = 2#predicates Don’t refine error-free regions
Exponential Thm. Prover queries

#24

Sanskrit Epics

e The Ramayana (JIHYUH) consists of over
20,000 Sanskrit verses speaking of
virtue, relationships, life and culture. It
is a significant text in the Hindu
tradition with a large influence on
classical poets. This character is
associated with sacrifice, love and
purity. She chooses her husband in a
heroic contest from among many others
and follows him into exile in the forest.

Q: Books (704 / 842)

eln T.S. Eliot's 1939 Old
Possum's Book Of Pratical
Cats, this "‘mystery cat is

called the hidden paw / for
he's a master criminal who
can defy the law.”

Q: Computer Science

e This American Turing award winner is
sometimes called the “father” of analysis of
algorithms, and is known for popularizing
asymptotic notation, creating TeX, and co-
developing a popular a string search
algorithm. His most famous work is The Art of
Computer Programming.

Reachability Tree

" .
""1 al Unroll Abstraction

1 1. Pick tree-node (=abs. state)

2 2. Add children (=abs. successors)

3. On re-visiting abs. state, cut-off

Find min infeasible suffix

- Learn new predicates
- Rebuild subtree with new preds.

#28

al

Error Free

Reachability Tree

o

Unroll Abstraction

1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix

- Learn new predicates
- Rebuild subtree with new preds.

#29

Reachability Tree

Initial

1 Unroll
1 1. Pick tree-node (=abs. state)
2 2. Add children (=abs. successors)
__/ 3. On re-visiting abs. state, cut-off
,3\ ,6\
< \5 7/ P Find min spurious suffix
\ ! \ - Learn new predicates
= sl 1 8] W . Rebuild subtree with new preds.
Error Free

S1: Only Abstract Reachable States
SAFE S2: Don’t refine error-free regions

#30

Build-and-Search

Example () {
1: dof{
lock() ;
old = new; 1| = LOCK
g = g->next;
2: if (g !'= NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while(new != old);

5: unlock ();
}

1

Reachability Tree

Predicates: Lock #31

Build-and-Search

Example () {
1: dof
lock() ;
old = r;ew;t lock () 1| = LOCK
q = g->next;
2: if (q != NULL){ old = new ®
3: g->data new; IEEImFNERE yJ LOCK
unlock () ;
new ++;
}
4:}while(new != old);

5: unlock ()

}

1_

—2

Predicates: Lock

Reachability Tree

#32

Build-and-Search

Example () {
1: dof
lock() ;
old = new; 1| - LOCK
g = g->next;
|_2: if (g != NULL) { ®
3. g->data = new; yJ LOCK
unlock() ; [q!=NULL]
new ++;
}
4:}while (new !'= old); 3 LOCK
5: unlock ();
}

1=—1"2713

Reachability Tree

Predicates: Lock #33

Build-and-Search

Example () {
1: dof
lock() ;
old = new; 1| - LOCK

g = g->next;

2. 1if (o 1= NIIT.T.\ ! .

3: g->data = new; 2 LOCK

unlock () ;

new ++; _/

l
4:}while (new != old); _ _ 3 LOCK
5: unlock (); dmodata e
| unlock () O
new++
4 - LOCK

1=—1"2713

Reachability Tree

Predicates: Lock 434

Build-and-Search

Example () {
1: dof{
lock() ;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;

}

|_4: }while (new '= old);

5: unlock ()
}

]
1
|
3

1—1—2 1

Predicates: Lock

1 - LOCK
2| Lock
3 LOCK
4 - LOCK
[new==01d]

Reachability Tree

#35

Build-and-Search

Example () {
1: dof
lock() ;
old = new;
g = g->next;

2: if (g '= NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:1lwhile(new != ol1d);

5: unlock ();

}

]
1
|
3

1—1—2 1

Predicates: Lock

unlock ()

Reachability Tree

1| - Lock
o
2| Lock
LOCK
~ LOCK
~ LOCK
- LOCK

#36

Analyze Counterexample

Example () {
1: dof
lock() ;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != o0ld);

5: unlock ();
}

]
1
|
3

1—1—2 1

Predicates: Lock

1 - LOCK lock ()

. old = new

2 LOCK g=g->next
_/ [q!=NULL]
3 LOCK g->data = new
(:) unlock ()
new++
4 - LOCK
[new==01d]
5 - LOCK
unlock ()
- LOCK

Reachability Tree

#37

Example () {
1: dof
lock() ;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != o0ld);

Analyze Counterexample

5: unlock ();

}

—

1_

—9 —

]
1
|
3

Predicates: Lock

1| -Lock
. old = new
2| Lock
3 LOCK
O new++
4| _lock
[new==01d]
O Inconsistent
- LOCK
new == old

Reachability Tree

#38

Repeat Build-and-Search

Example () {
1: dof
lock() ;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;

}
4:}while(new != old);
5: unlock ()
}

1

Predicates: Lock, new==old

1| = LOCK

Reachability Tree

#39

Repeat Build-and-Search

Example () {
1: dof
lock () ;
oS gonen 1| - LOCK
g = _g->next;
2: if (g !'= NULL) { o lock ()
> Eniii]ta(l); e LOCK , new==old 2 Oid = new
g=g->next
new ++;
}
4:}while (new != old);

5: unlock ();
}

11,

Reachability Tree

Predicates: LocCK, new==old #40

Repeat Build-and-Search

Example () {
1: dof{
lock () ;
old = new;t 1 - LOCK
q = g->next;
2. 1 f (rI | — T\TTTTT){ .
3: g->data = new; 7
unlock () ; LOCK , new==old
new ++;
!
4:}while(new != o0ld); -
5: unlock (): LOCK , new==old | 3 S = e
} (:) unlock ()
4 new++
- LOCK , = new = old
44
1123

Reachability Tree

Predicates: LocCK, new==old 441

Repeat

Example () {
1: dof
lock () ;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;

}

|_4: }while (new '= old);
5: unlock ()
}

- LOCK , = new = old 4

41;

11 P53

Predicates: Lock, new==old

Build-and-Search

1| = LOCK

LOCK , new==old 2

LOCK , new==old | 3

O

x//k//}new==old]

Reachability Tree

#42

Repeat Build-and-Search

Example () {
1: dof
lock() ;
old = new;
g = g->next;

2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;

}

|_4: }while (new '= old);
5: unlock ()
}

- LOCK , = new = old 4

144
—

11 P53

Predicates: Lock, new==old

1| = LOCK

LOCK , new==old 2

LOCK , new==old | 3

O

[new!=01d]

/ 1

- LOCK,
- new == old

Reachability Tree

#43

Repeat Build-and-Search

Example () {
1: dof
lock () ;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != o0ld);

5: unlock ();
}

+—1— 54
44 :4
113

Predicates: LocCK, new==old

LOCK , new==old

LOCK , new==old | 3

O

- LOCK , = new = old 4

1

- LOCK,
- new == old

ON!

- LOCK

SAFE

LOCK , new=old

- LOCK , new==old

Reachability Tree

#44

Reachability Tree

Initial

1 Unroll
1 1. Pick tree-node (=abs. state)
2 2. Add children (=abs. successors)
__/ 3. On re-visiting abs. state, cut-off
,3\ ,6\
< \5 7/ P Find min spurious suffix
\ ! \ - Learn new predicates
= sl 1 8] W . Rebuild subtree with new preds.
Error Free

S1: Only Abstract Reachable States
SAFE S2: Don’t refine error-free regions

#45

Two handwaves

#46

Two handwaves

Q. How to compute “successors” ?

LOCK , new==old | 3

g->data = new
unlock ()

new++

- LOCK , = new = old 4

#47

Two handwaves

Q. How to compute “successors” ?

Q. How to find predicates ?
Refinement

Predicates: Lock, new==old 448

Two handwaves

Q. How to compute “successors” ?

149

Weakest Preconditions

WP(P,0P)
Weakest formula P’ s.t.
if P’ is true before OP
then P is true after OP

[WP(P, OP)]

#50

Weakest Preconditions

WP(P,0P)
Weakest formula P’ s.t.
if P’ is true before OP
then P is true after OP

Ple/x]

Assign
X=e

>

new+1 = old

new = old

new = new+1l

m [WP(P, OP)]
I\
G T [P

#51

How to compute successor ?

Example () {
1: dof
lock () ;
old = new;
g = g->next;
2: if (g != NULL) {
3: g->data = new;
unlock () ;
new ++;
}
4:}while (new != o0ld);

5: unlock ();
}

Predicates: LocCK, new==old

LOCK , new==old | 3 F

O OP

- LOCK , = new = old 4 ?

For each p
. Check if p is true (or false) after OP

Q: When is p true after OP ?

- If WP(p, OP) is true before OP !
- We know F is true before OP

- Thm. Pvr. Query: F = WP(p, OP)

#52

How to compute successor ?

Example () {
1: dof
lock () ;
old = new;

g = g->next;
2: if (g != NULL) {

3: g->data = new;
unlock () ;
new ++;
}
4:}while(new != old);

5: unlock ();
P

Predicates: Lock, new==old

LOCK , new==old | 3 F

O OP

For each p
. Check if p is true (or false) after OP

Q: When is p false after OP ?
- If WP(-p, OP) is true before OP !
- We know F is true before OP
- Thm. Pvr. Query: F = WP(-p, OP)

#53

How to compute successor ?

Example () {
1: dof LOCK , new==old
lock() ;
old = new; O
g = g->next;
2: if (g != NULL) { - LOCK , = new = old
3: g->data = new;
unlock () ;
ow o For each p

}
4:}while(new != old);
5: unlock ()
}

Predicate: new==old

True ? (LOCK , new==0ld) = (new + 1 = old)

False? 1 0CK , new==0ld) = (new + 1 =old)

OP

. Check if p is true (or false) after OP

#54

Advanced SLAM/BLAST

Too Many Predicates

- Use Predicates Locally
Counter-Examples

- Craig Interpolants
Procedures

- Summaries
Concurrency

- Thread-Context Reasoning

#55

SLAM Summary

Instrument Program With Safety Policy
Predicates = { }

Abstract Program With Predicates

- Use Weakest Preconditions and Theorem Prover Calls
Model-Check Resulting Boolean Program
- Use Symbolic Model Checking

Error State Not Reachable?

- Original Program Has No Errors: Done!
Check Counterexample Feasibility

o Use Symbolic Execution

Counterexample Is Feasible?

- Real Bug: Done!

Counterexample Is Not Feasible?

1) Find New Predicates (Refine Abstraction)
2) Goto Line 3

#56

1:
2
3
4
5:
6
7
8

)

Optional: SLAM Weakness

F()

:int x=0;
: lock();

: do x++;
while (x # 88);
s if (x < 77)

lock();

Preds = {}, Path = 234567
[X=0, —x+1£88, x+1<77]
Preds = {x=0}, Path = 234567
[X=0, —x+1%£88, x+1<77]
Preds = {x=0, x+1=88}

Path = 23454567

[X=0, —x+2#88, x+2<77]
Preds = {x=0,x+1=88,x+2=88}
Path = 2345454567

Result: the predicates “count”
the loop iterations 457

Homework

 Read Hoare paper
e Read Spolsky article

« Read Winskel Chapter 2

#58

	Having a BLAST with SLAM
	Topic: Software Model Checking via Counter-Example Guided Abstraction Refinement
	SLAM Overview
	Take-Home Message
	Property 1: Double Locking
	Property 2: Drop Root Privilege
	Property 3 : IRP Handler
	Example SLAM Input
	SLAM in a Nutshell
	Incorporating Specs
	Program As Labeled Transition System
	The Safety Verification Problem
	Representing [Sets of States] as Formulas
	Idea 1: Predicate Abstraction
	Abstract States and Transitions
	Abstraction
	Slide 17
	Analyze Abstraction
	Idea 2: Counterex.-Guided Refinement
	Slide 20
	Iterative Abstraction-Refinement
	Problem: Abstraction is Expensive
	Slide 23
	Slide 24
	Q: Books (704 / 842)
	Slide 26
	Slide 27
	Key Idea: Reachability Tree
	Slide 29
	Slide 30
	Build-and-Search
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Analyze Counterexample
	Slide 38
	Repeat Build-and-Search
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Two handwaves
	Slide 47
	Slide 48
	Slide 49
	Weakest Preconditions
	Slide 51
	How to compute successor ?
	Slide 53
	Slide 54
	Advanced SLAM/BLAST
	SLAM Summary
	Optional: SLAM Weakness
	Homework

