
CCured: Type-Safe Retrofitting of
Legacy Software

GEORGE C. NECULA, JEREMY CONDIT, MATTHEW HARREN,
SCOTT McPEAK, and WESTLEY WEIMER
University of California, Berkeley

This article describes CCured, a program transformation system that adds type safety guarantees
to existing C programs. CCured attempts to verify statically that memory errors cannot occur, and
it inserts run-time checks where static verification is insufficient.

CCured extends C’s type system by separating pointer types according to their usage, and it uses
a surprisingly simple type inference algorithm that is able to infer the appropriate pointer kinds
for existing C programs. CCured uses physical subtyping to recognize and verify a large number
of type casts at compile time. Additional type casts are verified using run-time type information.
CCured uses two instrumentation schemes, one that is optimized for performance and one in which
metadata is stored in a separate data structure whose shape mirrors that of the original user data.
This latter scheme allows instrumented programs to invoke external functions directly on the
program’s data without the use of a wrapper function.

We have used CCured on real-world security-critical network daemons to produce instrumented
versions without memory-safety vulnerabilities, and we have found several bugs in these programs.
The instrumented code is efficient enough to be used in day-to-day operations.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and Debugging; D.2.7 [Software Engineering]:
Distribution, Maintenance, and Enhancement; D.3.3 [Programming Languages]: Language Con-
structs and Features

General Terms: Languages, Reliability, Security, Verification

Additional Key Words and Phrases: Memory safety, pointer qualifier, subtyping, libraries

1. INTRODUCTION

CCured is a program transformation system that adds memory safety guaran-
tees to C programs. It first attempts to find a simple proof of memory safety for

This research was supported in part by the National Science Foundation Grants CCR-9875171,
CCR-0085949, CCR-0081588, CCR-0234689, CCR-0326577, CCR-00225610, and gifts from
Microsoft Research. The information presented here does not necessarily reflect the position or
the policy of the Government and no official endorsement should be inferred.
Authors’ addresses: Electrical Engineering and Computer Science Dept., 783 Soda Hall, Uni-
versity of California, Berkeley, Berkeley, CA 94720-1776; email: {necula,jcondit,matth,smcpeak,
weimer}@cs.berkeley.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 0164-0925/05/0500-0477 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005, Pages 477–526.

478 • G. C. Necula et al.

the program, essentially by enforcing a strong type system. Then, the portions
of the program that do not adhere to the CCured type system are checked for
memory safety at run-time.

Since CCured enforces memory safety, which is an implicit requirement of
every C program, it is a good debugging aid. We were able to find several bugs
in the Spec95 benchmark suite and in network daemons by running the in-
strumented programs on their own test suites. Memory safety is also beneficial
in extensible systems, such as the Apache Web server or an operating system
kernel, which support pluggable modules and device drivers. By instrumenting
modules with CCured, the failure of an individual component cannot contami-
nate the system as a whole.

Perhaps the greatest potential impact of CCured is in the domain of security-
critical software. Memory safety is an absolute prerequisite for security, and it
is the failure of memory safety that is most often to blame for insecurity in
deployed software [Wagner et al. 2000]. Further, CCured’s relatively modest
performance cost makes it plausible for security-critical production systems to
use binaries compiled with CCured’s run-time checks enabled.

The work described in this article is based on two main premises. First, we
believe that, even in programs written in unsafe languages like C, a large part
of the program can be verified as type safe at compile time. The remaining part
of the program can be instrumented with run-time checks to ensure that the
execution is memory safe. The second premise of our work is that, in many
applications, some loss of performance due to run-time checks is an accept-
able price for type safety, especially when compared to the alternative cost of
redesigning the system in a type-safe language.

The main contribution of this article is the CCured type system, a refinement
of the C type system with separate pointer kinds for different pointer usage
modes. In a typical C program, CCured discovers that most pointers are used
safely, requiring just a null check before dereference. We call such pointers SAFE.
They are as cheap to use as a reference in a type-safe language such as Java. For
other pointers, CCured discovers that they are involved in pointer arithmetic
and thus require bounds checks before dereference. These pointers are called
SEQ (“sequence”) pointers. Finally, some pointers are involved in type casts that
prevent CCured from tracking the type of the referenced data at compile type.
For these WILD pointers, CCured adds both bounds checking and run-time type
checking, in a manner similar to references in a dynamically typed language
like Lisp.

In general, the CCured type system is similar to Lisp or Scheme soft typing
[Cartwright and Fagan 1991; Wright and Cartwright 1997]. CCured treats C as
a dynamically typed language but optimizes away most of the run-time checks
and the state needed to make such checks by recognizing most pointers as SAFE
rather than SEQ or WILD. Since Scheme and C are very different, we introduce
a novel types and a new inference algorithm to achieve this goal.

CCured can type-check and instrument programs annotated with pointer
qualifiers. Since the CCured typing rules are very close to those of C, we be-
lieve that it would be easy for C programmers to use CCured’s type system in
newly written programs. However, it is impractical to make pervasive changes

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 479

in large existing programs. To address this problem, we designed a pointer-kind
inference algorithm that performs a simple linear-time whole-program analysis
to discover the best pointer qualifier for each pointer in the program. Specifi-
cally, our algorithm chooses a set of pointer qualifiers that minimize run-time
overhead while still providing memory safety guarantees.

An early version of CCured, including only the pointer qualifiers described
above, was already usable on existing C programs [Necula et al. 2002a]. How-
ever, we discovered that there were some serious usability problems that made
it difficult to apply CCured to system software and to large security-critical
network daemons [Condit et al. 2003]. The major problem was due to in-
compatibilities between the CCured representation of types and the ordinary
C representation used by precompiled libraries. One notable example is the
multiword representation of the CCured SEQ and WILD pointers, which con-
tain additional information (metadata) necessary for performing the run-time
checks. Also, objects referenced by WILD pointers must contain tags used to
perform CCured’s run-time checks, which makes the problem of library com-
patibility especially challenging in the presence of WILD pointers. Even a small
number of casts that CCured considers “bad” can result in a large number of
WILD pointers, because any pointer that is obtained from a WILD pointer through
assignment or dereference must be WILD as well.

We designed a three-point solution to alleviating the incompatibility prob-
lem. First, we observed that in the presence of structures and arrays, most type
casts could be classified as either upcasts (e.g., from a pointer to an object to a
pointer to the first subobject) or downcasts (in the opposite direction). To avoid
treating these casts as bad, and thus to reduce the number of WILD pointers,
we extended the CCured type system with a physical subtyping mechanism for
handling the upcasts and with a special kind of pointer that carries run-time
type information for handling the downcasts. These two mechanisms, described
in detail in Section 3, allow CCured to handle object-oriented techniques such
as subtyping polymorphism, dynamic dispatch, and checked downcasts, which
are surprisingly common in large C programs.

Second, we developed a notation that allows a programmer to specify the
conversions and run-time checking operations that must occur at the bound-
ary between the code processed with CCured and precompiled libraries. In
Section 6.1, we describe our technique for automatically instantiating user-
specified wrappers in many contexts.

Finally, to address the remaining compatibility problems, we devised a new
representation for wide pointers in which CCured’s metadata is not interleaved
with the program data. Rather, the metadata is stored in a separate data struc-
ture whose shape mirrors that of the program data itself. This separation incurs
a slight performance penalty due to lost locality and to an increase in the overall
amount of metadata; thus, the CCured inference algorithm has been extended
to limit the use of this new representation to those types where it is required
in order to preserve both soundness and compatibility. This mechanism is
described in more detail in Section 6.2.

Even with CCured’s simple and intuitive type system, we can limit the use
of expensive pointer kinds to a relatively small number of pointers. In most

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

480 • G. C. Necula et al.

programs, static counts indicate that less than 1% of all the pointers in the
program are WILD and that less than 10% of all pointers in the program are SEQ.

In addition, we have produced CCured-transformed versions of several pop-
ular network servers (ftpd, bind, openssl/sshd, and sendmail). We have veri-
fied that CCured prevents known security exploits, and most importantly, we
have produced memory-safe versions of these applications that should elimi-
nate any further vulnerabilities due to memory safety violations. We describe
our experience using CCured for these applications in Section 8. Perhaps if
these instrumented binaries saw wide adoption we might see an end to (or at
least a slower pace of) the cycle of vulnerability reports and patches that has
become all too common with security-critical infrastructure software.

The rest of this article is organized as follows. We start with a description
of the CCured type system and instrumentation in Section 2. In Section 3 we
refine this type system with the notion of physical subtyping and pointers with
run-time type information. In Section 4 we describe formally the invariants that
are maintained by the typing rules and we state the type soundness theorem.
In Section 5 we describe informally the handling of additional C programming
constructs, and in Section 6 we describe the mechanisms used for ensuring
compatibility with existing libraries. Section 7 gives an overview of the work
involved in applying CCured to a typical C program. Then, Section 8 shows the
performance of CCured-instrumented programs; in addition, we discuss bugs
we found and techniques we applied. Finally, we compare CCured with related
work in Section 9, and present our conclusions in Section 10.

2. CCURED TYPES AND CHECKS

The CCured type system can be viewed as two universes that coexist soundly.
On the one hand, we have statically typed pointers for which we maintain the
invariant that the static type of the pointer is an accurate description of the
contents of the referenced memory area. On the other hand, we have dynam-
ically typed pointers, for which we cannot rely on the static type; instead, we
rely on run-time tags to differentiate pointers from nonpointers.

CCured has different pointer kinds with varying capabilities and costs.
Typically, most pointers in C programs are used without casts or pointer arith-
metic. We call such pointers SAFE, and they are either null or valid references.
Pointers that are involved in pointer arithmetic but are not involved in casts
are called SEQ (“sequence”) pointers. SEQ pointers carry with them the bounds
of the array into which they are supposed to point. The SAFE and SEQ pointers
are statically typed in the sense that the type system ensures that their static
type is an accurate description of the objects to which they refer.

In order to analyze type casts, we introduce a notion of type compatibility
that is described later in this section. A type cast between incompatible types
is called a bad cast. The pointers involved in a bad cast are considered to be
dynamically typed, or WILD. Such pointers have all the capabilities of C point-
ers; however, the static type of a WILD pointer is not necessarily an accurate
description of the contents of the memory to which it refers.

Figure 1 presents the syntax of types and expressions for a simple C-like
programming language that serves as the vehicle for formalizing CCured. We

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 481

Fig. 1. The syntax of a simple language with pointers, structures, pointer arithmetic, and casts.

Fig. 2. CCured representations. Given a CCured type τ (with pointer qualifiers), Rep(τ) gives its
layout and representation.

distinguish the atomic types (scalars and qualified pointers) from the rest of
the structured types. The type void is equivalent to an empty struct type. The
memory read expression, pointer arithmetic expression, and memory write ex-
pression will be the most important expressions from the perspective of memory
safety.

We make a number of simplifying assumptions in the following discussion.
First, we assume that the machine word size is one byte. Second, we assume
that all user variables have atomic types. Third, we model function calls as
assignments to the parameters and from the return value. And fourth, since
our analysis is flow-insensitive, we omit control-flow details.

We do not consider recursive types here, but they can easily be added to
our framework. We also do not consider union or function pointer types, which
complicate the implementation in a significant way; we will discuss these issues
informally in Section 5.

Finally, this section considers only the three main pointer kinds: SAFE, SEQ,
and WILD. Our implementation of CCured uses a number of additional pointer
kinds. For example, the FSEQ (“forward sequence”) pointer kind is an optimiza-
tion of SEQ for the common case in which pointer arithmetic only moves a pointer
towards higher addresses. Therefore, FSEQ pointers do not need to remember
the lower bound of the array. Also, Section 3.2 introduces a pointer kind that car-
ries run-time type information. Since these kinds are inferred from constraints
analogous to those for SEQ, we do not discuss them further in this section.

2.1 Representation

In this section, we discuss the informal invariants that are maintained by each
kind of CCured pointer. These invariants are then used in the next section to
describe the static and run-time checks that CCured performs. The formal dis-
cussion of the invariants along with a soundness argument is given in Section 4.

Since CCured’s WILD and SEQ pointers must carry bounds and/or type
information, they are represented differently from normal C pointers. The rep-
resentation for a CCured type τ is given by the function Rep(τ), defined in
Figure 2. Note that each pointer kind is represented by a structure containing

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

482 • G. C. Necula et al.

pointers labeled p, b, and e. The pointer p in each representation corresponds
to the original C pointer; the base pointer b and end pointer e hold CCured
metadata and cannot be independently modified by the program. We refer to
the pointer, base, and end parts of a CCured pointer x as x.p, x.b, and x.e,
respectively.

First, consider the SAFE pointer. A pointer of type τ ∗ SAFE, if not null, is
guaranteed to point to a memory area that contains an object whose type is
compatible with τ . Since such pointers require no bounds information, a single
pointer p suffices for the representation.

Next, we examine the SEQ pointer. The representation of this pointer kind
includes the pointer itself plus a base pointer and an end pointer, which contain
bounds information. In the following figure, we have a SEQ pointer pointing to
the second element in an array of four structures of type τ . We also show a SAFE
pointer pointing to data of type τ ′ within one of these structures. We require
that the type τ ′ match the corresponding portion of the type τ according to the
physical type equality rules that we will discuss later.

Finally, consider the WILD pointer. The representation of this pointer kind is
more complicated than that of a SEQ pointer. WILD pointers come equipped with
a base field and a pointer field. The base field points to the start of a dynamically
typed area, where there is a length field indicating the size of the area. At the
end of the area is a set of tag bits that indicate which words in the dynamically
typed area contain CCured’s base pointers.

In this example, we show a WILD pointer addressing the second word in a
dynamically typed area of four words. The first word contains the integer 7, the
second and third words contain a WILD pointer, and the final word contains the
integer 5. The tag bits at the end of the area indicate which words contain a
valid base pointer; in this example, the third bit has the value one because the
third word in the dynamically typed area is a valid base pointer that can be
trusted to adhere to our invariants. Note that a dynamically typed area cannot
contain SAFE or SEQ pointers.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 483

Fig. 3. CCured typing rules for reads and writes. For each kind of expression shown in the left
column, the middle column shows the typing premises that make the expression well-typed in
CCured, and the right column shows the instrumentation that is added. All arithmetic in the right
column is integer arithmetic.

For the remainder of this section we will use the following function as a
running example. Given an array of pointers a, the function copies a[10] into
a[0], and then into a[1], etc. The value a[10] is then returned as a FILE*. Note
that this program is unsafe if the array a has fewer than 11 elements, and uses
of the return value of this function may be unsafe if a was not actually an array
of FILE*s at run-time.

1 : FILE ∗ WILD f(int ∗ WILD ∗ SEQ a) {
2 : int ∗ WILD ∗ SEQ x;
3 : int ∗ WILD ∗ SAFE y = a + 10;
4 : for (x = a ; x < y ; x++)
5 : *x = *y;
6 : return (FILE ∗ WILD) *y;
7 : }

2.2 Type Checking and Run-Time Checks

The CCured typing rules and the run-time checks for memory operations are
shown in Figure 3. For each form of expression shown in the left column of
the figure, the middle column shows a number of alternative typing premises
under which the expression is well typed. The right column shows what run-
time checks CCured adds in each case and how it translates the expression in
the left column.

In the case of memory reads, we first check whether the pointer is null. For
SEQ and WILD pointers we perform a bounds check.1 In addition, when reading
a pointer through a WILD pointer, we must check the tag bits to verify that the
stored pointer has not been altered. The notation len(b) refers to the length of a

1For SEQ pointers, if the bounds check passes then x.b �= null, because x.b = null if and only if
x.e = null (Section 4). Therefore the null check for SEQ pointers is not explicitly performed.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

484 • G. C. Necula et al.

Fig. 4. CCured typing rules for casts, arithmetic, and aggregate accesses. For each kind of ex-
pression shown in the left column, the middle column shows the typing premises that make the
expression well-typed in CCured, and the right column shows the instrumentation that is added.
All arithmetic in the right column is integer arithmetic.

dynamically typed area pointed to by b, and tag(b, p) denotes the tag correspond-
ing to the word pointed to by p inside the dynamically typed area pointed to by
b. In our example, line 5 (“*x = *y;”) contains a read from int ∗ WILD ∗ SAFE y.
At run-time we ensure that y.p is not null.

For memory writes, we perform the same checks as for reads, and addi-
tionally, we check that we do not store a stack pointer. This latter check is a
conservative way to prevent dangling references to a stack frame of a function
after the function returns. When writing into dynamically typed areas, the tag
bits must be updated to reflect the type of what is written; when a pointer is
written into such an area, we set the bits corresponding to the stored pointer
and base fields to zero and one, respectively. When an integer is written, we
clear the tag bit for the written word, thus invalidating any previously stored
base field. This scheme maintains the invariant that the tag bit for a word is
set to one if and only if the word contains a valid base pointer. In our example,
line 5 (“*x = *y;”) contains a write to int ∗ WILD ∗ SEQ x. At run-time we ensure
that x.b ≤ x.p ≤ x.e − sizeof(int ∗ WILD) and that *y is not a stack pointer.

The first six lines in the “Type Casts” section of Figure 4 describe the rules
for casts between pointers and integers. The first three lines show that any kind
of pointer can be cast to an integer. The fourth line shows that only the integer
zero (i.e., the null pointer) can be cast to a SAFE pointer. The fifth and sixth lines
show that integers can be cast to SEQ and WILD pointers with the restriction that

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 485

the base and end fields are set to null. In conjunction with the memory read
checks described earlier, this restriction ensures that SEQ and WILD pointers
obtained from integers cannot be dereferenced. In our experience, casts from
pointers to integers and back to pointers are actually quite rare in C programs.

In order to describe our rules for casts between pointers, we must define a
basic notion of physical type equality (≈). The intuition for this approach is that
two CCured types should be considered equal if they are laid out in memory in
the same way. Thus, in all type comparisons in the rest of this article, we shall
consider a CCured type τ to be a list of atomic types α obtained by unrolling and
flattening arrays and structures, as specified by the φ function defined below.
The φ function uses the nil and :: constructors for the empty and nonempty
lists, respectively; in addition, we use an append operator, written @.

φ(void) = nil
φ(int) = int :: nil
φ(τ ∗ q) = τ ∗ q :: nil
φ(struct{ τ1 f1; ...τn fn; }) = φ(τ1) @ ... @ φ(τn)
φ(τ [n]) = φ(τ) @ ... @ φ(τ)︸ ︷︷ ︸

n times

For now, we ignore structure padding and alignment, assume that structs
are associative, and pretend all fields are represented contiguously in memory;
however, Section 5.7 fills this gap. Our actual implementation unrolls arrays
lazily; it only expands types as much as needed for the type comparison opera-
tions that we will describe next.

Physical type equality, written ≈, is defined as element-wise equality over
lists of atomic types, ignoring the static types of WILD pointers. Formally, the
definition of physical type equality is as follows:

nil ≈ nil
α ≈ α′ τ ≈ τ ′

α :: τ ≈ α′ :: τ ′

int ≈ int

τ1 ≈ τ2

τ1 ∗ q ≈ τ2 ∗ q τ1 ∗ WILD ≈ τ2 ∗ WILD

In Figure 4, casts among SAFE and SEQ pointers are governed by physical
equality of their base types. For example, a SAFE pointer to an array of two
ints can be cast to a SAFE pointer to a structure containing two ints, and
a SEQ pointer to int (a pointer to an array of ints) can be cast to a SAFE
pointer to int (a pointer to a single element). These restrictions will be re-
vised in Section 3.1 to account for physical subtyping. In our running example,
line 3 contains an implicit cast from the SEQ pointer a+10 to the SAFE pointer
y: “int ∗ WILD ∗ SAFE y = a + 10.” Since the underlying types are equal, we
ensure at run time that either a.p + 10 == null or that a.b ≤ a.p + 10 ≤
a.e − sizeof(int ∗ WILD). This run-time check allows us to maintain our
invariant that the safe pointer y is either null or a valid pointer to an element
of its base type.

Finally, arbitrary pointer arithmetic is allowed only for SEQ and WILDpointers.
In our example, lines 3 and 4 contain pointer arithmetic (“a + 10” and “x++”)

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

486 • G. C. Necula et al.

and both pointers, a and x, are SEQ. However, as a more controlled form of
arithmetic, CCured supports the creation of pointers to fields of structures,
which is a common operation in many C programs. Consider the representative
case &(x → f2), where x is a pointer to a structure. If x is a SAFE pointer, then
we require that x be nonnull; if x were null this expression would yield a SAFE
pointer that is neither valid nor null. If x is a SEQ pointer, we must first convert
the pointer to a SAFE one (hence the bounds check), and then we can obtain a
SAFE pointer to the second field.

2.2.1 Initializing Pointers. There are two ways to create new pointer val-
ues in C: programs can call malloc, or they can take the address of a local or
global variable. In CCured, these operations must be modified slightly so that
they initialize metadata for the newly created pointer.

Figure 4 shows how pointers are created using malloc. For SEQ pointers, this
is as simple as setting the bounds information for the pointer. For WILD pointers,
we must allocate extra memory to hold the length field and tag bits, as shown
in the diagram in Section 2.1.

Our simplified language does not include an address-of operator “&,” but ex-
tending the initialization shown in Figure 4 is straightforward. For SEQ pointers,
we take the address of the variable and then set the bounds metadata appro-
priately. However, if we create a WILD pointer to a variable, we must also change
the layout of that variable when it is allocated, to make room for the length and
tag bits.

2.3 Pointer Kind Inference

The CCured type system assumes that pointers are already annotated with
pointer qualifiers. In order to use CCured on existing C programs without such
annotations, we use a whole-program pointer-kind inference. We associate a
qualifier variable with each syntactic occurrence of the pointer-type constructor
(written *) and with the address of every variable. We then scan the program,
collecting a set of constraints on these qualifier variables. Finally, we solve the
system of constraints to obtain an assignment of qualifiers to qualifier variables
such that the resulting program type checks in the CCured system.

The overall goal of inference is to find as many SAFE pointers as possible and
then to find as many SEQ pointers as possible. Simply making all qualifiers WILD
would yield a well-typed solution, but SAFE and SEQ pointers are preferred for
performance and interoperability.

(1) Constraint Collection. We collect constraints using a modified typing judg-
ment written � � e : τ 	→ C. This judgment says that by scanning the
expression e in context � (a mapping from variables to atomic types), we
infer type τ along with a set of constraints C. We also use the auxiliary
judgments τ1 castto τ2 	→ C to collect constraints corresponding to the
conversion when casting an object of type τ1 to an object of type τ2.2 Any
solution to the set of constraints C assigns a pointer kind to every qualifier

2For simplicity, we assume that all such casts are made explicit; in fact, the CIL [Necula et al.
2002b] infrastructure that we use to implement CCured will add such casts automatically.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 487

Fig. 5. Constraint generation rules for CCured pointer kind inference. Recall that zero (null) can
be cast to any pointer kind, while other integers may be cast only to SEQ or WILD pointers so that
we can prevent them from being dereferenced.

variable in the expression e such that the resulting program type-checks
according to Figure 3 and Figure 4. The rules for the constraint collection
judgments are shown in Figure 5.

In addition, for each type of the form τ ∗ q′ ∗ q (i.e., a pointer to a pointer)
or struct{ ... τ ∗ q′ f ; ... } ∗ q (i.e., a pointer to a structure containing a
pointer), we collect a POINTSTO constraint q = WILD =⇒ q′ = WILD. This
constraint captures the requirement that all WILD pointers point only to
dynamically typed areas.

After constraint generation, we end up with a set containing the following
five kinds of constraints:

ARITH: q �= SAFE
BOUNDS: q = SEQ =⇒ q′ = SEQ
POINTSTO: q = WILD =⇒ q′ = WILD
CAST: q = WILD ⇐⇒ q′ = WILD
TYPEEQ: q = q′ = WILD ∨ τ1 ≈ τ2

Consider again our running example, this time with the pointer quali-
fier values erased. In their place, we have pointer qualifier variables, each
designated by a subscript qi.

1 : FILE ∗ q1 f(int ∗ q2 ∗ q3 a) {
2 : int ∗ q4 ∗ q5 x;
3 : int ∗ q6 ∗ q7 y = a + 10;
4 : for (x = a ; x < y ; x++)
5 : *x = *y;
6 : return (FILE ∗ q8) *y;
7 : }

The arithmetic on line 3 will generate the ARITH constraint q3 �= SAFE
using the arith rule. The increment on line 4 will generate q5 �= SAFE. The

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

488 • G. C. Necula et al.

Fig. 6. Constraint generation judgment based on physical equality of lists of atomic types.

cast implicit in the assignment on line 3 requires int ∗ q2 ∗ q3 castto int ∗
q6 ∗ q7, which generates {q3 = q7 = WILD ∨ int ∗ q2 ≈ int ∗ q6}, {q3 =
WILD ⇐⇒ q7 = WILD}, and {q7 = SEQ =⇒ q3 = SEQ}. The other assign-
ments are similar. The remaining cast on line 6 generates the constraints
{q6 = q8 = WILD ∨ int ≈ FILE}, {q6 = WILD ⇐⇒ q8 = WILD}, and {q8 =
SEQ =⇒ q6 = SEQ}. POINTSTO constraints like q5 = WILD =⇒ q4 = WILDwill
also be generated based on the type structure of the program.

(2) Constraint Normalization. The next step is to normalize the generated
constraints into a simpler form. First, CAST constraints are converted into
pairs of POINTSTO constraints. Next, we consider POINTSTO constraints.
Since these constraints are conditional constraints, we can ignore them
as long as the qualifier q on the left is unknown. If this qualifier becomes
WILD, we add the constraint “q′ = WILD” to the system of constraints. If q
remains unknown at the end of the normalization process, we will make
it SAFE or SEQ. BOUNDS constraints will be handled in a manner similar to
POINTSTO constraints.

The TYPEEQ constraints cannot be normalized as easily. At the first sight
these are conditional constraints for which the solver might have to perform
an expensive case analysis. Fortunately, this is not necessary. Instead, the
constraint q1 = q2 = WILD ∨ τ1 ≈ τ2 is simplified as follows:{

C if � φ(τ1) ≈ φ(τ2) 	→ C
q1 = q2 = WILD otherwise

Essentially, the two types are converted into lists of atomic types and are
compared element-wise. The rules for collecting physical type equality con-
straints for two types are given in Figure 6. The first two rules deal with list
operations. The third rule handles the case for the atomic type int. The last
two rules handle casts between pointers. We use the final rule, which makes
the pointers WILD, only when the premise of the other rule cannot be applied.

If the comparison succeeds, it means that two types contain pointers
in the same corresponding positions and the resulting constraints C
(consisting only of simple equality constraints q′

1 = q′
2) ensures that such

corresponding pointers will be given identical pointer kinds. If we fail to
derive the judgment � τ1 ≈ τ2 	→ C, then under no instantiation of pointer
kind variables with pointer kinds will we have τ1 ≈ τ2; thus, we replace
the whole TYPEEQ constraint with q1 = q2 = WILD.

The key insight that leads to a linear time algorithm is that this proce-
dure for simplifying the TYPEEQ conditional constraints results in a set of

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 489

constraints that is not only sufficient but also necessary. Clearly the result-
ing constraints are sufficient, because if any of the two cases are satisfied
then the disjunctive TYPEEQ constraint is satisfied. To argue the converse we
must consider the cases when each of the disjuncts of the TYPEEQ constraint
is satisfied in turn. If the first disjunct q1 = q2 = WILD is satisfied and we
can derive φ(τ1) ≈ φ(τ2) 	→ C then it must be that all pointer kinds in τ1
and τ2 are WILD (due to the POINTSTO constraints); hence they are equal and
C is satisfied. If the second disjunct is satisfied then we are guaranteed to
be able to derive φ(τ1) ≈ φ(τ2) 	→ C and clearly C is satisfied.

In our running example, we have the TYPEEQ constraint {q6 = q8 =
WILD ∨ int ≈ FILE}. We will be unable to derive a judgment � int ≈ FILE,
so we will simplify it to {q6 = q8 = WILD}. Intuitively, the cast between int
and FILE is a bad cast that will introduce WILD pointers into the system.
However, we will be able to derive a judgment � int ∗ q2 ≈ int ∗ q6 from
the constraint {q3 = q7 = WILD ∨ int ∗ q2 ≈ int ∗ q6}. This judgment will
generate the constraint {q2 = q6}, which will replace the original TYPEEQ
constraint.

After simplifying all TYPEEQ constraints, the normalized system has only
the following kinds of constraints:

ARITH: q �= SAFE
BOUNDS: q = SEQ =⇒ q′ = SEQ
POINTSTO: q = WILD =⇒ q′ = WILD
ISDYN: q = WILD
EQ: q = q′

(3) Constraint Solving. The final step in our algorithm is to solve the remaining
set of constraints. The algorithm is quite simple:

3.1 Propagate the ISDYN constraints using the constraints EQ and POINTSTO.
This step propagates the WILD qualifier as far as necessary; all qualifiers not
assigned by this step can be SEQ or SAFE.

3.2 All qualifier variables involved in ARITH constraints are set to SEQ, and this
information is propagated using EQ and BOUNDS constraints. Note that BOUNDS
constraints propagate SEQ qualifiers against the flow of assignments and casts in
order to ensure that a pointer that needs bounds will carry them from its source.

3.3 We make all the other variables SAFE.

Essentially, we start by finding the minimum number of WILD qualifiers.
Among the remaining qualifiers, we find those on which pointer arithmetic
is performed, and we make them SEQ. The remaining qualifiers are SAFE.
This solution is the best one possible in terms of maximizing the number
of SAFE and SEQ pointers.

In our example, we start with ISDYN constraints {q8 = q6 = WILD}. Propa-
gation via EQ constraints yields {q1 = q2 = q4 = WILD}. We then consider the
ARITH constraints {q7 �= SAFE} and {q5 �= SAFE}. Since have found all WILD
pointers, this means {q7 = q5 = SEQ}. We propagate SEQ back using BOUNDS
constraints to obtain {q3 = SEQ}. All other pointer qualifiers are SAFE.

The whole type inference process is linear in the size of the program. A
linear number of qualifier variables is introduced (one for each syntactic

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

490 • G. C. Necula et al.

Fig. 7. Example code fragment illustrating subtyping, upcasts, and downcasts. Circle is meant
to be a subtype of Figure.

occurrence of a pointer type constructor), and then a linear number of
constraints is created (one for each cast or memory read or write in the pro-
gram). During the simplification of the TYPEEQ constraints, the number of
constraints can get multiplied by the maximum nesting depth of a qualifier
in a type. Finally, constraint solving is linear in the number of constraints.

3. COPING WITH CASTS

Many C programs make heavy use of casts between pointer types. We must try
to verify statically that most of the type casts are compatible with the CCured
type system; otherwise, we will have to classify many pointers as WILD, which
creates performance and compatibility problems. Notice that WILD pointers
create more challenging compatibility problems than the other pointer kinds
because the memory area to which they point requires a special layout. This
problem is exacerbated by the extensive spreading of the WILD qualifiers. For
example, if a FILE * value is involved in a bad cast, it becomes WILD and also
requires the return value of the fopen function to become WILD. To support this
kind of fopen we would need to change the layout of the statically allocated
FILE structures in the standard C library to include the necessary tags.

As an easy escape hatch, CCured allows the programmer to assert that an
otherwise bad cast can be trusted. This mechanism is a controlled loss of sound-
ness and assumes an external review of those casts. Still, this approach has
practical value in focusing a code review when the number of such casts is
relatively small. One standard application of such a trusted cast is a custom
allocator in which a portion of an array of characters is cast to an object.

Fortunately, there are many situations in which we can reason effectively
about casts between unequal types. For example, consider the code fragment in
Figure 7, which contains object-oriented style subtype polymorphism. In this
example, Circle is meant to be a subtype of Figure. Both structures include a
function pointer, which is set to Circle area in the case of circles. The program
can compute the area of any figure by invoking the function pointer as shown
at the end of the code fragment (a form of dynamic dispatch). According to the
strict classification of types from before, there are two bad casts: one in the body
of Circle area where the input argument is cast to Circle * (a downcast in

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 491

Fig. 8. CCured physical subtyping rules for casts. For an expression in the left column, the middle
column shows the typing premises, and the right column shows the instrumentation that is added.
The variables n, n′ > 0 are the smallest integers such that n · sizeof(τ) = n′ · sizeof(τ ′).

the subtype hierarchy), and one in the invocation of the area method at the end
of the code fragment (an upcast).

Siff et al. [1999] observed that a large fraction of the casts between unequal
types in real programs are either upcasts or downcasts, and our experiments
support this claim. In particular, we have observed that around 63% of casts
are between identical types. Of the remaining casts, about 93% are safe upcasts
and 6% are downcasts. Less than 1% of all casts fall outside of these categories;
these casts must still be considered bad even in the presence of mechanisms
that handle downcast and upcasts. These numbers were taken from the bind
benchmark; other large programs in Section 8 were similar. In the rest of this
section, we describe two mechanisms, one for dealing with upcasts and one for
downcasts, with the overall goal of reducing drastically the number of casts
that CCured considers bad.

3.1 Upcasts and Physical Subtyping

An upcast is a cast from type τ ∗ to type τ ′ ∗ when the aggregate τ ′ is
laid out in memory exactly as a prefix of the layout of the aggregate τ . This
relationship between types τ and τ ′ is called physical subtyping and has been
shown previously to be important for understanding the typing structure of
C programs [Chandra and Reps 1999; Siff et al. 1999].

We define the physical subtyping relation τ � τ ′ by requiring that the type τ

be physically equal to the concatenation of the type τ ′ and some other (possibly
empty) list of atomic types τ ′′:

τ � τ ′ def⇐⇒ ∃τ ′′. τ ≈ τ ′ @ τ ′′.

With these definitions, the more relaxed CCured typing rules for casts are
shown in Figure 8. These rules replace the original rules in Figure 4.

Our notion of physical subtyping for SAFE pointers is different from that
of previous work; specifically, CCured differs in its handling of void* and of
pointer arithmetic. In previous work [Chandra and Reps 1999; Siff et al. 1999],
void* was allowed in the smaller aggregate in any position where a regular
pointer was present in the larger one. This approach is unsound; instead, void
should be considered to be the empty structure (or empty list of atomic types),
and any type should be considered a physical subtype of void. As a result, we
can safely cast a pointer to any type into void*. However, when we try to use
the resulting void*, we have to cast it to some other pointer type first; this
downcast operation is handled later in this section.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

492 • G. C. Necula et al.

Physical subtyping must also be modified in the presence of pointer arith-
metic; we cannot use simple width subtyping as with SAFE pointers. For exam-
ple, it is not safe to cast a pointer cs of type struct Circle * SEQ to type struct
Figure * SEQ, because then the memory word residing at address cs→radius
can be accessed as a double and also as a function pointer using ((struct
Figure * SEQ)cs + 1)→area.

To fix this soundness problem, we require for each type cast on SEQ point-
ers that τ ′[n′] ≈ τ [n] where n, n′ > 0 are the smallest integers such that
n · sizeof(τ) = n′ · sizeof(τ ′). Notice that when changing the type of a SEQ
pointer into another SEQ pointer, the representation does not change. Casting
between SEQ pointers also allows for a robust treatment of multidimensional
arrays (in which case either n or n′ is typically 1) and is necessary for handling
many nontrivial C programs.

3.1.1 Changes to the Inference Algorithm. In order to take advantage of
physical subtyping, the inference algorithm must be extended to pay special
attention to casts. The convertibility constraint generation rule for pointer casts
is replaced with a rule that uses physical subtyping instead of physical equality:

τ ∗ q castto τ ′ ∗ q′ 	→ { q = q′ = WILD ∨ τ � τ ′ } ∪
{ q = WILD ⇐⇒ q′ = WILD } ∪
{ q′ = SEQ =⇒ q = SEQ }

We call a constraint of the form q = q′ = WILD ∨ τ � τ ′ a TYPESUB constraint.
We normalize such a constraint by finding a derivation of the form � τ � τ ′ 	→ C,
using the following rules:

� τ � nil 	→ ∅
� α ≈ α′ 	→ C1 � τ � τ ′ 	→ C2

� α :: τ � α′ :: τ ′ 	→ C1 ∪ C2

The first rule allows any type to be a physical subtype of void. The second
rule allows physical subtypes to share a common prefix.

Notice that a TYPESUB constraint allows only the following combinations of
casts: WILD-to-WILD, SAFE-to-SAFE, SEQ-to-SEQ, and SEQ-to-SAFE. In particular, it
disallows the cast SAFE-to-SEQ. This approach might be overly conservative
(since the CCured type system allows such casts), but our experience shows
that, in the absence of user annotations, a SEQ constraint should be propagated
against the flow of data to ensure that the right bounds are set at the memory
allocation location. In order to simplify a TYPESUB constraint, we first look for
a derivation of the form � τ [n] ≈ τ ′[n′] 	→ C1, where n and n′ can be computed
using the size of the types τ and τ ′.

—If such a derivation exists, we then check to see if sizeof(τ) ≥ sizeof(τ ′),
which in this context implies τ � τ ′. If this relation holds, then we replace
TYPESUB with C1. This case is the least constraining one; since the typing
premises for all four possibilities in Figure 8 are satisfied, we can allow any
combination of SAFE or SEQ qualifiers for q and q′.

If instead sizeof(τ) < sizeof(τ ′), then we replace TYPESUB with C1 ∪ { q �=
SAFE }. In this case, the typing premises for a SAFE-to-SAFE cast do not hold,
and we have seen that the SAFE-to-SEQ possibility is ruled out as well.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 493

—If no such derivation exists, we look instead for a derivation of the form
� τ � τ ′ 	→ C2. If we find one, we replace TYPESUB with C2 ∪{ q′ �= SEQ }, a new
NOTSEQ constraint whose handling we explain below. In this case, the typing
premises for a SAFE-to-SAFE cast are satisfied, as are those for a SEQ-to-SAFE
cast (τ � τ ′ =⇒ τ [n] � τ ′). However, a SEQ-to-SEQ cast is not allowed (not
finding the first derivation ruled out its premises), nor is a SAFE-to-SEQ one,
as explained above.

If we cannot find a derivation, we conservatively replace the TYPESUB with
{ q = q′ = WILD }. A SAFE-to-SEQ cast might still be possible if τ ′[n′] � τ , but
because we propagate SEQ backwards using the constraint { q′ = SEQ =⇒
q = SEQ } we will never infer one.

We modify the constraint solving algorithm to handle NOTSEQ constraints of
the form q �= SEQ by adding a step between 3.2 and 3.3 (see Section 2.3) that
checks to see if any such q has been assigned a value SEQ. If such an assignment
has occurred, then we set q = WILD, remove the NOTSEQ constraint, and return
to step 3.1. In our experience, this step is very rarely used. With these changes,
the CCured inference algorithm can now automatically recognize upcasts.

3.2 Downcasts and Run-Time Type Information

A downcast is a cast from a type τ ∗ to τ ′ ∗ when τ ′ is a physical subtype of τ . One
example of a downcast is the cast in the body of the Circle area function shown
in the previous section. Such examples seem to arise often in large programs
when C programmers try to use subtype polymorphism and dynamic dispatch
to achieve an object-oriented structure for their programs.

Another frequent occurrence of a downcast is a cast from void* to any other
pointer type. An interesting result of our experiments is that only a small
percentage of uses of void* can be attributed to implementations of parametric
polymorphism (e.g., arrays whose elements all have the same dynamic type).
More often it seems void* is used for implementing the more expressive sub-
type polymorphism (e.g., arrays whose elements have distinct types that are all
subtypes of void*).

If we classify all downcasts as bad casts, we essentially ignore static type
information, which is undesirable. Instead, we extend the CCured type system
with a new pointer kind, RTTI, that allows checked downcasts using run-time
type information in a manner similar to the checked downcasts in typed object-
oriented languages. In the context of CCured, however, we have to answer
several questions. First, how should the run-time type information be encoded,
and should it be carried with the pointer or stored with the referenced object?
Second, what changes are necessary to the CCured inference mechanism to use
RTTI pointers in existing C programs?

We represent the run-time type information as nodes in a global tree data
structure that encodes the physical subtyping hierarchy of a program. There is
a compile-time function, rttiOf, that maps a type to its node in the hierarchy
data structure, and a run-time function, isSubtype, that checks whether one
node is a physical subtype of another. In addition, we have decided to store
the run-time type information with the pointer and not with the referenced

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

494 • G. C. Necula et al.

Fig. 9. CCured typing rules for casts involving RTTI pointers. For an expression in the left column,
the middle column shows the typing premises, and the right column shows the instrumentation
that is added.

object, as it is done in object-oriented languages. The main reason in favor of
this choice is that C allows pointers to point into the interior of an allocation
unit (e.g., to a field of a structure or to an element of an array). In such cases it
would have been hard or impossible to insert the run-time type information at a
statically known offset in the referenced object. Furthermore, we have observed
experimentally with other pointer kinds in CCured that if we change the layout
of pointers to objects rather than that of the objects themselves, we increase the
likelihood that the transformed code will be compatible with external libraries.

The representation of a pointer of type τ ∗ RTTI consists of two words, one
encoding the pointer value and the other encoding the node in the subtype
hierarchy that corresponds to its actual run-time type:

Rep(τ ∗ RTTI) = struct{ Rep(τ) ∗ p, RttiNode ∗ t}.
CCured maintains the invariant that such a pointer is either null or otherwise
points to a valid object of some type that is a physical subtype of τ . This invariant
means that such a pointer can be safely dereferenced just like a τ ∗ pointer
if needed; alternatively, it can be cast to some physical subtype of τ with a
run-time check.

In Figure 9 we show the necessary changes to the CCured type system and
instrumentation. Notice that a cast from SAFE to RTTI must be an upcast and
that the original type is recorded in the newly created pointer. Among RTTI
pointers we allow both upcasts or downcasts, but in the latter case we check
at run-time that the representation invariant is preserved. A similar check is
performed when we cast from RTTI to SAFE. The rules for dereferencing RTTI
pointers are the same as for SAFE pointers.

3.2.1 Changes to the Inference Algorithm. The inference algorithm consid-
ers each cast from type τ ∗ q to type τ ′ ∗ q′ and collects constraints on the
pointer kind variables q and q′ as follows:

—If this cast is a downcast (τ ′ � τ) then q = RTTI.
—If the base types are physically equal (τ ≈ τ ′) then the RTTI kind propagates

against the data flow:
q′ = RTTI =⇒ q = RTTI.

—If this cast is an upcast (τ � τ ′), then the RTTI pointer kind propagates
against the data flow when the source type has subtypes:
q′ = RTTI ∧ (∃τ ′′. τ ′′ � τ) =⇒ q = RTTI.

—Otherwise, this cast is a bad cast and q = q′ = WILD.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 495

The first two rules identify the downcasts and propagate the requirement
for run-time type information to the origin of the pointer. The third inference
rule attempts to restrict the backwards propagation of the RTTI kind to those
types that have subtypes (the existential quantifier ranges over the types ac-
tually occurring in the program). If a pointer type does not have subtypes in
the program, then the representation invariant of RTTI pointers ensures that
its static type is the same as its run-time type, and thus the RTTI pointer kind
is not necessary; instead, we use the pointer kind SAFE, which saves both space
and time.

For example, consider the following sequence of casts, which uses the types
introduced before:

Circle∗ q1 −→ Figure∗ q2 −→ void∗ q3 −→ Circle∗ q4.

The new inference rules generate constraints that require q3 to be RTTI (due
to the downcast from void* to Circle *) and then will propagate the RTTI kind
to q2. However, the RTTI kind does not propagate to q1 since Circle * does
not have subtypes in the program. The variable q4 is unconstrained and thus
remains SAFE.

The RTTI pointer kind naturally supports the parametric polymorphism dis-
cipline as well as other programming practices common in C programs, such as
various flavors of dynamic dispatch and generic data structures. The inference
rules associated with this pointer kind are simple, and the results of inference
are predictable.

4. TYPE AND MEMORY SAFETY

Figure 3 and Figure 4 give a compact description of a representative fragment of
the CCured type system and operational semantics. The type system separates
statically typed and dynamically typed pointers, and the operational semantics
describe the run-time checks we perform for each pointer operation. In this
section we outline the key ideas for a proof of the safety guarantees we obtain
for CCured programs that use physical subtyping as described in the previous
sections. In order to keep the formalism simple, we do not cover the RTTI pointer
kind in this section, and we assume that the size of a machine word is 1 byte.

We assume a standard typing judgment � � e : τ . The environment � maps
variable names to atomic types. If a derivation � � e : τ can be found, then
the expression e has type τ . We shall only consider well-typed programs. The
typing judgment includes all of the typing premises mentioned in Figures 3, 4,
and 8.

As presented, CCured’s operational semantics are given in terms of C state-
ments and assertions. In C, values are machine words that can represent either
memory locations or integers. In order to better expose the precise costs of using
each kind of pointer, we use a low-level representation of addresses as natural
numbers and pointers as tuples.

For the purposes of formalizing the operational semantics and proving mem-
ory safety, it is useful to consider a mapping � from variable names to values,
a partial mapping M (the memory) from addresses to values, and a partial

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

496 • G. C. Necula et al.

mapping W (the type of each memory word) from addresses to atomic types. We
require that Dom(M) = Dom(W).

Both the mapping � and the mapping � are assumed to be provided ex-
ternally. In our language, only the memory changes during the execution. In
particular, W remains constant, and we will not consider memory allocation
and deallocation. We consider the following kinds of values:

Values v ::= n | Safe(p) | Seq(p, b, e) | Wild(p, b).

Every value is either an integer, a SAFE pointer, a SEQ pointer with bounds
information, or a WILD pointer into a region with a base and a length (given by
len(b)).

The operational semantics are defined by means of two judgments. We write
�, M � e ⇓ v, M ′ to say that, in the environment � and in the memory state
denoted by M , the expression e evaluates to value v and yields a new memory
state M ′. CCured’s analyses and transformations are flow-insensitive, so we
assume all expressions terminate. The rules given in Figure 3 and Figure 4,
when combined with a formal treatment of C (e.g., Necula et al. [2002b]), give
rise to straightforward operational semantics derivation rules.

Recall that we assume we have used φ to convert standard C types into lists
of atomic types (see Section 1). In order to simplify the presentation we will
write Nth(τ, i) to stand for the atomic type at offset i from the beginning of τ .
For example, if τ = int :: int :: τ ′ ∗ SAFE :: nil then Nth(τ, 0) = int and
Nth(τ, 2) = τ ′ ∗ SAFE.

Next, we define for each atomic type α the set ‖α‖W of valid values of
that type. As the notation suggests, this set depends on the current typing of
memory:

‖int‖W = N,

‖τ ∗ SAFE‖W = {Safe(p) | ∀i. 0 ≤ i < sizeof(τ) =⇒ W(p + i) ≈ Nth(τ, i)}
∪ {Safe(0)},

‖τ ∗ SEQ‖W = {Seq(p, b, e) | ∀q. b ≤ q < e =⇒
W(q) ≈ Nth(τ, (q − p) mod sizeof(τ))}

∪ {Seq(p, 0, 0) | p ∈ N},
‖τ ∗ WILD‖W = {Wild(p, b) | ∀q. b ≤ q < b + len(b) =⇒ W(q) ≈ void ∗ WILD}

∪ {Wild(p, 0) | p ∈ N}.
The set ‖α‖W formalizes the invariants for CCured pointers and gives infor-

mation about the types to which those pointers point.
First, a pointer of type τ ∗ SAFE is either null or a valid pointer to a contigu-

ous sequence of atomic values that conform to the type τ .
Second, a pointer of type τ ∗ SEQ is either an integer disguised as a pointer,

in which case both the b and e fields are null, or a valid SEQ pointer that may
be out of bounds. In the simple case when p = b, the invariant is equivalent
to the expected ∀i. b ≤ p + i < e =⇒ W(p + i) ≈ Nth(τ, i mod sizeof(τ)). The
modular arithmetic represents the fact that a τ ∗ SEQ pointer usually points to
a contiguous sequence of τs. The actual invariant ∀q. b ≤ q < e =⇒ W(q) ≈
ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 497

Nth(τ, (q − p) mod sizeof(τ)) covers the possibility that (p − b mod sizeof(τ))
may not be zero. For example, consider an (int :: int :: nil) ∗ SEQ pointer
p. It might be cast to an (int :: nil) ∗ SEQ pointer using the rules described in
Section 3.1, incremented by one word via pointer arithmetic, and then cast back
to its original type. The new value p+1 is not aligned with respect to 2, the size
of the original base type. However, the condition ensures that W(p + 1) = int
and W(p+2) = int, provided that both addresses are in bounds. Thus, we do not
have to check SEQ pointer alignment at run-time: as long as the pointer is within
bounds, dereferencing it yields a valid value of the base type. In cases where
casts between arrays with varying elements would lead to a violation of this
property, the typing premises in Figure 8 require that both pointers be WILD.

Finally, a WILD pointer is either an integer disguised as a pointer or a valid
pointer with a base pointer. The base pointer is kept under system control
and comes equipped with a mechanism for finding the length of the referenced
area. Every word in the memory region specified by the base field is a valid
WILD pointer (or disguised integer). This invariant holds regardless of where
the user-controlled part of the original WILD pointer points. For the purposes
of the proof, we assume that all WILD pointers are cast to void ∗ WILD before
being written to memory. When an integer is read from an int ∗ WILD pointer,
we instead read a void ∗ WILD value and cast it to an int. In practice, CCured
uses tag bits to distinguish integers from pointers in such WILD areas.

We extend the notation v ∈ ‖α‖W element-wise to the corresponding notation
for environments � ∈ ‖�‖W (meaning ∀x ∈ Dom(�). �(x) ∈ ‖�(x)‖W). Recall
that we assume all variables have atomic types (although they may point into
larger structures).

At all times during the execution, the contents of each memory address
must correspond to the typing constraints on that memory address. We say
that such a memory is well-formed (written WFW (M)), a property defined as
follows:

WFW (M) def⇐⇒ ∀p ∈ Dom(M). M (p) ∈ ‖W(p)‖.
There are several reasons why the evaluation of an expression can fail. The

most obvious reason is that a CCured-inserted run-time check can fail. We
actually consider this behavior to be safe. Another reason is that the operations
on memory are undefined if they involve invalid addresses.

In order to state a progress theorem, we want to distinguish between exe-
cutions that stop because memory safety is violated (i.e., trying to access an
invalid memory location) and executions that stop because of a failed run-time
check (an assert statement in rules of Figure 3 or Figure 4). We handle as-
sertion failure by introducing a new possible outcome of evaluation. We say
that �, M � e ⇓ CheckFailed, M ′ when one of the run-time checks fails dur-
ing the evaluation of the expression e. Technically, this approach requires that
we add derivation rules that initiate the CheckFailed result when one of the
run-time check fails and also rules that propagate the CheckFailed outcome
from the subexpressions to the enclosing expression. We state below a theorem
saying essentially that CCured programs never fail because of invalid memory
accesses.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

498 • G. C. Necula et al.

THEOREM 1 (PROGRESS). If � � e : τ and � ∈ ‖�‖W and WFW (M) then
either �, M � e ⇓ CheckFailed, M ′ or else �, M � e ⇓ v, M ′ and v ∈ ‖τ‖W and
WFW (M ′).

The proof of this theorem is a fairly straightforward induction on the struc-
ture of the typing derivations. This proof uses the invariant that memory is
well-formed after every expression and command. From a safety perspective,
the important aspect is the well-typed memory invariant. It not only captures
the dynamic behavior of CCured pointers (e.g., a SAFE pointer is always either
null or a valid pointer) but also higher-level soundness conditions (e.g., WILD
pointers can never point to statically-typed pointers).

Next, we highlight a few corner cases in the proof that are particularly worth
noting.

(1) Memory reads. In general, the run-time checks inserted by CCured (see
Figure 3) combine with the WFW (M) invariants to ensure that valid and
well-typed values are read. For example, when reading from a τ ∗ SAFE
pointer, the run-time check ensures that the pointer is not null. If it is not,
the invariants ensure that W(p + i) = Nth(τ, i) for all 0 ≤ i < sizeof(τ):
that is, that the value conforms to the expected type.

(2) Memory writes. Memory writes use all of the same checks as memory reads,
so the program can only write through valid and in-bounds pointers. By
induction, the value being written adheres to the invariants, so after the
write, WFW (M ′) will hold for the new memory M ′, which differs from M
only in locations p through p + sizeof(τ). The type mapping W does not
change.

(3) Pointer arithmetic. Since the CCured type system does not allow pointer
arithmetic on SAFE pointers, only the SEQ and WILD cases are interesting. It
is important to note that only the p portion of a SEQ or WILD pointer value is
changed by pointer arithmetic and that the bounds and length information
remain under system control. A τ ∗ SEQ pointer will always be incremented
by multiples of sizeof(τ), so the invariant about the old pointer that held at
positions modulo sizeof(τ) is sufficient to prove the invariant for the new
pointer. SEQ and WILD pointers may stray out of bounds without violating
our invariants, since run-time assertions will check the bounds when the
pointer is dereferenced.

(4) Casts from τ ∗ SEQ to τ ∗ SAFE. CCured’s run-time checks for casts re-
quire that the pointer SEQ(p, b, e) be in bounds: b �= null ∧ b ≤ p ≤
e −sizeof(τ). The invariant from WFW (M) on the old SEQ pointer is strong
enough to prove the required invariant on the new SAFE pointer: take
q = p.

(5) Casts from τ1 ∗ SEQ to τ2 ∗ SEQ. CCured permits such a cast provided that
τ1[n1] ≈ τ2[n2] for some n1 and n2. We prove that, in this case, for any
number i, Nth(τ1, i mod sizeof(τ1)) ≈ Nth(τ2, i mod sizeof(τ2)), and that
the invariant of the SEQ pointer is thus preserved.

In this case, there exists a type τ0 (a prefix of both τ1 and τ2) of length
gcd(sizeof(τ1), sizeof(τ2)), and there exist also n′

1 and n′
2 such that τ1 ≈

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 499

τ0[n′
1] and τ2 ≈ τ0[n′

2]. In the common case where n1 = 1 or n2 = 1, τ0 is the
smaller one of τ1 or τ2.

We prove that Nth(τ1, i mod sizeof(τ1)) ≈ Nth(τ0, i mod sizeof(τ0)) for
any i. From τ1 ≈ τ0[n′

1] we know that i mod sizeof(τ1) = i mod sizeof(τ0)+
k1 ∗ sizeof(τ0) for some positive k1 less than n′

1. Thus Nth(τ1, i mod
sizeof(τ1)) = Nth(τ0[n′

1], i mod sizeof(τ0)+k1 ∗sizeof(τ0)) = Nth(τ0, i mod
sizeof(τ0)). We prove a similar equality for τ2 and obtain the desired result
by transitivity.

Finally, note that the progress theorems state more than just memory safety.
They also imply that well-typed computations of nondynamic type are type
preserving (modulo subtyping), similar to corresponding results for a type-safe
language. This result means that, for example, if a program reads through a
τ ∗SAFE pointer, the last value written there will have been a subtype of τ . Thus,
CCured is memory safe and is also type safe for the nondynamic fragment.

5. HANDLING OTHER C FEATURES

The CCured language as formalized in Figures 3 and 4 includes pointers (reads
and writes), pointer arithmetic, and type casts. This section explains how we
handle some of the other potentially troublesome features of C.

5.1 Unions

The use of union types can lead to a violation of the type system because it is
possible to write a value of one type into one field and then read the same value
out of another field as a different type. Most implementations do not ensure
that the field being read is the last one that was written. CCured offers three
ways to guarantee type safety for unions:

(1) If all of the fields in the union have equivalent types, or if one field is a
physical subtype of all of the others, then the union may be safely used
without modification. For example, consider this union:
union circle union {

struct Figure f;
struct Circle c;

};
Circle is a subtype of Figure, so union circle union will have the same
physical layout as struct Circle, and the f field simply allows access to
a prefix of that structure. In our larger experiments, at least 50% of the
unions fit this form.

(2) Unions may be annotated as TAGGED, in which case CCured will add a
one-word tag to the representation of the union and then insert run-time
checks to guarantee that the program only reads from the field to which it
last wrote. In order for this approach to be safe, however, CCured will not
allow programs to take the address of fields. (If it were possible to take the
address of a field, the program could later read from that pointer even after
a different type was stored in the union.) This tagging information often

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

500 • G. C. Necula et al.

duplicates a similar tag maintained by the programmer, but in general ver-
ifying that programs correctly implement and check their tags requires a
dependent type system.

(3) The programmer may change, or instruct CCured to change, the union type
to a struct. At the cost of additional space, this solution allows type safety
even if the program takes the address of a field. Unfortunately, this ap-
proach also prevents CCured from catching errors that result from writing
to field a and then reading from field b. Instead, the program will silently
read whatever value was last written to b.

If none of these three strategies is used for a union, then any pointers
involved will become dynamically typed, and the WILD pointer kind may spread
throughout the program.

5.2 Variable-Argument Functions

Variable-argument functions in C are potentially unsafe since there is no
language-level mechanism to ensure that the actual arguments agree in type
and number with the parameters that the function uses.

CCured augments variable-argument functions to accept an additional
parameter that specifies the number and types of the actual arguments. It
then inserts run-time checks to verify, as each argument is processed, that
the actual argument type matches what the function expects it to be. Finally,
CCured modifies the call sites to variable-argument functions to pass the extra
argument. The surprising aspect of the implementation is that this mecha-
nism works without requiring any modification whatsoever to most variable-
argument functions. (The primary exception is printf-like functions, which
require annotations to indicate which argument contains the format string. In
this case, CCured can take advantage of annotations already provided for the
use of compilers such as gcc.)

However, this general approach does not work if the implementation of the
variable-argument function is not instrumented by CCured; the printf library
function is an obvious example. For external functions whose calling convention
is known, we provide wrappers that check the argument correspondence before
calling into the library. As a special case, if the format string is a literal at
the call site, the correspondence can be checked statically and the wrapper
bypassed.

5.3 Function Pointers

Because they are not subject to deallocation or arithmetic, function pointers are,
in some respects, actually easier to handle than ordinary pointers. Function
pointers that are not involved in casts are marked SAFE, and indirect calls
through such pointers are handled the same way as direct calls (according to
the types of the parameters).

However, if a function pointer is cast, either to another function type or to
a data pointer type, the pointer is marked WILD. Furthermore, the types of all
parameters to this function become WILD. Whereas WILD data pointers carry a

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 501

pointer to their home area, WILD function pointers carry a pointer to a static
descriptor of the function, which contains the function’s true address and the
number of expected arguments. (Descriptors are distinguishable from a regular
dynamically typed area.) When we invoke a WILD function pointer, we check
the descriptor to verify that we are passing the correct number of arguments
and that the pointer value is the same as it was when first created (to detect
arithmetic).

Unfortunately, function pointers are a common area of sloppiness in C, prob-
ably due to the complexity of their notation. Programmers routinely leave the
parameters out of function pointer declarations, forcing CCured to mark these
types WILD. In most of the experiments we discuss in Section 8, we chose to
fix manually the declared types of these pointers to reduce the number of WILD
pointers needed.

5.4 Heap Allocation

Some memory errors in C programs are due to dereferencing a heap pointer af-
ter the memory to which it refers has already been deallocated. CCured prevents
this problem by replacing malloc with the Boehm-Demers-Weiser conservative
garbage collector [Boehm and Weiser 1988], and making free do nothing. Since
CCured maintains base pointers to valid memory objects, it is not possible to
disguise a pointer in such a way that the collector would mistakenly believe a
live object is unreachable. It is worth noting that, because CCured maintains
enough information to distinguish pointers from integers, it would be possible
to use a precise garbage collector.

In many cases, C programs include custom allocators built on top of malloc
and free. Reasoning about the correctness of allocation and deallocation is
very difficult, so CCured cannot prove the safety of such allocators directly.
Instead, CCured requires the programmer to annotate custom allocators; based
on these annotations, CCured will trust the cast at the allocation site, and it will
initialize any allocated metadata as appropriate. Alternatively, the programmer
can replace custom allocators with calls to malloc and free, which are handled
as described above.

5.5 Stack Allocation

In C, it is possible to take the address of stack-allocated variables and to use the
resulting pointers freely. This feature can potentially lead to memory errors if
such pointers are used after the stack frame to which they point is deallocated
at function return.

Since stack pointers are most commonly used to implement call-by-reference,
which does not jeopardize memory safety, CCured enforces a restrictive policy
that allows little else: stack pointers cannot be written into the heap or the
globals, and they can only be stored in stack frames guaranteed to be deallocated
before the frame to which they point. A key element of the enforcement of
this policy is that stack pointers (or their home areas, for kinds that allow
arithmetic) can be recognized by comparing their value with known bounds on
the stack.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

502 • G. C. Necula et al.

Programs that use stack pointers in a way that is inconsistent with the above
policy must be modified to instead allocate the storage in question on the heap.
CCured will make the appropriate change automatically for variables marked
by the programmer with a special attribute called heapify. However, the cost
of lost locality can be significant; the Spec95 benchmark li (Lisp interpreter)
slows down by about 25% due to heapified variables.

5.6 Sizeof

The sizeof operator reports the size of a given type’s representation. By itself,
this feature does not present a problem; CCured makes data structures bigger,
but the values produced by sizeof increase accordingly. However, two types
that were the same before transformation by CCured may become unequal
afterward, depending on their involvement in the inference algorithm, and this
scenario can lead to problems.

The most common example arises from memory allocation. For example, a
program that allocates an array of 5 pointers might contain the statement:

int **p = (int**)malloc(5 * sizeof(int*));

If the program actually uses any of these pointers beyond the first one, p will
be inferred at least SEQ. But the int* type in the sizeof expression will not
be connected to any other type in the inference algorithm, and consequently,
it will be inferred SAFE. Hence, the call to malloc will only allocate space for 5
SAFE pointers, and the program will abort with an array bounds violation when
it tries to access the second or third array element.

To fix this problem, the statement could be changed to

int **p = (int**)malloc(5 * sizeof(*p));

Now, the argument to sizeof is connected with the type of the result. In
general, any sizeof(type) expression is suspect if type contains pointers that
are not enclosed in a struct or union definition. CCured will identify such ex-
pressions and request that the programmer change them to the appropriate
sizeof(expression).

Fortunately, only a small fraction of sizeof expressions require this modifi-
cation. The rest have forms such as

int* p = (int*)malloc(5 * sizeof(int));
struct T* q = (struct T*)malloc(5 * sizeof(struct T));

There are no disconnected pointers here, since any pointers inside struct T
will share the same qualifiers as all other references to struct T. Of the 650
uses of sizeof in OpenSSH, CCured identified just 12 locations requiring user
intervention; these results are typical of our experiments.

5.7 Structure Padding and Alignment

The type equality relation described so far (Section 1) assumes that atomic
elements of an aggregate type (structure or array) are laid out in memory
contiguously. In this section we extend type equality (and hence subtyping)

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 503

to take into account the padding typically inserted by compilers to improve per-
formance and/or adhere to alignment requirements imposed by the underlying
architecture.

Ideally, we could base our formalization of padding on the ANSI C standard
[ISO/IEC 1999]. However, the standard actually gives implementations a lot
of freedom in how to do padding, so much so that some important instances
of physical subtyping are technically not portable. However, since popular
implementations such as the GNU and Microsoft C compilers use relatively
predictable padding strategies, a fact used by C programs in practice, our for-
malism is designed to model the commonly expected behavior.

As will be demonstrated shortly, we cannot simply compute the structure
padding in advance before qualifier inference, since the representation changes
implied by the choice of qualifiers can affect the padding ultimately inserted.
So instead, we model the padding behavior by inserting variable-size “padding
elements” into the sequence of atomic types. The width of padding element
“pad(n)” is in [0, n − 1] such that it ends on an address that is a multiple of n,
which must be a power of 2 and is typically 4 or 8.

We use the following algorithm to insert padding elements:

—All data elements are preceded by pad(n), where n is the width of that
element.

—All structures begin and end with pad(n), where pad(n) is the largest padding
element that appears anywhere in the structure.

Furthermore, to eliminate what would otherwise be spurious mismatches
due to extra layers of structs, we rewrite the sequence into a canonical form:

—pad(n) followed by pad(m) is collapsed to pad(max(n, m)).
—An element α followed by pad(n) is collapsed to α, if the width m of α is at

least n, since it will have been preceded by pad(m) as well.

For example, gcc’s behavior on x86 with the -malign-double flag can be mod-
eled by adding a pad(8) element before every double and at the beginning and
end of every structure that (transitively) contains a double:

struct T { pad(8) ::
struct S { pad(8) ::
double d; φ double ::
int x; −−−→ int ::
int ∗ q1 y; int ∗ q1 ::

} s; (∗) pad(8) ::
int ∗ q2 i; int ∗ q2 ::
int j; int ::

}; pad(8) :: nil

This example demonstrates why it is not sufficient to simply compute the
padding when CCured first reads the structure. In the example, if q1 is SAFE,
then all padding elements have width 0, but if q1 is WILD, then the padding
element marked (*) has width 4. Had we prematurely computed the padding

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

504 • G. C. Necula et al.

under the assumption that q1 would be SAFE, we would have believed that T is
compatible with a flattened version that lacked the (*) element. This is why we
keep track of potential padding, not actual padding, since we can’t know the
latter until after qualifier inference has finished.

The crucial fact about padding layouts is that a given sequence of atomic
types, including padding elements, has a fixed layout in memory if it is preceded
by a padding element pad(N) where N ≥ n for any pad(n) in the sequence.
Given two starting addresses x and y , both congruent to 0 (mod N), we show
by induction on the length of the sequence A of atomic types that the widths
Bx and By of every prefix B of A are equal in the memory layouts beginning
at x and y , respectively. For the empty initial prefix ε, εx and ε y are both 0
and therefore equal. For the sequence prefix Bα, Bx = By by the inductive
hypothesis. Therefore the addresses of α, x + Bx and y + By are congruent
(mod N). If α = pad(n), then x + Bx = y + By (mod n) as well since n divides N ,
and therefore the width of α will be the same for both sequences: Bαx = Bα y .
If α is not a padding element then it has a fixed size, and again Bαx = Bα y .

Given the compatibility of equal layout sequences, we extend type compati-
bility (≈) for atomic types so that a given padding element is equal only to itself.
This constraint ensures that two types that are compatible will be laid out such
that all atomic constituents appear at the same offsets, and will therefore be
accessed with consistent typing assumptions.

6. COMPATIBILITY WITH LIBRARIES

It is often necessary to link transformed programs with external libraries that
were not compiled by CCured. Doing so allows users to avoid recompiling these
libraries with each program. More importantly, this feature allows CCured’s
output to be linked with binaries written in assembly code or other lan-
guages, and it allows programmers to use libraries for which the source code is
unavailable.

CCured will mangle the name of any function or function declaration whose
type transitively contains a non-SAFE pointer. As a result, if a program attempts
to pass a wide pointer to an external library function or receive a wide pointer
in return, the program will fail to link rather than cause a run-time error. When
programmers need to link with an external function that makes nontrivial use
of pointers, they must tell CCured how to handle this problem using one of the
mechanisms described in this section.

CCured likewise mangles the names of any global variable that uses a non-
SAFE pointer. However, using global pointers to exchange data across a library
boundary is much less common than calling a library function. The easiest
way to use such a variable with CCured is to replace any references to it with
getter and setter functions, and then use one of our mechanisms that deal with
functions.

6.1 Library Wrappers

One approach to the problem of library compatibility is to write wrapper func-
tions for external library functions. To link correctly with a function that is not
instrumented, CCured must do the following:

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 505

Fig. 10. A wrapper for strchr.

(1) Determine what constraints the external function places on its inputs to
ensure safe operation. Although there is no way to guarantee that the ex-
ternal function is memory-safe, CCured can validate assumptions on which
the function relies, such as the size of an input buffer.

(2) Perform appropriate run-time actions to check that these constraints are
met and to pack or unpack multiword pointers.

We accomplish these tasks by requiring the programmer to provide a small
wrapper specification for each external function that has a mangled name. For
example, Figure 10 shows a wrapper specification for strchr, a function that
returns a pointer to the first occurrence of a given character in a string. CCured
replaces every call to strchr with a call to this wrapper, which has the same
signature as strchr. We provide a set of helper functions such as verify nul,
ptrof, and mkptr that are replaced with specialized code depending on the

pointer kinds of their arguments and results. For example, when str is a WILD
pointer, ptrof(str) performs a bounds check, verifies that the tag bits are
correct, and returns str.p. CCured analyzes wrapper functions in a context-
sensitive way, so a single wrapper function can work with any set of inferred
qualifiers. Notice that the wrapper specification can also include checks of other
preconditions of the library function beyond those needed for memory safety.

We have implemented wrappers for about 120 commonly used functions
from the C Standard Library. The wrappers are packaged with CCured so
that calls to these functions are correctly handled with no further intervention
required.

6.2 Compatible Metadata Representations

The wrapper specifications described above have proved useful for relatively
simple external functions such as the core of C’s standard library. However, C
programs often make use of library interfaces that are much more complex.
Consider, for example, the library function gethostbyname(), which is used to
perform DNS queries in some of the network servers on which we want to use
CCured. This function returns a pointer to the following structure (omitting
some fields for clarity):

struct hostent {
char *h name; // String
char **h aliases; // Array of strings
int h addrtype;

};
ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

506 • G. C. Necula et al.

Fig. 11. Interleaved representation for struct hostent. Array-bounds metadata (gray) is inter-
spersed with data (white).

Fig. 12. Noninterleaved representation for struct hostent. Metadata (gray) has been separated
into a parallel data structure so that the data (white, boxed) has the format expected by the C
library. The m field is a pointer to the array’s metadata.

Since the library that creates this structure is not instrumented by CCured,
it returns data in exactly this format. However, CCured needs to store metadata
(b and e fields) with each string and with the array of strings itself; in other
words, CCured expects a representation in which all pointers are wide pointers,
as shown in Figure 11. In order to convert the library’s data representation to
CCured’s data representation, we would have to do a deep copy of the entire data
structure. Since deep copies require expensive allocations and destroy sharing,
such a conversion is undesirable. Conversions can be avoided if the metadata
is not interleaved with the normal data; however, merely moving the metadata
to the beginning or the end of the structure is insufficient in a number of cases
(e.g., an array of structures used by a library).

Our solution is to split the data and metadata into two separate structures
with a similar shape; for example, a linked list is transformed into two parallel
linked lists, one containing data and the other containing metadata. Creating
and maintaining these data structures is quite easy. For every data value in the
original program, our transformed program has a data value and a metadata
value. Every operation on a value with metadata is split into two such opera-
tions, one on the data and one on the corresponding metadata. Figure 12 shows
the representation of struct hostent using this new approach.

We will now make our informal notion of separated data and metadata more
precise by specifying the types of these values. The data value’s type must
be identical to the original C type, since we intend to pass it directly to an
external library (or obtain it directly from a library). For a given CCured type
τ , we express this original C type (without pointer kinds) as C(τ). Similarly,

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 507

Fig. 13. The C and Meta functions define the data and metadata types (respectively) in the compat-
ible representation. Together, these functions define a compatible alternative to the Rep function.

we write the type of the separated metadata value as Meta(τ). Together, the
types C(τ) and Meta(τ) provide a complete representation for the CCured type
τ ; thus, they can be used in place of the representation given by Rep(τ) in
Figure 2.

Formal definitions for the functions C and Meta are given in Figure 13. The
definition for C recursively strips off all pointer qualifiers; for example, C(int ∗
SEQ ∗ SEQ) = int ∗∗. The definition of the function Meta is slightly more complex,
but it adheres to the following rule of thumb: the metadata for a type τ must
include the metadata required by τ itself (e.g., a SEQ pointer’s b and e fields) as
well as the metadata for any base types. Thus, the metadata for a SEQ pointer
includes a base pointer, an end pointer, and a pointer to the metadata of its base
type, if such metadata exists. A SAFE pointer has no metadata of its own, so it
only needs to maintain a pointer to the metadata of its base type, if the base
type requires metadata. Likewise, a structure requires no metadata in and of
itself, so its metadata is simply a structure containing the metadata of each of
its fields, as necessary.

An important property of the Meta function is that metadata is only intro-
duced by pointers that have metadata in their original CCured representation
as given by the Rep function (e.g., SEQ pointers); if a type does not contain any
of these pointers, its metadata type will be void. On the other hand, any type
that is composed from a pointer that needs metadata must itself have meta-
data, since at the bare minimum it must maintain a pointer to the component
pointer’s metadata. This case illustrates the disadvantage of using the sepa-
rated metadata representation: pointers require more metadata than before,
and in some cases, even SAFE pointers require metadata.

Because this new representation is less efficient than the original one, we
restrict its use to those parts of a program that require it for compatibility. To
indicate which representation should be used for a given type, we add two new
type qualifiers: SPLIT and NOSPLIT. Note that unlike the SAFE and SEQ qualifiers,
which apply only to pointer types, these new qualifiers apply to all types. A
value of type τ SPLIT is represented using data of type C(τ) and metadata of
type Meta(τ). Correspondingly, a value of type τ NOSPLIT is represented using
the type Rep(τ), which contains interleaved data and metadata.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

508 • G. C. Necula et al.

Fig. 14. The Rep function can be extended to handle NOSPLIT types that contain SPLIT types. This
definition extends the definition given in Figure 2, which considers only NOSPLIT types.

SPLIT pointers cannot point to NOSPLIT types; otherwise, they would be in-
compatible with external libraries. However, NOSPLIT pointers are allowed to
point to SPLIT types. The representation of such “boundary” pointers is given in
Figure 14, which extends the previous definition of Rep to handle this case. For
example, a SAFE NOSPLIT pointer to a SPLIT type τ consists of pointers to τ ’s data
and metadata, which are represented using C(τ) and Meta(τ). SEQ pointers and
structures are handled in a similar manner.

Example. The following example demonstrates the transformation applied
when using CCured’s compatible representation:

struct hostent SPLIT * SAFE SPLIT h1;
struct hostent SPLIT * SAFE NOSPLIT h2;
char * SEQ SPLIT * SEQ SPLIT a;
a = h1->h aliases;
h2 = h1;

In this program, struct hostent uses the compatible representation as
shown in Figure 12. We declare two pointers to this structure, one SPLIT and
one NOSPLIT. We copy h1’s h aliases field into the local variable a of the same
type, and then we assign the SPLIT pointer h1 to the NOSPLIT pointer h2. The
instrumented program is as follows:

struct meta seq char { char * b, * e; };
struct meta seq seq char {

char * * b, * * e;
struct meta seq char *m;
};
struct hostent * h1;
struct meta hostent {

struct meta seq char h name;
struct meta seq seq char h aliases;

} * h1m;
struct {

struct hostent * p;
struct meta hostent * m;

} h2;
char * * a;
struct meta seq seq char am;
a = h1->h aliases; am = h1m->h aliases;
h2.p = h1; h2.m = h1m;

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 509

In the transformed program, the SPLIT pointers h1 and a are now represented
using two pointers each: h1, h1m, a, and am. In these variable names, the “m” des-
ignates a metadata value. The type of h1m is as shown in the right-hand side of
Figure 12. The NOSPLIT pointer to a SPLIT struct hostent is represented as a
structure containing pointers to the data and metadata of the underlying SPLIT
structure. The assignment to a becomes two assignments, one for the data part
stored in a and one for the metadata part stored in am. Note that we dereference
h1m in the same way that we dereference h1; the metadata structure is traversed
in parallel with the data structure. The conversion from the SPLIT pointer
h1 to the NOSPLIT pointer h2 simply copies the data and metadata pointers
into h2.

6.2.1 Changes to the Inference Algorithm. CCured requires that the pro-
grammer identify places in the program where this compatible representa-
tion should be used. To assist the programmer, CCured provides an inference
algorithm that spreads the SPLIT qualifier as far as necessary based on the
programmer’s annotations. This inference algorithm is implemented as a small
extension (about 150 lines) to the existing CCured inference algorithm.

Initially, all types are assumed to be NOSPLIT unless the programmer indi-
cates otherwise. Starting from user-supplied SPLIT annotations, SPLIT quali-
fiers flow down from a pointer to its base type and from a structure to its fields
in order to ensure that SPLIT types never contain NOSPLIT types.

In addition, if there is a cast from a SPLIT type to a NOSPLIT type (or vice
versa), we ensure that all types contained within the NOSPLIT type are SPLIT;
that is, a cast between pointers requires that both base types be SPLIT, and
a cast between structures requires that all fields be SPLIT. This restriction
corresponds directly to a restriction in the pointer qualifier inference algorithm;
in both cases, converting between pointer types whose base types have different
representations is unsound. To obtain the type qualifiers in the above example,
the programmer would only have to annotate the top-level type of h1 and a to be
SPLIT (possibly because they are being passed to or from library functions). The
remaining SPLIT and NOSPLIT qualifiers are then inferred based on the rules
we described above.

6.2.2 Limitations. This compatible metadata representation significantly
eases the burden of communicating with external libraries, but unfortunately,
it does not solve the entire problem. In particular, if a library makes changes
to a data structure that require corresponding changes to the associated meta-
data, then the metadata will be invalid upon return from the external library.
Also, CCured must generate new metadata when the library returns a newly
allocated object. Thus, CCured must validate any new or potentially modified
data structures after calling into an external library function. We are currently
evaluating a number of strategies for coping with this problem. However, experi-
ence suggests that this compatible representation is useful even in the absence
of such mechanisms. Many data structures are read-only for either the appli-
cation or the library, which simplifies or eliminates this problem; for instance,
applications rarely modify the struct hostent returned by gethostbyname(),

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

510 • G. C. Necula et al.

which simplifies the problem of generating metadata for its return value. In
other cases, such as the function recvmsg(), the library only modifies a charac-
ter buffer that has no associated metadata.

We currently do not support this compatible representation for WILD pointers,
in large part due to the limitations we have discussed in this section. Since WILD
pointers maintain metadata for every word in memory regardless of its static
type, we must update the WILD pointer’s metadata to account for every change
made by the external library, not just changes to pointers. This added com-
plexity makes it far more difficult to overcome the limitations discussed above.
Furthermore, we usually attempt to eliminate WILD pointers from transformed
programs for efficiency reasons alone. Thus, even though it is quite possible
to implement compatible WILD pointers using the techniques discussed in this
section, we prefer to replace WILD pointers with SAFE, SEQ, or RTTI pointers at
library boundaries.

7. CURING A PROGRAM

We have applied the techniques described in this article to a number of real-
world programs ranging from several thousand lines to over 300,000 lines. This
section provides an overview of the process of “curing” a program (that is, the
process of using CCured to ensure the memory safety of a program). Included
with each step is a rough estimate of the approximate amount of time required
for a 100,000-line program.

(1) Adjust build process. The first step when curing a program is to modify
the build process to use CCured instead of the default compiler. Using the
CIL infrastructure [Necula et al. 2002b], CCured will merge all source code
for the program and its internal libraries into a single file in preparation
for CCured’s analysis. Adjusting the build process to use CCured typically
takes less than 1 hour.

(2) Annotate variable argument functions and sizeof. CCured’s standards for C
code are somewhat stricter than those of a typical compiler. For example,
CCured expects annotations on some printf-like functions (Section 5.2).
Also, in some cases, CCured requires the programmer to change sizeof(τ)
to sizeof(e) where e is an expression having type τ (Section 5.6). CCured
emits warnings in all of these cases. Large programs typically have about
a dozen such cases, which are easily fixed by hand. As a concrete example,
bind is more than 300,000 lines of code and has exactly 10 such sizeofs
spread over four source files. This step is also typically straightforward and
takes less than 1 hour.

(3) Eliminate bad casts. Once CCured’s warnings have been addressed, the
inference algorithm will identify bad casts. Without help from the program-
mer, CCured will typically be unable to prove the safety of several hundred
casts in a 100,000-line program; CCured will treat all pointers involved in
such casts as WILD.

At this point, it is entirely possible to move to the next step. However, WILD
pointers require more space and time overhead than other CCured point-
ers (Section 3), and they complicate the process of linking with external

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 511

libraries (Section 6). Thus, we typically choose to invest programmer effort
into eliminating bad casts by annotating or modifying the program.
Because a single bad cast can cause a large percentage of the pointers in a
program to become WILD, eliminating bad casts is typically an all-or-nothing
proposition.
Several approaches are useful here:
—Annotating allocators and context-sensitive functions. Custom allocators

require a trusted cast, because otherwise CCured would have to rea-
son about correct allocation and deallocation of memory. By marking a
custom allocator as a trusted allocator, the programmer can eliminate
all bad casts caused by CCured’s inability to reason about allocation.
Alternatively, custom allocators can be replaced by calls to malloc and
free, which will use a garbage collector. (See Section 5.4 for details.)
If a function is simply a wrapper around malloc, it should be declared
polymorphic so that CCured knows that the type of the return value is
context-sensitive.

—Run-time type information and physical subtyping. CCured can iden-
tify potential upcasts and downcasts. The programmer can then confirm
these hypotheses by inserting annotations identifying structures that are
subtypes of one another and by inserting “seed” RTTI pointers that are
starting points for the RTTI inference algorithm (Section 3.2). We decided
not to infer RTTI pointers completely automatically because the program-
mer often needs to verify that the RTTI mechanism correctly captures the
program’s behavior. For instance, the programmer must ensure that an
appropriate upcast precedes every downcast so that RTTI information will
be sufficiently precise at the point of the downcast; otherwise, a CCured
run-time check will fail.

—Rewriting code. Often, a slight modification to the original code can allow
CCured to prove the safety of code that it could not previously under-
stand. The most common case is removing extraneous incorrect casts,
such as casting to char* before calling free. Another common case is
function pointer types that omit argument declarations (Section 5.3).

—Trusted casts. As a last resort, a programmer can hide an unwanted bad
cast by telling CCured to trust the cast.

Using the above mechanisms, the programmer should be able to eliminate
all of the bad casts in the program. This is typically the most time-consumig
part of the curing process. We estimate that this could take 20 or more hours
for a 100,000-line program. If the program contains many “dirty” tricks this
step can take significantly more than that.

(4) Fix linker errors. After inferring pointer kinds, CCured will compile the
program and attempt to link it with the appropriate external libraries.
Depending on the libraries used, the cured program may fail to link due
to the name mangling mechanism described at the beginning of Section 6;
such an error indicates that CCured needs more information in order to
link properly with external libraries. There are several possible solutions
to such problems:

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

512 • G. C. Necula et al.

—Compatible pointers. The programmer can mark external interfaces that
should use CCured’s compatible representation (Section 6.2). The pro-
grammer must also identify “out” parameters—that is, parameters that
may return newly allocated data structures. In doing so, the programmer
must verify that pointers in all other structures are treated as read-only
by the external library.

—Wrapper functions. A second alternative is to write a wrapper that allows
CCured to interact with the external library (Section 6.1). This approach
requires more effort on the part of the programmer, but it also gives the
programmer more control over CCured’s library interface. This method
is especially useful when many cured programs will be linked against the
same library, since the cost of writing wrappers is amortized.

—Cure the library. A final solution is to incorporate library code into the
merged program, which allows CCured to cure the library in addition to
the program itself. In some cases, this approach can simplify the task
of linking with the external library. However, in other cases, when the
library is very low-level or when duplicating library code in each exe-
cutable is undesirable, one of the other two approaches is preferable.

With these techniques, the programmer can ensure that the cured program
correctly links with external libraries. This step takes time proportional to
the number of new wrappers to be written. Once we have collected wrappers
for the most frequently used library functions we have found that we can
finish this step in about 4 hours.

(5) Test and debug. Finally, the programmer needs to run suitable regression
tests to verify that the cured program functions as expected. CCured’s run-
time checks can fail in some cases where the program is actually memory-
safe. A frequent cause of such errors is pointers from the heap to the stack;
the programmer can fix these errors by adding “heapify” annotations, which
instruct CCured to store the appropriate data on the heap instead of on
the stack (Section 5.5). In other cases, the failure of a CCured run-time
check indicates the presence of an actual memory safety violation. In our
experiments we have been extra careful to not change the semantics of
the code when making the changes necessary to cure it. Consequently, it
typically took less than 8 hours to perform this step.

7.1 Limitations

CCured will not work with some shared-memory multithreaded programs, since
programmers may assume that pointers occupy a single machine word, mean-
ing writes of pointer values are atomic. Multiple instructions are needed to
write fat pointers to memory, and the pointer may be in an inconsistent state
between these instructions. We believe CCured is safe for programs that acquire
locks on shared memory before accessing it.

Interfacing with external code is difficult in the presence of WILD pointers.
Eliminating bad casts, and hence WILD pointers, is the most time-consuming
step of porting a C program to CCured, and library compatibility is the major

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 513

Lines % CCured Purify Memory Lines Trusted
Name of Code sf/sq/w/rt Ratio Ratio Ratio Changed Casts
SPECINT95
compress 1590 90/10/0/0 1.17 28 1.01 36 0
go 29,315 94/06/0/0 1.22 51 1.60 117 0
ijpeg 31,371 80/20/0/1 1.50 30 1.05 1103 0
li 7761 80/20/0/0 1.70 50 2.00 600 0

Olden
bh 2053 80/20/0/0 1.44 94 1.55 271 0
bisort 707 93/07/0/0 1.09 42 2.00 469 0
em3d 557 93/06/0/0 1.45 7 1.39 22 0
health 725 93/07/0/0 1.07 25 1.90 449 0
mst 617 97/03/0/0 1.87 5 1.15 44 0
perimeter 395 100/0/0/0 1.10 544 1.97 3 0
power 763 94/06/0/0 1.29 53 1.58 8 0
treeadd 385 96/04/0/0 1.15 500 2.61 14 0
tsp 561 100/0/0/0 1.06 66 2.54 7 0

Ptrdist-1.1
anagram 661 88/12/0/0 1.43 34 1.52 37 0
bc 7323 77/23/0/0 9.91 100 2.18 58 0
ft 2194 98/02/0/0 1.03 12 2.12 59 0
ks 793 88/12/0/0 1.11 31 1.65 22 0
yacr2 3999 88/12/0/0 1.56 26 1.63 30 0

Fig. 15. CCured performance on three benchmark suites. The measurements are presented as
ratios, where 1.50 means the program takes 50% longer to to run when instrumented with CCured.
The “sf/sq/w/rt” column shows the percentage of static pointer declarations that were inferred SAFE,
SEQ, WILD, and RTTI, respectively. The “Memory ratio” column measures the overhead in terms of
greatest total virtual memory size (as reported by the operating system).

reason that WILD pointers are undesirable. Additional support for adding WILD
metadata to buffers returned by a library may help here.

8. EXPERIMENTS

We tested CCured on many real-world C programs ranging in size from
several hundred lines of code to several hundred thousand. These experiments
allowed us to measure both the performance cost of the run-time checks inserted
by CCured and the amount of manual intervention required to make existing C
programs work with our system. In general, computationally expensive tasks
like the Spec95 benchmarks and the OpenSSL cryptography library showed the
greatest slowdown (ranging from 0–87% overhead). System software like Linux
kernel modules and FTP daemons showed no noticeable performance penalty;
the cost of run-time checks is dwarfed by the costs of input/output operations.
Our experiments allowed us to detect a number of bugs in existing programs
and enabled us to run safety-critical code without fear of memory-based security
errors such as buffer overruns.

Figure 15 shows the results of using CCured with the Spec95 [SPEC 1995],
Olden [Carlisle 1996], and Ptrdist-1.1 [Austin et al. 1994] benchmark suites.
Using CCured required minor changes to some of these programs, such as cor-
recting function prototypes, trusting a custom allocator, or moving to the heap
some local variables whose address is itself stored into the heap. These changes

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

514 • G. C. Necula et al.

Name funptr sarray heap narray rtti vararg calloc union scanf csfun sizeof
compress X X
go X
ijpeg X X X X
li X X X
bh X X X
yacr2 X X X
gzip X X X
ftpd X X X
OpenSSL X X X X X X X X X
OpenSSH X X X X X X
sendmail X X X X X X X X
bind X X X X X X X

Fig. 16. This table indicates CCured features, manual annotation burdens, and general notes
about selected benchmark programs. For example, a benchmark noted with calloc contained a
custom allocator that was hand-annotated and treated as trusted by CCured. The symbols are de-
fined as follows. funptr: extensive use of function pointers (Section 5.3); sarray: buggy (overflowable)
stack-allocated arrays; heap: stack-allocated variables were moved to the heap (Section 5.5); narray:
nested arrays and nontrivial SEQ-SEQ casting (Section 3.1); rtti: RTTI pointers and an explicit class
hierarchy (Section 3.2); vararg: custom variable-argument functions (Section 5.2); calloc: trusted
custom allocator; union: unions not handled by method (1) in Section 5.1; scanf: complex use of
scanf to create values; csfun: functions annotated as “context-sensitive”; sizeof: sizeof changed
from type to expression (Section 5.6).

resulted in modifications to about 1 in 100 lines of source code. The bench-
mark and CCured features of particular interest for selected benchmarks are
tabulated in Figure 16. In particular, this indicates that our performance on
the larger benchmarks was not because they are particularly well-behaved. In
the process we discovered a number of bugs in these benchmarks: ks passes a
FILE* to printf where a char* is expected, compress and ijpeg contain array
bounds violations, and go has eight array bounds violations and one use of an
uninitialized variable as an array index. Most of the go bugs involve the use of
multidimensional arrays, which demonstrates an important advantage of our
type-based approach: if we viewed the entire multidimensional array as one
large object, some of those bugs would not be detected.

For almost all the benchmarks, CCured’s safety checks added between 3%
and 87% to the running times of these tests. For comparison, we also tried these
tests with Purify version 2001A [Hastings and Joyce 1991], which increased
running times by factors of 5–100. Purify modifies C binaries directly to detect
memory leaks and access violations by keeping 2 status bits per byte of allo-
cated storage. Purify has an advantage over CCured in that it does not require
the source code to a program (or any source code changes), so it is applicable in
more situations. However, without the source code and the type information it
contains, Purify cannot statically remove checks as CCured does. Also, Purify
does not catch pointer arithmetic between two separate valid regions [Jones
and Kelly 1997], a property that Patil and Fischer [1997] showed to be
important.

The bc program takes 10 times as long to run after curing. Almost all of
the overhead is due to using a garbage collector, as bc allocates many short-
lived objects (it is a calculator interpreter). If the garbage collector is disabled,

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 515

instead trusting the program’s calls to free(), the overhead drops to less than
50%. See Hirzel [2000], p. 31, for a more detailed analysis of this program’s
behavior with a collector. Presumably, this program could be rewritten to be
collector-friendly by keeping a cache of objects to reuse instead of making so
many allocation requests.

CCured’s program transformations incurred a memory overhead of 1–284%,
as measured by comparing the great amount of virtual memory ever used
by the process. This includes wider pointers, increased code size for run-time
checks, and linking with CCured’s run-time system. We also ran comparisons
against Valgrind [Seward 2003], an open-source tool for finding memory-related
bugs. Valgrind checks all reads, writes, and calls to allocation functions via JIT
instrumentation, as well as maintaining 9 status bits per bit of program mem-
ory. Like Purify, it does not require the program source but entails a steep
run-time overhead; Valgrind slows down instrumented programs by factors of
9–130, as shown in Figure 18. For compress and treeadd, the benchmarks for
which CCured had the best and worst memory overhead, Valgrind used 3.05
and 11.35 times as much memory as the original program. Both Purify and
Valgrind miss many memory errors that CCured catches; in particular, they do
not catch out-of-bounds array indexing on stack-allocated arrays, which is an
error often exploited by viruses when gaining control of a system.

8.1 Interacting with C Code

As we began to tackle larger programs that relied heavily on the C Standard
Library and on other preexisting C binaries, we found that CCured had no
convenient way to link with such code. Our first solution to this problem was
the system of wrappers described in Section 6.1.

These wrappers helped us use CCured to make memory-safe versions of
a number of Apache 1.2.9 modules. Buffer overruns and other security er-
rors with Apache modules have led to a least one remote security exploit
[SecuriTeam.com 2000]. In addition to writing CCured wrappers for Apache’s
array-handling functions, we annotated data structures that are created by
Apache and passed to the module so that they would be inferred as having
SAFE pointers. The physical subtyping described in Section 3.1 was necessary
for CCured to determine that some casts were safe.

Figure 17 shows the performance of these modules on tests consisting of
1000 requests for files of sizes of 1, 10, and 100K. The WebStone test consists
of 100 iterations of the WebStone 2.5 manyfiles benchmark with every request
affected by the expires, gzip, headers, urlcount, and usertrack modules. In
general, very little work was involved in getting a particular Apache module
to work with CCured. For example, gzip required changes to 26 lines. This
included annotating a printf-like variable-argument function and changing
the declared type of a buffer from void* to char*. The change in speed due to
CCured was well within the standard deviation in these measurements.

We also used CCured on two Linux kernel device drivers: pcnet32, a PCI
Ethernet network driver, and sbull, a ramdisk block device driver. Both were

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

516 • G. C. Necula et al.

Module Lines % CCured Lines Trusted
Name of Code sf/sq/w/rt Ratio Changed Casts
asis 149 72/28/0/0 0.96 2 0
expires 525 77/23/0/0 1.00 5 0
gzip 11,648 85/15/0/0 0.94 136 0
headers 281 90/10/0/0 1.00 6 0
info 786 86/14/0/0 1.00 62 3
layout 309 82/18/0/0 1.01 37 0
random 131 85/15/0/0 0.94 47 0
urlcount 702 87/13/0/0 1.02 41 0
usertrack 409 81/19/0/0 1.00 6 0
WebStone n/a n/a 1.04

Fig. 17. Apache module performance.

Lines % CCured Valgrind Memory Lines Trusted
Name of Code sf/sq/w/rt Ratio Ratio Ratio Changed Casts
pcnet32 1661 92/8/0/0 0.99 66 0

ping 1.00
sbull 1013 85/15/0/0 1.00 18 0

seeks 1.03
ftpd 6553 79/12/9/0 1.01 9.42 1.32 28 0
OpenSSL 177,426 67/27/0/6 1.40 42.9 1.81 2000 2

cast 1.87 48.7 3.56
bn 1.01 72.0 3.47

OpenSSH 65,250 70/28/0/3 365 14
client 1.22 22.1 3.88
server 1.15 4.53

sendmail 105,432 65/34/0/1 1.46 122 2.32 904 4
bind 336,660 79/21/0/0 1.81 129 3.84 224 237

tasks 1.11 81.4 1.86
sockaddr 1.50 110 1.00

Fig. 18. System software performance. A ratio of 1.03 means the CCured version was 3% slower
than the original. Not all tests were applicable to Valgrind.

compiled and run using Linux 2.4.5. We used wrapper functions for Linux as-
sembly code macros, which has the advantage of allowing us to insert appro-
priate run-time checks into otherwise opaque assembly (e.g., we performed
bounds checks for the Linux internal memcpy routines). Some Linux macros
(like INIT REQUEST) and low-level casts were assumed to be part of the trusted
interface. The performance measurements are shown in Figure 18. pcnet32
measures maximal throughput, and “ping” indicates latency. sbull measures
blocked reads (writes and character I/O were similar), and “seeks” indicates the
time to complete a set number of random seeks.

Finally, we ran ftpd-BSD 0.3.2-5 through CCured. This version of ftpd has
a known vulnerability (a buffer overflow) in the replydirname function, and
we verified that CCured prevents this error. The biggest hurdle was writing a
70-line wrapper for the glob function. As Figure 18 shows, we could not measure
any significant performance difference between the CCured version and the
original. With both ftpd and Apache modules, the client and server were run
on the same machine to avoid I/O latency.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 517

8.2 Run-Time Type Information

In one of the first uses of the new RTTI pointer kind, we revisited one of our early
experiments. With the original version of CCured, the ijpeg test in Spec95 had
a slowdown of 115% due to about 60% of the pointers being WILD. (We also had
to write a fair number of wrappers to address the compatibility problems.) This
benchmark is written in an object-oriented style with a subtyping hierarchy of
about 40 types and 100 downcasts. With RTTI pointers we eliminated all bad
casts and WILD pointers with only 1% of the pointers becoming RTTI instead.
This result shows how far the WILD qualifier can spread from bad casts. As
shown in Figure 15, RTTI pointers reduce the slowdown to 50%.

We modified OpenSSL 0.9.6e, a cryptographic library and implementation of
the Secure Sockets Layer protocol, to compile under CCured. Because of the
structure of OpenSSL, this task required changing many function signatures so
that they matched the types of the function pointers to which they were as-
signed. We used RTTI pointers extensively to handle OpenSSL’s many uses of
polymorphic pointers and container types. Because OpenSSL uses char* as the
type for its polymorphic pointers, we were also forced to change the type of each
of these pointers to void* to avoid unsound casts.3 These changes allowed us to
compile OpenSSL with only two “trusted” casts, which were needed for pseudo-
random number seeds; thus, CCured should guarantee memory safety for this
program with a minute trusted computing base. While running OpenSSL’s test
suite after compiling with CCured, we found one array bounds violation in the
processing of rule strings. We also found a bounds error in the test suite itself
and two programming errors in the library that do not affect program behavior.

Figure 18 shows the performance of OpenSSL’s test suite after compiling with
CCured, compared to the original C code. We show specific results for a test
of the “cast” cipher and the big number package (“bn”). Note that the baseline
C version was itself 20% slower than a default installation of OpenSSL, which
uses assembly code implementations of key routines. CCured, of course, cannot
analyze assembly code.

We also ran CCured on OpenSSH 3.5p1, an ssh client and server that links with
the OpenSSL library. Not counting that library, we made 109 small changes and
annotations to the 65,000 lines of code in OpenSSH. We used several trusted casts
to deal with casts between different types of sockaddr structs, since CCured
also adds bounds information to guarantee that these are used safely. We use
an instrumented version of the OpenSSH daemon in our group’s login server with
no noticeable difference in performance. In doing so we have found one bug in
the daemon’s use of open().

We used CCured to make a type-safe version of sendmail 8.12.1. CCured is
capable of preventing security-related errors in sendmail, including two
separate buffer overrun vulnerabilities that have been found recently [CERT
Coordination Center 2003]. Using CCured with sendmail required annotating
variable-argument functions and replacing inline assembly with equivalent
C code. To avoid WILD pointers, we modified several places in the code that

3With the adoption of ANSI C, void* replaces char* as the standard notation for an undetermined
pointer type.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

518 • G. C. Necula et al.

were not type safe: unions became structs, and unsound casts needed for a
custom allocator were marked as trusted. We also used RTTI for polymorphic
pointers that were used with dynamic dispatch. Finally, several stack allocated
buffers were moved to the heap. In all, about 200 changes were required for the
approximately 105,000 lines of code in sendmail. We found two bugs, both at
compile time: a debug printf was missing an argument, and a (currently un-
used) section of code had a memory error due to a missing dereference operator.
Figure 18 shows the results of a performance test in which messages were sent
to a queue on the same host, using instrumented versions of sendmail for both
client and daemon.

Finally, we ran CCured on bind 9.2.2rc1, a 330,000-line network daemon
that answers DNS requests. CCured’s qualifier inference classifies 30% of the
pointers in bind’s unmodified source as WILD as a result of 387 bad casts that
could not be statically verified. (bind has a total of 82000 casts of which 26500
are upcasts handled by physical subtyping.) Once we turned on the use of RTTI,
150 of the bad casts (28%) proved to be downcasts that could be checked at run
time. We instructed CCured to trust the remaining 237 bad casts rather than
use WILD pointers, thereby trading some safety for the ability to use the more
efficient SAFE and SEQ pointers. A security code review of bind should start with
these 237 casts.

Figure 18 provides performance results for experiments involving name res-
olution; the “tasks” trial measured multiple workers, and the “sockaddr” trial
measured IPv4 socket tasks. bind was the one of the most CPU-intensive pieces
of systems software we instrumented, and its overhead ranged from 10% to 80%.

8.3 Compatible Pointer Representation

When curing bind, it was necessary to deal with networking functions that pass
nested pointers to the C library, such as sendmsg and recvmsg. To demonstrate
the benefit of our compatible pointer representation, we instructed CCured to
use split types when calling such functions. By doing so, we eliminated the need
to perform deep copies on the associated data structures, and we relieved the
programmer of the burden of writing complex wrapper functions. The inference
algorithm described in Section 6.2 determined that 6% of the pointers in the
program should have split types and that 31% of these pointers needed a meta-
data pointer. The large number of metadata pointers was a result of the trusted
casts used when curing bind; in order to preserve soundness when using these
casts, we had to add metadata pointers to places where they would not normally
be necessary.

We also used our compatible pointer representation when curing OpenSSH.
As with bind, split types were used when calling the sendmsg function. In ad-
dition, we used split types when reading the environ variable, which holds the
program’s current environment. Less than 1% of all pointers in the program
required a split type or a metadata pointer. The nature of the call sites allowed
us to take advantage of split types without spreading them to the rest of the
program.

To demonstrate the usefulness of our compatible pointer representation
when linking with libraries that have complicated interfaces, we applied

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 519

CCured to the ssh client program without curing the underlying OpenSSL li-
brary. The ssh program uses 56 functions from the OpenSSL library, and many
of these functions have parameters or results that contain pointers to pointers
(and even pointers to functions). It would have been difficult to write wrappers
for such a complex interface, but our compatible representation required the
user to add only a handful of annotations (e.g., the user must identify places
where results are returned via a function parameter). Even when using split
types for all of these interfaces, our compatible representation was only needed
in a limited number of places in the cured program: only 3% of pointers had
split types, and only 5% of pointers required metadata pointers.

To determine the overhead of our compatible representation, we ran the
olden, ptrdist, and ijpeg tests with all types split. In most cases, the overhead
was negligible (less than 3% slowdown); however, execution times increased in
a few cases. The em3d program (part of olden) was slowed down by 58%, and
the anagram program (part of ptrdist) was slowed down by 7%. While split
types are relatively lightweight, these outliers suggest that it is important to
minimize the number of split types used, which can be achieved by applying our
inference algorithm. Unfortunately, the performance impact of our compatible
representation is difficult to predict at compile time; the slowdown appears to
depend heavily on how the program uses pointers at run time. Finally, note that
we could not measure the overhead of split metadata for programs such as bind
and OpenSSH, since the split representation was necessary to cure and link these
applications without writing a large number of complex wrapper functions.

8.4 Summary of Experiments

We have used CCured on several large, widely used programs for which
reliability and security are critically important, including ftpd, bind, sendmail,
OpenSSL, OpenSSH, and several Apache modules. Modifications and annotations
were required to deal with unsound behavior in these programs. The perfor-
mance of the instrumented code was far better than the performance when
using existing tools such as Valgrind or Purify for adding memory safety to C.
As a result, it is possible to use instrumented programs in day-to-day operations
so that memory errors can be detected early and so that security holes can be
prevented. Finally, we have detected several bugs in the programs we tested.

9. RELATED WORK

9.1 Safe C Language Designs and Extensions

There has been much interest in designing C-like languages or language
subsets that are provably type safe. Smith and Volpano [1998] presented a
polymorphic and provably type-safe dialect of C that includes most of C’s fea-
tures (including higher-order functions) but lacks casts and structures. Evans
[1996] described a system in which programmer-inserted annotations and static
checking techniques can find errors and anomalies in large programs. However,
these approaches work only for programs written in the given dialect. CCured
explicitly aims to bring safety to legacy applications.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

520 • G. C. Necula et al.

The Cyclone language [Jim et al. 2002] is expressive, gives programmers a
high degree of control, and has been used on similar types of programs (e.g.,
device drivers). Cyclone provides several features similar to CCured’s, such
as fat pointers and structural subtyping, along with many other features
designed for new programs that are written in Cyclone. Unlike CCured, which
uses pointer kind inference, a garbage collector, and other techniques to reduce
the effort needed to compile legacy code, Cyclone’s priority is to give program-
mers as much control as possible over performance.

9.2 Adding Run-Time Checks to C

There have been many attempts to bring some measure of safety to C by
trading space and speed for security. Previous techniques have been concerned
with spatial access errors (array bounds checks and pointer arithmetic) and
temporal access errors (touching memory that has been freed), but none of them
use a static analysis of the form presented here. Kaufer et al. [1988] presented
an interpretive scheme called Saber-C that can detect a rich class of errors (in-
cluding uninitialized reads and dynamic type mismatches but not all temporal
access errors), but it runs about 200 times slower than normal. Austin et al.
[1994] stored extra information with each pointer and achieved safety at the
cost of a large (up to 540% speed and 100% space) overhead and a lack of back-
ward compatibility. For example, it would fail to detect the multidimensional
array bugs we found in go. Jones and Kelly [1997] stored extra information for
run-time checks in a splay tree, allowing safe code to work with unsafe libraries;
this scheme results in a slowdown factor of 5 to 6. The approaches of Austin et al.
and Jones and Kelly are comparable to the implementation of CCured’s WILD
pointers. Patil and Fischer [1995] presented a system that uses a second pro-
cessor to perform the bounds checks. The total execution overhead of a program
is typically only 5% using their technique, but it requires a dedicated second
processor. Since some of our benchmarks (e.g., apache) are multithreaded and
could actually make use of a second processor, our overhead is actually lower in
such cases. Loginov et al. [2001] stored type information with each memory lo-
cation, incurring a slowdown factor of 5 to 158. This extra information allowed
them to perform more detailed checks, and they could detect when stored types
do not match declared types or when union members are accessed out of order.
While their tool and ours are similar in many respects, their goal was to provide
rich debugging information, whereas our goal is to make C programs safe while
retaining efficiency.

Steffen’s [1992] rtcc compiler is portable and adds object attributes to point-
ers. However, it fails to detect temporal access errors and does not perform
any check optimizations. In fact, beyond array bounds check elimination, none
of these techniques use type-based static analysis to aggressively reduce the
overhead of the instrumented code.

9.3 Removing Dynamic Checks

Much work has been done to remove dynamic checks and tagging operations
from Lisp-like languages. Henglein [1992] detailed a type inference scheme

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 521

for removing tagging and untagging operations in Lisp-like languages. The
overall structure of his algorithm is very similar to ours (simple syntax-direct
constraint generation, constraint normalization, and constraint solving), but
the domain of discourse is quite different because his base language is dynami-
cally typed. In Henglein’s system, each primitive type constructor is associated
with exactly one tag, so there is no need to deal with the pointer/array ambigu-
ity that motivates our SEQ pointers. In C, it is sometimes necessary to allocate
an object of one type and later view it as having another type; Henglein’s sys-
tem disallows this behavior because tags are set at object creation time (that is,
true C-style casts and unions are not fully supported [Jagannathan and Wright
1995]). Henglein was also able to sidestep update and aliasing issues because
tagging and untagging create a new copy of the object (to which set! can be
applied, for example); thus, programs never have tagged and untagged aliases
for the same item. His algorithm does not consider polymorphism or module
compilation [Kind and Friedrich 1993]. On the other hand, formal optimality
results can be made [Henglein and Jorgensen 1994]. The CCured system uses
a form of physical subtyping for pointers to structures, and it is not clear how
to extend Henglein’s constraint normalization procedure in such a case.

Jagannathan and Wright [1995] used a more expensive and more pre-
cise flow-sensitive analysis called polymorphic splitting to eliminate run-time
checks from higher-order call-by-value programs. Shields et al. [1998] presented
a system in which dynamic typing and staged computation (run-time code
generation) coexist: all deferred computations have the same dynamic type
at compile-time and can be checked precisely at run-time. Such a technique
can handle persisting dynamic data, a weakness of our current system. Soft
type systems [Cartwright and Fagan 1991] also infer types for procedures and
data structures in dynamically typed programs. Advanced soft type systems
[Wright and Cartwright 1997] can be based on inclusion subtyping and can
handle unions, recursive types, and other complex language features. Finally,
Kind and Friedrich [1993] presented a practical ML-style type inference system
for Lisp. As with Henglein [1992], such systems start with a dynamically typed
language and thus tackle a different core problem.

Our constraint generation process effectively computes an alias set similar
to that of Steensgaard [1996]. The EQ constaints are similar to his unification
rules. We also track additional information (e.g., pushing SEQ qualifiers back
along assignments via BOUNDS constaints) that is important for our analysis. The
analysis is thus conceptually similar to that of Das [2000] in that assignments
are treated directionally while pointers “one level down” are unified. When
viewed solely as an alias analysis, however, our results are much less precise
than those of Das.

9.4 Dynamic Values

An entire body of research [Cartwright and Fagan 1991; Henglein 1992; Kind
and Friedrich 1993; Shields et al. 1998; Thatte 1990; Wright and Cartwright
1997] has examined the notion of a Dynamic type whose values are 〈type, ptr〉
packages. Such a value can only be used by first extracting and checking

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

522 • G. C. Necula et al.

the type. In particular, one can only write values that are consistent with the
packaged type. Because the underlying value’s static type is carried within the
Dynamic package and checked at every use, there is no problem with Dynamic
aliases for statically typed data.

This approach is in contrast to CCured’s WILD pointers, which allow values
of arbitrary type to be written and which allow arbitrary interpretation of the
value read (except that the tags prevent misinterpreting a pointer base field).
Thus, a memory word’s type may change during execution. This flexibility is
built into CCured because we expect some C programs to allocate large areas
of memory and reuse that memory in different ways. However, its cost is that
WILD must be a closed world, with no aliases of statically typed data.

The inference algorithm in CCured bears some resemblance to Henglein’s
[1992] inference algorithm, but we consider physical subtyping, pointer arith-
metic, and updates. Henglein’s algorithm has the nice feature that it does not
require any type information to be present in the program. We believe that
his algorithm does not extend to the more complex language we consider here
and that existing C types contain valuable information that should be used to
make inference both simpler and predictable (in terms of when a pointer will
be inferred WILD).

Abadi et al. [1991] studied the theoretical aspects of adding a Dynamic type
to the simply typed λ-calculus, and they discussed extensions to polymorphism
and to abstract data types. CCured’s RTTI qualifier is similar, but we combine
it with an inference algorithm based on physical subtyping.

Thatte [1990] extended the work of Abadi et al. [1991] to replace the typecase
expressions with implicit casts. Their system does not handle reference types
or memory updates, and Dynamic types are introduced to add flexibility to the
language. In contrast, our system handles memory reads and writes, allows
WILD values to be manipulated (e.g., via pointer arithmetic) without checking
their tags, and uses WILD types to guarantee the safety of code that cannot be
statically verified.

The programming languages CLU [Liskov et al. 1981], Cedar/Mesa
[Lampson 1983], and Modula-{2+,3} [Cardelli et al. 1989] include similar
notions of a dynamic type and a typecase statement. This idea can also be
seen in CAML’s exception type [Remy and Vouillon 1997].

9.5 Physical Subtyping

Another line of research tries to find subsets of C that can be verified as type-
safe at compile time. Ramalingam et al. [1999] have presented an algorithm
for finding the coarsest acceptable type for structures in C programs. Chandra
and Reps [1999] presented a method for physical type checking of C programs
based on structure layout in the presence of casts. Their inference method can
reason about casts between various structure types by considering the physical
layout of memory. Many real-world examples fail to type check in their system
for the same reason that we must mark some pointers WILD: their safety cannot
be guaranteed at compile time. Siff et al. [1999] reported that many casts in C
programs are safe upcasts, and they presented a tool to check such casts. Each

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 523

of these approaches requires programs to adhere to their particular subset;
otherwise, the program is rejected. CCured’s static type system has comparable
expressiveness, but CCured can fall back on its flexible RTTI or WILD pointers
to handle the corner cases. Our notion of physical subtyping extends this line
of work to include pointer arithmetic (see Section 3.1). Most such type systems
and inference methods are presented as sources of information. In this article,
we present a type system and an inference system with the goal of making
programs safe.

9.6 Compatibility

The global splay tree used by Jones and Kelly [1997] provides an alternative ap-
proach to the problem of library compatibility; however, we found that looking
up metadata in a global data structure was prohibitively expensive. Also, Patil
and Fischer [1995] maintained shadow data using a technique that resembles
our compatible metadata representation. However, CCured’s representation
handles different kinds of metadata for different pointer kinds, requires less
overhead, and allows run-time checking to be done in the same processor and
address space as the main program. Furthermore, in CCured it is possible for
both the compatible representation and the more efficient incompatible repre-
sentation to coexist in a given program.

A number of authors have studied intensional polymorphism [Harper and
Morrisett 1995; Crary et al. 1998; Duggan 1999], which is an approach to compil-
ing polymorphism that allows type information to be used at run-time. These
techniques can allow a compiler to use efficient data representations while
preserving type safety. CCured has two possible data representations, but in-
stead of generating polymorphic code that handles both representations, we
require SPLIT types to be used whenever data may potentially be passed to an
external library. This approach is reasonable in our case, since our inference
algorithm is effective in limiting the spread of SPLIT qualifiers. Also, many
of these approaches to intensional polymorphism represent types as terms in
parallel with expressions, which resembles our split representation. However,
CCured’s split representation is used to carry array bounds for the purpose of
validating pointers, rather than to carry type information for the purpose of
implementing a form of polymorphism.

10. CONCLUSIONS

CCured is a C program analysis and transformation system that ensures
memory safety. It first analyzes the program and attempts to find safe por-
tions of it that adhere to a strong type system. The remainder of the program
is instrumented with run-time checks. Parts of the program that cannot be
proved safe statically are often slow and incompatible with external libraries.
The techniques in this article improve the usability of CCured by increasing the
amount of the program that can be verified statically and the ease with which
instrumented code can interface with the outside world.

Physical subtyping prevents many type casts from requiring the use of WILD
pointers. We have incorporated physical subtyping with pointer arithmetic,

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

524 • G. C. Necula et al.

allowing upcasts (which make up about 33% of all casts) to be statically verified
as safe. This approach improves the analysis portion of CCured.

We have described a system for run-time type information that handles
downcasts, and we provide an inference algorithm that uses physical subtyp-
ing to decide which pointers require this information. As a result, CCured can
reason about the common idioms of parametric and subtype polymorphism.
Using this mechanism improves the analysis portion of CCured and adds ad-
ditional run-time checks. When run-time type information is combined with
physical subtyping, more than 99% of all program casts can be verified without
resorting to WILD pointers.

CCured’s pointers are often incompatible with external libraries. One way
to bridge this gap is by writing wrappers, and we have extended CCured to
include support for writing wrappers that ensure memory safety. In addition, we
presented a scheme for splitting CCured’s metadata into separate data struc-
tures, allowing instrumented programs to invoke external functions directly.
This mechanism could also be useful for any run-time instrumentation scheme
that must maintain metadata with pointers while maintaining compatibility
with precompiled libraries.

We verified the utility of these extensions while working on a number of
real-world security-critical network daemons, device drivers, and Web server
modules. Without these extensions, these programs would have been quite
difficult to make safe using CCured. Equipped with the mechanisms described
in this article, we can build tools, such as CCured, that are better able to an-
alyze and instrument real-world software systems, thereby improving their
reliability and security.

ACKNOWLEDGMENTS

We thank Aman Bhargava, SP Rahul, and Raymond To for their contributions
to the CIL infrastructure. We also thank Alex Aiken, Ras Bodik, Jeff Foster,
the members of the Open Source Quality group, and the anonymous referees
for their advice and helpful comments on this article.

REFERENCES

ABADI, M., CARDELLI, L., PIERCE, B., AND PLOTKIN, G. 1991. Dynamic typing in a statically typed
language. ACM Trans. Prog. Lang. Syst. 13, 2 (April), 237–268.

AUSTIN, T. M., BREACH, S. E., AND SOHI, G. S. 1994. Efficient detection of all pointer and array
access errors. SIGPLAN Not. 29, 6 (June), 290–301. Also in Proceedings of the ACM SIGPLAN
’94 Conference on Programming Language Design and Implementation.

BOEHM, H.-J. AND WEISER, M. 1988. Garbage collection in an uncooperative environment. Softw.—
Pract. Exper. 18, 9, 807–820.

CARDELLI, L., DONAHUE, J., GLASSMAN, L., JORDAN, M., KALSOW, B., AND NELSON, G. 1989. Modula-3
report (rev.). SRC Research rep. 52. Digital Equipment Corporation Systems Research Center,
Palo alto, CA.

CARLISLE, M. C. 1996. Olden: Parallelizing programs with dynamic data structures on
distributed-memory machines. Ph.D. dissertation. Princeton University Department of Com-
puter Science, Princeton, NJ.

CARTWRIGHT, R. AND FAGAN, M. 1991. Soft typing. In Proceedings of the ’91 Conference on Program-
ming Language Design and Implementation. 278–292.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

CCured: Type-Safe Retrofitting of Legacy Software • 525

CERT COORDINATION CENTER. 2003. CERT Advisory CA-2003-12: Buffer overflow in sendmail.
Web site: http://www.cert.org/advisories/CA-2003-12.html.

CHANDRA, S. AND REPS, T. 1999. Physical type checking for C. In Proceedings of the ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering. Software Enge-
neering Notes (SEN), vol. 24.5. ACM Press, New York, NY, 66–75.

CONDIT, J., HARREN, M., NECULA, G. C., MCPEAK, S., AND WEIMER, W. 2003. CCured in the real world.
In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation. ACM, Press, New York, NY, 232–244.

CRARY, K., WEIRICH, S., AND MORRISETT, J. G. 1998. Intensional polymorphism in type-erasure
semantics. In Proceedings of the International Conference on Functional Programming. 301–312.

DAS, M. 2000. Unification-based pointer analysis with directional assignments. In Proceedings
of the Conference on Programming Language Design and Implementation.

DUGGAN, D. 1999. Dynamic typing for distributed programming in polymorphic languages. ACM
Trans. Prog. Lang. Syst. 21, 1, 11–45.

EVANS, D. 1996. Static detection of dynamic memory errors. ACM SIGPLAN Not. 31, 5, 44–53.
HARPER, R. AND MORRISETT, G. 1995. Compiling polymorphism using intensional type analysis.

In Conference Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (San Francisco, CA). 130–141.

HASTINGS, R. AND JOYCE, B. 1991. Purify: Fast detection of memory leaks and access errors. In
Proceedings of the Usenix Winter 1992 Technical Conference. Usenix Association, Berkeley, CA,
125–138.

HENGLEIN, F. 1992. Global tagging optimization by type inference. In Proceedings of the 1992
ACM Conference on LISP and Functional Programming. 205–215.

HENGLEIN, F. AND JORGENSEN, J. 1994. Formally optimal boxing. In Proceedings of the 21th Annual
ACM Symposium on Principles of Programming Languages. ACM, 213–226.

HIRZEL, M. 2000. Effectiveness of garbage collection and explicit deallocation. M.S. thesis. Uni-
versity of Colorado at Boulder, Boulder, CO.

ISO/IEC. 1999. ISO/IEC 9899:1999(E) Programming Languages—C. ISO/IEC, Geneva,
Switzerland. Web site: www.iso.ch.

JAGANNATHAN, S. AND WRIGHT, A. 1995. Effective flow analysis for avoiding run-time checks. In
Proceedings of the Second International Static Analysis Symposium, Vol. 983. Springer-Verlag,
Berlin, Germany, 207–224.

JIM, T., MORRISETT, G., GROSSMAN, D., HICKS, M., CHENEY, J., AND WANG, Y. 2002. Cyclone: A safe
dialect of C. In Proceedings of the USENIX Annual Technical Conference (Monetery, CA).

JONES, R. W. M. AND KELLY, P. H. J. 1997. Backwards-compatible bounds checking for arrays
and pointers in C programs. In Proceedings of the Third International Workshop on Automatic
Debugging (May). 13–26.

KAUFER, S., LOPEZ, R., AND PRATAP, S. 1988. Saber-C: An interpreter-based programming environ-
ment for the C language. In Proceedings of the Summer Usenix Conference. 161–171.

KIND, A. AND FRIEDRICH, H. 1993. A practical approach to type inference for EuLisp. Lisp Symbol.
Computa. 6, 1/2, 159–176.

LAMPSON, B. 1983. A description of the Cedar language. Tech. rep. CSL-83-15. Xerox Palo Alto
Research Center, Palo Alto, CA.

LISKOV, B., ATKINSON, R. R., BLOOM, T., MOSS, E. B., SCHAFFERT, R., AND SNYDER, A. 1981. CLU
Reference Manual. Springer-Verlag, Berlin, Germany.

LOGINOV, A., YONG, S., HORWITZ, S., AND REPS, T. 2001. Debugging via run-time type checking. In
Proceedings of FASE 2001: Fundamental Approaches to Software Engineering.

NECULA, G. C., MCPEAK, S., AND WEIMER, W. 2002a. CCured: Type-safe retrofitting of legacy code.
In Proceedings of the 29th Annual ACM Symposium on Principles of Programming Languages.
ACM, Press, New York, NY, 128–139.

NECULA, G. C., MCPEAK, S., AND WEIMER, W. 2002b. CIL: Intermediate language and tools for the
analysis of C programs. In Proceedings of the International Conference on Compiler Construction
(Grenoble, France). 213–228. Available online from http://raw.cs.berkeley.edu/Papers/.

PATIL, H. AND FISCHER, C. N. 1995. Efficient run-time monitoring using shadow pro-
cessing. In Proceedings of the Conference on Automated and Algorithmic Debugging.
119–132.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

526 • G. C. Necula et al.

PATIL, H. AND FISCHER, C. N. 1997. Low-cost, concurrent checking of pointer and array accesses
in C programs. Softw.—Pract. Exper. 27, 1 (Jan.), 87–110.

RAMALINGAM, G., FIELD, J., AND TIP, F. 1999. Aggregate structure identification and its application
to program analysis. In Proceedings of the Symposium on Principles of Programming Languages.
119–132.

REMY, D. AND VOUILLON, J. 1997. Objective ML: A simple object-oriented extension of ML. In
Proceedings of the Symposium on Principles of Programming Languages. 40–53.

SECURITEAM.COM. 2000. PHP3/PHP4 format string vulnerability. Web site: http://www.

securiteam.com/securitynews/6O00T0K03O.html.

SEWARD, J. 2003. Valgrind, an open-source memory debugger for x86-GNU/Linux. Tech. rep.
Available online at http://developer.kde.org/~sewardj/.

SHIELDS, M., SHEARD, T., AND JONES, S. L. P. 1998. Dynamic typing as staged type inference. In
Proceedings of the Symposium on Principles of Programming Languages. 289–302.

SIFF, M., CHANDRA, S., BALL, T., KUNCHITHAPADAM, K., AND REPS, T. 1999. Coping with type casts in
C. In 1999 ACM Foundations on Software Engineering Conference. Lecture Notes in Computer
Science, vol. 1687. Springer-Verlag, Berlin, Germany, ACM Press, New York, NY, 180–198.

SMITH, G. AND VOLPANO, D. 1998. A sound polymorphic type system for a dialect of C. Sci. Comput.
Prog. 32, 1–3, 49–72.

SPEC. 1995. Standard Performance Evaluation Corporation Benchmarks. Web site:
http://www.spec.org/osg/cpu95/CINT95.

STEENSGAARD, B. 1996. Points-to analysis in almost linear time. In Proceedings of the Symposium
on Principles of Programming Languages. 32–41.

STEFFEN, J. L. 1992. Adding run-time checking to the Portable C Compiler. Softw.—Pract. Ex-
per. 22, 4 (Apr.), 305–316.

THATTE, S. 1990. Quasi-static typing. In Proceedings of the Conference record of the 17th ACM
Symposium on Principles of Programming Languages (POPL). 367–381.

WAGNER, D., FOSTER, J., BREWER, E., AND AIKEN, A. 2000. A first step toward automated detection
of buffer overrun vulnerabilities. In Proceedings of the Network Distributed Systems Security
Symposium. 1–15.

WRIGHT, A. AND CARTWRIGHT, R. 1997. A practical soft type system for Scheme. ACM Trans. Prog.
Lang. Syst. 19, 1 (Jan.), 87–152.

Received April 2003; revised November 2003; accepted May 2004

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.

