
Understanding
Automatically-

Generated Patches
Through Symbolic

Invariant Differences
Padraic Cashin, Carianne Martinez,
Westley Weimer, Stephanie Forrest

2

The Problem

● Automated program repair may reduce
software maintenance costs
● Given a program and evidence of a bug, produce

patches that fix that bug
● SapFix, Angelix, Hercules, Prophet, Darjeeling, …

● A plausible patch passes local tests but may or
may not be acceptable to developers
● Assessing plausible patches takes time and effort
● Can we reduce that manual analysis time?

3

Patch Quality

● Many quality properties influence human
decisions to adopt patches
● Readability, maintainability, trust, style, …

● In addition, there are functional correctness
concerns related to overfitting

● Repair algorithms may incorporate techniques
to produce more acceptable patches
● (e.g., templates, restricted operators,

consolidation, etc.)

4

Patch Assessment

● Ultimately, generate-and-validate program
repair may produce dozens of syntactically-
unique patches for the same defect

● We propose to reduce this inspection burden
● Characterize patches by their sets of formal

invariants (i.e., their behavior)
● Calculate a distance metric on invariant sets
● Cluster invariant sets (and thus patches) into

equivalence classes
● Only inspect one patch of each equivalence class

5

6

Comparing Invariant Sets

● Relaxes standard set difference from requiring
equivalence to requiring logical implication

● Given programs A and B, tests T and invariant
sets AI and BI

● We define the implication distance to be the
cardinality of the subset of invariants in BI
that are not implied by any invariant in AI
● This definition admits hierarchical clustering
● Optimization: consider only minterms from AI

7

Efficient Invariant Comparison

● We also consider a more syntactic notion of
distance on invariant sets

● We map syntactically-identical invariants to
the same logical alphabet symbol
● “X=2” is A, “X=2” is A, “X=1+1” is B, etc.

● And then calculate the Levenshtein edit
distance on the induced strings
● Efficient polytime computation (cf. Z3)

8

Results & Conclusion

● Applied to 7 Defects4J and 5 ManyBugs bugs
● 20-50 patches each from multiple tools

● Reduces manual inspection burden by 40-50%
● Fast string-based distance has 95% accuracy

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

